Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame] | 1 | ======================================== |
| 2 | Kaleidoscope: Code generation to LLVM IR |
| 3 | ======================================== |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | |
Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame] | 8 | Chapter 3 Introduction |
| 9 | ====================== |
| 10 | |
| 11 | Welcome to Chapter 3 of the "`Implementing a language with |
| 12 | LLVM <index.html>`_" tutorial. This chapter shows you how to transform |
| 13 | the `Abstract Syntax Tree <OCamlLangImpl2.html>`_, built in Chapter 2, |
| 14 | into LLVM IR. This will teach you a little bit about how LLVM does |
| 15 | things, as well as demonstrate how easy it is to use. It's much more |
| 16 | work to build a lexer and parser than it is to generate LLVM IR code. :) |
| 17 | |
| 18 | **Please note**: the code in this chapter and later require LLVM 2.3 or |
| 19 | LLVM SVN to work. LLVM 2.2 and before will not work with it. |
| 20 | |
| 21 | Code Generation Setup |
| 22 | ===================== |
| 23 | |
| 24 | In order to generate LLVM IR, we want some simple setup to get started. |
| 25 | First we define virtual code generation (codegen) methods in each AST |
| 26 | class: |
| 27 | |
| 28 | .. code-block:: ocaml |
| 29 | |
| 30 | let rec codegen_expr = function |
| 31 | | Ast.Number n -> ... |
| 32 | | Ast.Variable name -> ... |
| 33 | |
| 34 | The ``Codegen.codegen_expr`` function says to emit IR for that AST node |
| 35 | along with all the things it depends on, and they all return an LLVM |
| 36 | Value object. "Value" is the class used to represent a "`Static Single |
| 37 | Assignment |
| 38 | (SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_ |
| 39 | register" or "SSA value" in LLVM. The most distinct aspect of SSA values |
| 40 | is that their value is computed as the related instruction executes, and |
| 41 | it does not get a new value until (and if) the instruction re-executes. |
| 42 | In other words, there is no way to "change" an SSA value. For more |
| 43 | information, please read up on `Static Single |
| 44 | Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_ |
| 45 | - the concepts are really quite natural once you grok them. |
| 46 | |
| 47 | The second thing we want is an "Error" exception like we used for the |
| 48 | parser, which will be used to report errors found during code generation |
| 49 | (for example, use of an undeclared parameter): |
| 50 | |
| 51 | .. code-block:: ocaml |
| 52 | |
| 53 | exception Error of string |
| 54 | |
| 55 | let context = global_context () |
| 56 | let the_module = create_module context "my cool jit" |
| 57 | let builder = builder context |
| 58 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| 59 | let double_type = double_type context |
| 60 | |
| 61 | The static variables will be used during code generation. |
| 62 | ``Codgen.the_module`` is the LLVM construct that contains all of the |
| 63 | functions and global variables in a chunk of code. In many ways, it is |
| 64 | the top-level structure that the LLVM IR uses to contain code. |
| 65 | |
| 66 | The ``Codegen.builder`` object is a helper object that makes it easy to |
| 67 | generate LLVM instructions. Instances of the |
| 68 | ```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_ |
| 69 | class keep track of the current place to insert instructions and has |
| 70 | methods to create new instructions. |
| 71 | |
| 72 | The ``Codegen.named_values`` map keeps track of which values are defined |
| 73 | in the current scope and what their LLVM representation is. (In other |
| 74 | words, it is a symbol table for the code). In this form of Kaleidoscope, |
| 75 | the only things that can be referenced are function parameters. As such, |
| 76 | function parameters will be in this map when generating code for their |
| 77 | function body. |
| 78 | |
| 79 | With these basics in place, we can start talking about how to generate |
| 80 | code for each expression. Note that this assumes that the |
| 81 | ``Codgen.builder`` has been set up to generate code *into* something. |
