blob: 5234da71a8de80807e4c166175160568cc2b3deb [file] [log] [blame]
Hal Finkel99f823f2012-06-08 15:38:21 +00001//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the PPC branch instructions
11// that decrement and test the count register (CTR) (bdnz and friends).
12// This pass is based on the HexagonHardwareLoops pass.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for CTR loops:
21// - Countable loops (w/ ind. var for a trip count)
22// - Assumes loops are normalized by IndVarSimplify
23// - Try inner-most loops first
24// - No nested CTR loops.
25// - No function calls in loops.
26//
27// Note: As with unconverted loops, PPCBranchSelector must be run after this
28// pass in order to convert long-displacement jumps into jump pairs.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "ctrloops"
33#include "PPC.h"
34#include "PPCTargetMachine.h"
35#include "llvm/Constants.h"
36#include "llvm/PassSupport.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/CodeGen/MachineDominators.h"
41#include "llvm/CodeGen/MachineFunction.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineLoopInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/RegisterScavenging.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include <algorithm>
51
52using namespace llvm;
53
54STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
55
56namespace {
57 class CountValue;
58 struct PPCCTRLoops : public MachineFunctionPass {
59 MachineLoopInfo *MLI;
60 MachineRegisterInfo *MRI;
61 const TargetInstrInfo *TII;
62
63 public:
64 static char ID; // Pass identification, replacement for typeid
65
66 PPCCTRLoops() : MachineFunctionPass(ID) {}
67
68 virtual bool runOnMachineFunction(MachineFunction &MF);
69
70 const char *getPassName() const { return "PPC CTR Loops"; }
71
72 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.setPreservesCFG();
74 AU.addRequired<MachineDominatorTree>();
75 AU.addPreserved<MachineDominatorTree>();
76 AU.addRequired<MachineLoopInfo>();
77 AU.addPreserved<MachineLoopInfo>();
78 MachineFunctionPass::getAnalysisUsage(AU);
79 }
80
81 private:
82 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
83 /// induction variable.
84 /// Should be defined in MachineLoop. Based upon version in class Loop.
85 MachineInstr *getCanonicalInductionVariable(MachineLoop *L,
86 MachineInstr *&IOp) const;
87
88 /// getTripCount - Return a loop-invariant LLVM register indicating the
89 /// number of times the loop will be executed. If the trip-count cannot
90 /// be determined, this return null.
91 CountValue *getTripCount(MachineLoop *L, bool &WordCmp,
92 SmallVector<MachineInstr *, 2> &OldInsts) const;
93
94 /// isInductionOperation - Return true if the instruction matches the
95 /// pattern for an opertion that defines an induction variable.
96 bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
97
98 /// isInvalidOperation - Return true if the instruction is not valid within
99 /// a CTR loop.
100 bool isInvalidLoopOperation(const MachineInstr *MI) const;
101
102 /// containsInavlidInstruction - Return true if the loop contains an
103 /// instruction that inhibits using the CTR loop.
104 bool containsInvalidInstruction(MachineLoop *L) const;
105
106 /// converToCTRLoop - Given a loop, check if we can convert it to a
107 /// CTR loop. If so, then perform the conversion and return true.
108 bool convertToCTRLoop(MachineLoop *L);
109
110 /// isDead - Return true if the instruction is now dead.
111 bool isDead(const MachineInstr *MI,
112 SmallVector<MachineInstr *, 1> &DeadPhis) const;
113
114 /// removeIfDead - Remove the instruction if it is now dead.
115 void removeIfDead(MachineInstr *MI);
116 };
117
118 char PPCCTRLoops::ID = 0;
119
120
121 // CountValue class - Abstraction for a trip count of a loop. A
122 // smaller vesrsion of the MachineOperand class without the concerns
123 // of changing the operand representation.
124 class CountValue {
125 public:
126 enum CountValueType {
127 CV_Register,
128 CV_Immediate
129 };
130 private:
131 CountValueType Kind;
132 union Values {
133 unsigned RegNum;
134 int64_t ImmVal;
135 Values(unsigned r) : RegNum(r) {}
136 Values(int64_t i) : ImmVal(i) {}
137 } Contents;
138 bool isNegative;
139
140 public:
141 CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
142 isNegative(neg) {}
143 explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
144 isNegative(i < 0) {}
145 CountValueType getType() const { return Kind; }
146 bool isReg() const { return Kind == CV_Register; }
147 bool isImm() const { return Kind == CV_Immediate; }
148 bool isNeg() const { return isNegative; }
149
150 unsigned getReg() const {
151 assert(isReg() && "Wrong CountValue accessor");
152 return Contents.RegNum;
153 }
154 void setReg(unsigned Val) {
155 Contents.RegNum = Val;
156 }
157 int64_t getImm() const {
158 assert(isImm() && "Wrong CountValue accessor");
159 if (isNegative) {
160 return -Contents.ImmVal;
161 }
162 return Contents.ImmVal;
163 }
164 void setImm(int64_t Val) {
165 Contents.ImmVal = Val;
166 }
167
168 void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
169 if (isReg()) { OS << PrintReg(getReg()); }
170 if (isImm()) { OS << getImm(); }
171 }
172 };
173} // end anonymous namespace
174
175
176/// isCompareEquals - Returns true if the instruction is a compare equals
177/// instruction with an immediate operand.
178static bool isCompareEqualsImm(const MachineInstr *MI, bool &WordCmp) {
179 if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPLWI) {
180 WordCmp = true;
181 return true;
182 } else if (MI->getOpcode() == PPC::CMPDI || MI->getOpcode() == PPC::CMPLDI) {
183 WordCmp = false;
184 return true;
185 }
186
187 return false;
188}
189
190
191/// createPPCCTRLoops - Factory for creating
192/// the CTR loop phase.
193FunctionPass *llvm::createPPCCTRLoops() {
194 return new PPCCTRLoops();
195}
196
197
198bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
199 DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
200
201 bool Changed = false;
202
203 // get the loop information
204 MLI = &getAnalysis<MachineLoopInfo>();
205 // get the register information
206 MRI = &MF.getRegInfo();
207 // the target specific instructio info.
208 TII = MF.getTarget().getInstrInfo();
209
210 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
211 I != E; ++I) {
212 MachineLoop *L = *I;
213 if (!L->getParentLoop()) {
214 Changed |= convertToCTRLoop(L);
215 }
216 }
217
218 return Changed;
219}
220
221/// getCanonicalInductionVariable - Check to see if the loop has a canonical
222/// induction variable. We check for a simple recurrence pattern - an
223/// integer recurrence that decrements by one each time through the loop and
224/// ends at zero. If so, return the phi node that corresponds to it.
225///
226/// Based upon the similar code in LoopInfo except this code is specific to
227/// the machine.
228/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
229///
230MachineInstr
231*PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
232 MachineInstr *&IOp) const {
233 MachineBasicBlock *TopMBB = L->getTopBlock();
234 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
235 assert(PI != TopMBB->pred_end() &&
236 "Loop must have more than one incoming edge!");
237 MachineBasicBlock *Backedge = *PI++;
238 if (PI == TopMBB->pred_end()) return 0; // dead loop
239 MachineBasicBlock *Incoming = *PI++;
240 if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
241
242 // make sure there is one incoming and one backedge and determine which
243 // is which.
244 if (L->contains(Incoming)) {
245 if (L->contains(Backedge))
246 return 0;
247 std::swap(Incoming, Backedge);
248 } else if (!L->contains(Backedge))
249 return 0;
250
251 // Loop over all of the PHI nodes, looking for a canonical induction variable:
252 // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
253 // - The recurrence comes from the backedge.
254 // - the definition is an induction operatio.n
255 for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
256 I != E && I->isPHI(); ++I) {
257 MachineInstr *MPhi = &*I;
258 unsigned DefReg = MPhi->getOperand(0).getReg();
259 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
260 // Check each operand for the value from the backedge.
261 MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
262 if (L->contains(MBB)) { // operands comes from the backedge
263 // Check if the definition is an induction operation.
264 MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
265 if (isInductionOperation(DI, DefReg)) {
266 IOp = DI;
267 return MPhi;
268 }
269 }
270 }
271 }
272 return 0;
273}
274
275/// getTripCount - Return a loop-invariant LLVM value indicating the
276/// number of times the loop will be executed. The trip count can
277/// be either a register or a constant value. If the trip-count
278/// cannot be determined, this returns null.
279///
280/// We find the trip count from the phi instruction that defines the
281/// induction variable. We follow the links to the CMP instruction
282/// to get the trip count.
283///
284/// Based upon getTripCount in LoopInfo.
285///
286CountValue *PPCCTRLoops::getTripCount(MachineLoop *L, bool &WordCmp,
287 SmallVector<MachineInstr *, 2> &OldInsts) const {
288 // Check that the loop has a induction variable.