| 82 | For now, we'll assume that this has already been done, and we'll just |
| 83 | use it to emit code. |
| 84 | |
| 85 | Expression Code Generation |
| 86 | ========================== |
| 87 | |
| 88 | Generating LLVM code for expression nodes is very straightforward: less |
| 89 | than 30 lines of commented code for all four of our expression nodes. |
| 90 | First we'll do numeric literals: |
| 91 | |
| 92 | .. code-block:: ocaml |
| 93 | |
| 94 | | Ast.Number n -> const_float double_type n |
| 95 | |
| 96 | In the LLVM IR, numeric constants are represented with the |
| 97 | ``ConstantFP`` class, which holds the numeric value in an ``APFloat`` |
| 98 | internally (``APFloat`` has the capability of holding floating point |
| 99 | constants of Arbitrary Precision). This code basically just creates |
| 100 | and returns a ``ConstantFP``. Note that in the LLVM IR that constants |
| 101 | are all uniqued together and shared. For this reason, the API uses "the |
| 102 | foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)". |
| 103 | |
| 104 | .. code-block:: ocaml |
| 105 | |
| 106 | | Ast.Variable name -> |
| 107 | (try Hashtbl.find named_values name with |
| 108 | | Not_found -> raise (Error "unknown variable name")) |
| 109 | |
| 110 | References to variables are also quite simple using LLVM. In the simple |
| 111 | version of Kaleidoscope, we assume that the variable has already been |
| 112 | emitted somewhere and its value is available. In practice, the only |
| 113 | values that can be in the ``Codegen.named_values`` map are function |
| 114 | arguments. This code simply checks to see that the specified name is in |
| 115 | the map (if not, an unknown variable is being referenced) and returns |
| 116 | the value for it. In future chapters, we'll add support for `loop |
| 117 | induction variables <LangImpl5.html#for>`_ in the symbol table, and for |
| 118 | `local variables <LangImpl7.html#localvars>`_. |
| 119 | |
| 120 | .. code-block:: ocaml |
| 121 | |
| 122 | | Ast.Binary (op, lhs, rhs) -> |
| 123 | let lhs_val = codegen_expr lhs in |
| 124 | let rhs_val = codegen_expr rhs in |
| 125 | begin |
| 126 | match op with |
| 127 | | '+' -> build_fadd lhs_val rhs_val "addtmp" builder |
| 128 | | '-' -> build_fsub lhs_val rhs_val "subtmp" builder |
| 129 | | '*' -> build_fmul lhs_val rhs_val "multmp" builder |
| 130 | | '<' -> |
| 131 | (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| 132 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| 133 | build_uitofp i double_type "booltmp" builder |
| 134 | | _ -> raise (Error "invalid binary operator") |
| 135 | end |
| 136 | |
| 137 | Binary operators start to get more interesting. The basic idea here is |
| 138 | that we recursively emit code for the left-hand side of the expression, |
| 139 | then the right-hand side, then we compute the result of the binary |
| 140 | expression. In this code, we do a simple switch on the opcode to create |
| 141 | the right LLVM instruction. |
| 142 | |
| 143 | In the example above, the LLVM builder class is starting to show its |
| 144 | value. IRBuilder knows where to insert the newly created instruction, |
| 145 | all you have to do is specify what instruction to create (e.g. with |
| 146 | ``Llvm.create_add``), which operands to use (``lhs`` and ``rhs`` here) |
| 147 | and optionally provide a name for the generated instruction. |
| 148 | |
| 149 | One nice thing about LLVM is that the name is just a hint. For instance, |
| 150 | if the code above emits multiple "addtmp" variables, LLVM will |
| 151 | automatically provide each one with an increasing, unique numeric |
| 152 | suffix. Local value names for instructions are purely optional, but it |
| 153 | makes it much easier to read the IR dumps. |
| 154 | |
| 155 | `LLVM instructions <../LangRef.html#instref>`_ are constrained by strict |
| 156 | rules: for example, the Left and Right operators of an `add |
| 157 | instruction <../LangRef.html#i_add>`_ must have the same type, and the |
| 158 | result type of the add must match the operand types. Because all values |
| 159 | in Kaleidoscope are doubles, this makes for very simple code for add, |
| 160 | sub and mul. |
| 161 | |
| 162 | On the other hand, LLVM specifies that the `fcmp |
| 163 | instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a |
| 164 | one bit integer). The problem with this is that Kaleidoscope wants the |
| 165 | value to be a 0.0 or 1.0 value. In order to get these semantics, we |
| 166 | combine the fcmp instruction with a `uitofp |
| 167 | instruction <../LangRef.html#i_uitofp>`_. This instruction converts its |
| 168 | input integer into a floating point value by treating the input as an |
| 169 | unsigned value. In contrast, if we used the `sitofp |
| 170 | instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator |
| 171 | would return 0.0 and -1.0, depending on the input value. |
| 172 | |
| 173 | .. code-block:: ocaml |
| 174 | |
| 175 | | Ast.Call (callee, args) -> |
| 176 | (* Look up the name in the module table. *) |
| 177 | let callee = |
| 178 | match lookup_function callee the_module with |
| 179 | | Some callee -> callee |
| 180 | | None -> raise (Error "unknown function referenced") |
| 181 | in |
| 182 | let params = params callee in |
| 183 | |
| 184 | (* If argument mismatch error. *) |
| 185 | if Array.length params == Array.length args then () else |
| 186 | raise (Error "incorrect # arguments passed"); |
| 187 | let args = Array.map codegen_expr args in |
| 188 | build_call callee args "calltmp" builder |
| 189 | |
| 190 | Code generation for function calls is quite straightforward with LLVM. |
| 191 | The code above initially does a function name lookup in the LLVM |
| 192 | Module's symbol table. Recall that the LLVM Module is the container that |
| 193 | holds all of the functions we are JIT'ing. By giving each function the |
| 194 | same name as what the user specifies, we can use the LLVM symbol table |
| 195 | to resolve function names for us. |
| 196 | |
| 197 | Once we have the function to call, we recursively codegen each argument |
| 198 | that is to be passed in, and create an LLVM `call |
| 199 | instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C |
| 200 | calling conventions by default, allowing these calls to also call into |
| 201 | standard library functions like "sin" and "cos", with no additional |
| 202 | effort. |
| 203 | |
| 204 | This wraps up our handling of the four basic expressions that we have so |
| 205 | far in Kaleidoscope. Feel free to go in and add some more. For example, |
| 206 | by browsing the `LLVM language reference <../LangRef.html>`_ you'll find |
| 207 | several other interesting instructions that are really easy to plug into |
| 208 | our basic framework. |
| 209 | |
| 210 | Function Code Generation |
| 211 | ======================== |
| 212 | |
| 213 | Code generation for prototypes and functions must handle a number of |
| 214 | details, which make their code less beautiful than expression code |
| 215 | generation, but allows us to illustrate some important points. First, |
| 216 | lets talk about code generation for prototypes: they are used both for |
| 217 | function bodies and external function declarations. The code starts |
| 218 | with: |
| 219 | |
| 220 | .. code-block:: ocaml |
| 221 | |
| 222 | let codegen_proto = function |
| 223 | | Ast.Prototype (name, args) -> |
| 224 | (* Make the function type: double(double,double) etc. *) |
| 225 | let doubles = Array.make (Array.length args) double_type in |
| 226 | let ft = function_type double_type doubles in |
| 227 | let f = |
| 228 | match lookup_function name the_module with |
| 229 | |
| 230 | This code packs a lot of power into a few lines. Note first that this |
| 231 | function returns a "Function\*" instead of a "Value\*" (although at the |
| 232 | moment they both are modeled by ``llvalue`` in ocaml). Because a |
| 233 | "prototype" really talks about the external interface for a function |
| 234 | (not the value computed by an expression), it makes sense for it to |
| 235 | return the LLVM Function it corresponds to when codegen'd. |
| 236 | |
| 237 | The call to ``Llvm.function_type`` creates the ``Llvm.llvalue`` that |
| 238 | should be used for a given Prototype. Since all function arguments in |