289 MachineInstr *IOp;
290 MachineInstr *IV_Inst = getCanonicalInductionVariable(L, IOp);
291 if (IV_Inst == 0) return 0;
292
293 // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
294 // if Imm is 0, get the count from the PHI opnd
295 // if Imm is -M, than M is the count
296 // Otherwise, Imm is the count
297 MachineOperand *IV_Opnd;
298 const MachineOperand *InitialValue;
299 if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
300 InitialValue = &IV_Inst->getOperand(1);
301 IV_Opnd = &IV_Inst->getOperand(3);
302 } else {
303 InitialValue = &IV_Inst->getOperand(3);
304 IV_Opnd = &IV_Inst->getOperand(1);
305 }
306
307 // Look for the cmp instruction to determine if we
308 // can get a useful trip count. The trip count can
309 // be either a register or an immediate. The location
310 // of the value depends upon the type (reg or imm).
311 while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
312 MachineInstr *MI = IV_Opnd->getParent();
313 if (L->contains(MI) && isCompareEqualsImm(MI, WordCmp)) {
314 OldInsts.push_back(MI);
315 OldInsts.push_back(IOp);
316
317 const MachineOperand &MO = MI->getOperand(2);
318 assert(MO.isImm() && "IV Cmp Operand should be an immediate");
319 int64_t ImmVal = MO.getImm();
320
321 const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
322 assert(L->contains(IV_DefInstr->getParent()) &&
323 "IV definition should occurs in loop");
324 int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
325
326 if (ImmVal == 0) {
327 // Make sure the induction variable changes by one on each iteration.
328 if (iv_value != 1 && iv_value != -1) {
329 return 0;
330 }
331 return new CountValue(InitialValue->getReg(), iv_value > 0);
332 } else {
333 assert(InitialValue->isReg() && "Expecting register for init value");
334 const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
335
336 // Here we need to look for an immediate load (an li or lis/ori pair).
337 if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
338 DefInstr->getOpcode() == PPC::ORI)) {
339 int64_t start = DefInstr->getOperand(2).getImm();
340 const MachineInstr *DefInstr2 =
341 MRI->getVRegDef(DefInstr->getOperand(0).getReg());
342 if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
343 DefInstr2->getOpcode() == PPC::LIS)) {
344 start |= DefInstr2->getOperand(1).getImm() << 16;
345
346 int64_t count = ImmVal - start;
347 if ((count % iv_value) != 0) {
348 return 0;
349 }
350 return new CountValue(count/iv_value);
351 }
352 } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
353 DefInstr->getOpcode() == PPC::LI)) {
354 int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
355 if ((count % iv_value) != 0) {
356 return 0;
357 }
358 return new CountValue(count/iv_value);
359 }
360 }
361 }
362 }
363 return 0;
364}
365
366/// isInductionOperation - return true if the operation is matches the
367/// pattern that defines an induction variable:
368/// addi iv, c
369///
370bool
371PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
372 unsigned IVReg) const {
373 return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
Hal Finkeldaa03ec2012-06-08 15:38:23 +0000374 MI->getOperand(1).isReg() && // could be a frame index instead
Hal Finkel99f823f2012-06-08 15:38:21 +0000375 MI->getOperand(1).getReg() == IVReg);
376}
377
378/// isInvalidOperation - Return true if the operation is invalid within
379/// CTR loop.
380bool
381PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
382
383 // call is not allowed because the callee may use a CTR loop
384 if (MI->getDesc().isCall()) {
385 return true;
386 }
387 // check if the instruction defines a CTR loop register
388 // (this will also catch nested CTR loops)
389 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
390 const MachineOperand &MO = MI->getOperand(i);
391 if (MO.isReg() && MO.isDef() &&
392 (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
393 return true;
394 }
395 }
396 return false;
397}
398
399/// containsInvalidInstruction - Return true if the loop contains
400/// an instruction that inhibits the use of the CTR loop function.
401///
402bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
403 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
404 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
405 MachineBasicBlock *MBB = Blocks[i];
406 for (MachineBasicBlock::iterator
407 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
408 const MachineInstr *MI = &*MII;
409 if (isInvalidLoopOperation(MI)) {
410 return true;
411 }
412 }
413 }
414 return false;
415}
416
417/// isDead returns true if the instruction is dead
418/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
419/// with special cases for inline asm, physical registers and instructions with
420/// side effects removed)
421bool PPCCTRLoops::isDead(const MachineInstr *MI,
422 SmallVector<MachineInstr *, 1> &DeadPhis) const {
423 // Examine each operand.
424 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
425 const MachineOperand &MO = MI->getOperand(i);
426 if (MO.isReg() && MO.isDef()) {
427 unsigned Reg = MO.getReg();
428 if (!MRI->use_nodbg_empty(Reg)) {
429 // This instruction has users, but if the only user is the phi node for the
430 // parent block, and the only use of that phi node is this instruction, then
431 // this instruction is dead: both it (and the phi node) can be removed.
432 MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
433 if (llvm::next(I) == MRI->use_end() &&
434 I.getOperand().getParent()->isPHI()) {
435 MachineInstr *OnePhi = I.getOperand().getParent();
436
437 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
438 const MachineOperand &OPO = OnePhi->getOperand(j);
439 if (OPO.isReg() && OPO.isDef()) {
440 unsigned OPReg = OPO.getReg();
441
442 MachineRegisterInfo::use_iterator nextJ;
443 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
444 E = MRI->use_end(); J!=E; J=nextJ) {
445 nextJ = llvm::next(J);
446 MachineOperand& Use = J.getOperand();
447 MachineInstr *UseMI = Use.getParent();
448
449 if (MI != UseMI) {
450 // The phi node has a user that is not MI, bail...
451 return false;
452 }
453 }
454 }
455 }
456
457 DeadPhis.push_back(OnePhi);
458 } else {
459 // This def has a non-debug use. Don't delete the instruction!
460 return false;
461 }
462 }
463 }
464 }
465
466 // If there are no defs with uses, the instruction is dead.
467 return true;
468}
469
470void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
471 // This procedure was essentially copied from DeadMachineInstructionElim
472
473 SmallVector<MachineInstr *, 1> DeadPhis;
474 if (isDead(MI, DeadPhis)) {
475 DEBUG(dbgs() << "CTR looping will remove: " << *MI);
476
477 // It is possible that some DBG_VALUE instructions refer to this
478 // instruction. Examine each def operand for such references;
479 // if found, mark the DBG_VALUE as undef (but don't delete it).
480 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
481 const MachineOperand &MO = MI->getOperand(i);
482 if (!MO.isReg() || !MO.isDef())
483 continue;
484 unsigned Reg = MO.getReg();
485 MachineRegisterInfo::use_iterator nextI;
486 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
487 E = MRI->use_end(); I!=E; I=nextI) {
488 nextI = llvm::next(I); // I is invalidated by the setReg
489 MachineOperand& Use = I.getOperand();
490 MachineInstr *UseMI = Use.getParent();
491 if (UseMI==MI)
492 continue;
493 if (Use.isDebug()) // this might also be a instr -> phi -> instr case
494 // which can also be removed.
495 UseMI->getOperand(0).setReg(0U);
496 }
497 }
498
499 MI->eraseFromParent();
500 for (unsigned i = 0; i < DeadPhis.size(); ++i) {
501 DeadPhis[i]->eraseFromParent();
502 }
503 }
504}
505
506/// converToCTRLoop - check if the loop is a candidate for
507/// converting to a CTR loop. If so, then perform the
508/// transformation.
509///
510/// This function works on innermost loops first. A loop can
511/// be converted if it is a counting loop; either a register
512/// value or an immediate.
513///
514/// The code makes several assumptions about the representation
515/// of the loop in llvm.
516bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
517 bool Changed = false;
518 // Process nested loops first.
519 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
520 Changed |= convertToCTRLoop(*I);
521 }
522 // If a nested loop has been converted, then we can't convert this loop.
523 if (Changed) {
524 return Changed;
525 }
526
527 bool WordCmp;
528 SmallVector<MachineInstr *, 2> OldInsts;
529 // Are we able to determine the trip count for the loop?
530 CountValue *TripCount = getTripCount(L, WordCmp, OldInsts);
531 if (TripCount == 0) {
532 DEBUG(dbgs() << "failed to get trip count!\n");
533 return false;
534 }
535 // Does the loop contain any invalid instructions?
536 if (containsInvalidInstruction(L)) {
537 return false;
538 }
539 MachineBasicBlock *Preheader = L->getLoopPreheader();
540 // No preheader means there's not place for the loop instr.
541 if (Preheader == 0) {
542 return false;
543 }
544 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
545
546 DebugLoc dl;
547 if (InsertPos != Preheader->end())
548 dl = InsertPos->getDebugLoc();
549
550 MachineBasicBlock *LastMBB = L->getExitingBlock();
551 // Don't generate CTR loop if the loop has more than one exit.
552 if (LastMBB == 0) {
553 return false;
554 }
555 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
556
557 // Determine the loop start.