| 239 | Kaleidoscope are of type double, the first line creates a vector of "N" |
| 240 | LLVM double types. It then uses the ``Llvm.function_type`` method to |
| 241 | create a function type that takes "N" doubles as arguments, returns one |
| 242 | double as a result, and that is not vararg (that uses the function |
| 243 | ``Llvm.var_arg_function_type``). Note that Types in LLVM are uniqued |
| 244 | just like ``Constant``'s are, so you don't "new" a type, you "get" it. |
| 245 | |
| 246 | The final line above checks if the function has already been defined in |
| 247 | ``Codegen.the_module``. If not, we will create it. |
| 248 | |
| 249 | .. code-block:: ocaml |
| 250 | |
| 251 | | None -> declare_function name ft the_module |
| 252 | |
| 253 | This indicates the type and name to use, as well as which module to |
| 254 | insert into. By default we assume a function has |
| 255 | ``Llvm.Linkage.ExternalLinkage``. "`external |
| 256 | linkage <LangRef.html#linkage>`_" means that the function may be defined |
| 257 | outside the current module and/or that it is callable by functions |
| 258 | outside the module. The "``name``" passed in is the name the user |
| 259 | specified: this name is registered in "``Codegen.the_module``"s symbol |
| 260 | table, which is used by the function call code above. |
| 261 | |
| 262 | In Kaleidoscope, I choose to allow redefinitions of functions in two |
| 263 | cases: first, we want to allow 'extern'ing a function more than once, as |
| 264 | long as the prototypes for the externs match (since all arguments have |
| 265 | the same type, we just have to check that the number of arguments |
| 266 | match). Second, we want to allow 'extern'ing a function and then |
| 267 | defining a body for it. This is useful when defining mutually recursive |
| 268 | functions. |
| 269 | |
| 270 | .. code-block:: ocaml |
| 271 | |
| 272 | (* If 'f' conflicted, there was already something named 'name'. If it |
| 273 | * has a body, don't allow redefinition or reextern. *) |
| 274 | | Some f -> |
| 275 | (* If 'f' already has a body, reject this. *) |
| 276 | if Array.length (basic_blocks f) == 0 then () else |
| 277 | raise (Error "redefinition of function"); |
| 278 | |
| 279 | (* If 'f' took a different number of arguments, reject. *) |
| 280 | if Array.length (params f) == Array.length args then () else |
| 281 | raise (Error "redefinition of function with different # args"); |
| 282 | f |
| 283 | in |
| 284 | |
| 285 | In order to verify the logic above, we first check to see if the |
| 286 | pre-existing function is "empty". In this case, empty means that it has |
| 287 | no basic blocks in it, which means it has no body. If it has no body, it |
| 288 | is a forward declaration. Since we don't allow anything after a full |
| 289 | definition of the function, the code rejects this case. If the previous |
| 290 | reference to a function was an 'extern', we simply verify that the |
| 291 | number of arguments for that definition and this one match up. If not, |
| 292 | we emit an error. |
| 293 | |
| 294 | .. code-block:: ocaml |
| 295 | |
| 296 | (* Set names for all arguments. *) |
| 297 | Array.iteri (fun i a -> |
| 298 | let n = args.(i) in |
| 299 | set_value_name n a; |
| 300 | Hashtbl.add named_values n a; |
| 301 | ) (params f); |
| 302 | f |
| 303 | |
| 304 | The last bit of code for prototypes loops over all of the arguments in |
| 305 | the function, setting the name of the LLVM Argument objects to match, |
| 306 | and registering the arguments in the ``Codegen.named_values`` map for |
| 307 | future use by the ``Ast.Variable`` variant. Once this is set up, it |
| 308 | returns the Function object to the caller. Note that we don't check for |
| 309 | conflicting argument names here (e.g. "extern foo(a b a)"). Doing so |
| 310 | would be very straight-forward with the mechanics we have already used |
| 311 | above. |
| 312 | |
| 313 | .. code-block:: ocaml |
| 314 | |
| 315 | let codegen_func = function |
| 316 | | Ast.Function (proto, body) -> |
| 317 | Hashtbl.clear named_values; |