558 MachineBasicBlock *LoopStart = L->getTopBlock();
559 if (L->getLoopLatch() != LastMBB) {
560 // When the exit and latch are not the same, use the latch block as the
561 // start.
562 // The loop start address is used only after the 1st iteration, and the loop
563 // latch may contains instrs. that need to be executed after the 1st iter.
564 LoopStart = L->getLoopLatch();
565 // Make sure the latch is a successor of the exit, otherwise it won't work.
566 if (!LastMBB->isSuccessor(LoopStart)) {
567 return false;
568 }
569 }
570
571 // Convert the loop to a CTR loop
572 DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
573
574 MachineFunction *MF = LastMBB->getParent();
575 const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
576 bool isPPC64 = Subtarget.isPPC64();
577
578 unsigned CountReg;
579 if (TripCount->isReg()) {
580 // Create a copy of the loop count register.
581 const TargetRegisterClass *RC =
582 MF->getRegInfo().getRegClass(TripCount->getReg());
583 CountReg = MF->getRegInfo().createVirtualRegister(RC);
584 BuildMI(*Preheader, InsertPos, dl,
585 TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
586 if (TripCount->isNeg()) {
587 unsigned CountReg1 = CountReg;
588 CountReg = MF->getRegInfo().createVirtualRegister(RC);
589 BuildMI(*Preheader, InsertPos, dl,
590 TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
591 CountReg).addReg(CountReg1);
592 }
593
594 // On a 64-bit system, if the original comparison was only 32-bit, then
595 // mask out the higher-order part of the count.
596 if (isPPC64 && WordCmp) {
597 unsigned CountReg1 = CountReg;
598 CountReg = MF->getRegInfo().createVirtualRegister(RC);
599 BuildMI(*Preheader, InsertPos, dl,
600 TII->get(PPC::RLDICL), CountReg).addReg(CountReg1
601 ).addImm(0).addImm(32);
602 }
603 } else {
604 assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
605 // Put the trip count in a register for transfer into the count register.
606 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
607 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
608 const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
609
610 int64_t CountImm = TripCount->getImm();
611 if (TripCount->isNeg())
612 CountImm = -CountImm;
613
614 CountReg = MF->getRegInfo().createVirtualRegister(RC);
615 if (CountImm > 0xFFFF) {
616 BuildMI(*Preheader, InsertPos, dl,
617 TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
618 CountReg).addImm(CountImm >> 16);
619 unsigned CountReg1 = CountReg;
620 CountReg = MF->getRegInfo().createVirtualRegister(RC);
621 BuildMI(*Preheader, InsertPos, dl,
622 TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
623 CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
624 } else {
625 BuildMI(*Preheader, InsertPos, dl,
626 TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
627 CountReg).addImm(CountImm);
628 }
629 }
630
631 // Add the mtctr instruction to the beginning of the loop.
632 BuildMI(*Preheader, InsertPos, dl,
633 TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
634 TripCount->isImm() ? RegState::Kill : 0);
635
636 // Make sure the loop start always has a reference in the CFG. We need to
637 // create a BlockAddress operand to get this mechanism to work both the
638 // MachineBasicBlock and BasicBlock objects need the flag set.
639 LoopStart->setHasAddressTaken();
640 // This line is needed to set the hasAddressTaken flag on the BasicBlock
641 // object
642 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
643
644 // Replace the loop branch with a bdnz instruction.
645 dl = LastI->getDebugLoc();
646 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
647 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
648 MachineBasicBlock *MBB = Blocks[i];
649 if (MBB != Preheader)
650 MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
651 }
652
653 // The loop ends with either:
654 // - a conditional branch followed by an unconditional branch, or
655 // - a conditional branch to the loop start.
656 assert(LastI->getOpcode() == PPC::BCC &&
657 "loop end must start with a BCC instruction");
658 // Either the BCC branches to the beginning of the loop, or it
659 // branches out of the loop and there is an unconditional branch
660 // to the start of the loop.
661 MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
662 BuildMI(*LastMBB, LastI, dl,
663 TII->get((BranchTarget == LoopStart) ?
664 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
665 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
666
667 // Conditional branch; just delete it.
668 LastMBB->erase(LastI);
669
670 delete TripCount;
671
672 // The induction operation (add) and the comparison (cmpwi) may now be
673 // unneeded. If these are unneeded, then remove them.
674 for (unsigned i = 0; i < OldInsts.size(); ++i)
675 removeIfDead(OldInsts[i]);
676
677 ++NumCTRLoops;
678 return true;
679}
680