| 318 | let the_function = codegen_proto proto in |
| 319 | |
| 320 | Code generation for function definitions starts out simply enough: we |
| 321 | just codegen the prototype (Proto) and verify that it is ok. We then |
| 322 | clear out the ``Codegen.named_values`` map to make sure that there isn't |
| 323 | anything in it from the last function we compiled. Code generation of |
| 324 | the prototype ensures that there is an LLVM Function object that is |
| 325 | ready to go for us. |
| 326 | |
| 327 | .. code-block:: ocaml |
| 328 | |
| 329 | (* Create a new basic block to start insertion into. *) |
| 330 | let bb = append_block context "entry" the_function in |
| 331 | position_at_end bb builder; |
| 332 | |
| 333 | try |
| 334 | let ret_val = codegen_expr body in |
| 335 | |
| 336 | Now we get to the point where the ``Codegen.builder`` is set up. The |
| 337 | first line creates a new `basic |
| 338 | block <http://en.wikipedia.org/wiki/Basic_block>`_ (named "entry"), |
| 339 | which is inserted into ``the_function``. The second line then tells the |
| 340 | builder that new instructions should be inserted into the end of the new |
| 341 | basic block. Basic blocks in LLVM are an important part of functions |
| 342 | that define the `Control Flow |
| 343 | Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we |
| 344 | don't have any control flow, our functions will only contain one block |
| 345 | at this point. We'll fix this in `Chapter 5 <OCamlLangImpl5.html>`_ :). |
| 346 | |
| 347 | .. code-block:: ocaml |
| 348 | |
| 349 | let ret_val = codegen_expr body in |
| 350 | |
| 351 | (* Finish off the function. *) |
| 352 | let _ = build_ret ret_val builder in |
| 353 | |
| 354 | (* Validate the generated code, checking for consistency. *) |
| 355 | Llvm_analysis.assert_valid_function the_function; |
| 356 | |
| 357 | the_function |
| 358 | |
| 359 | Once the insertion point is set up, we call the ``Codegen.codegen_func`` |
| 360 | method for the root expression of the function. If no error happens, |
| 361 | this emits code to compute the expression into the entry block and |
| 362 | returns the value that was computed. Assuming no error, we then create |
| 363 | an LLVM `ret instruction <../LangRef.html#i_ret>`_, which completes the |
| 364 | function. Once the function is built, we call |
| 365 | ``Llvm_analysis.assert_valid_function``, which is provided by LLVM. This |
| 366 | function does a variety of consistency checks on the generated code, to |
| 367 | determine if our compiler is doing everything right. Using this is |
| 368 | important: it can catch a lot of bugs. Once the function is finished and |
| 369 | validated, we return it. |
| 370 | |
| 371 | .. code-block:: ocaml |
| 372 | |
| 373 | with e -> |
| 374 | delete_function the_function; |
| 375 | raise e |
| 376 | |
| 377 | The only piece left here is handling of the error case. For simplicity, |
| 378 | we handle this by merely deleting the function we produced with the |
| 379 | ``Llvm.delete_function`` method. This allows the user to redefine a |
| 380 | function that they incorrectly typed in before: if we didn't delete it, |
| 381 | it would live in the symbol table, with a body, preventing future |
| 382 | redefinition. |
| 383 | |
| 384 | This code does have a bug, though. Since the ``Codegen.codegen_proto`` |
| 385 | can return a previously defined forward declaration, our code can |
| 386 | actually delete a forward declaration. There are a number of ways to fix |
| 387 | this bug, see what you can come up with! Here is a testcase: |
| 388 | |
| 389 | :: |
| 390 | |
| 391 | extern foo(a b); # ok, defines foo. |
| 392 | def foo(a b) c; # error, 'c' is invalid. |
| 393 | def bar() foo(1, 2); # error, unknown function "foo" |
| 394 | |
| 395 | Driver Changes and Closing Thoughts |
| 396 | =================================== |
| 397 | |
| 398 | For now, code generation to LLVM doesn't really get us much, except that |
| 399 | we can look at the pretty IR calls. The sample code inserts calls to |
| 400 | Codegen into the "``Toplevel.main_loop``", and then dumps out the LLVM |
| 401 | IR. This gives a nice way to look at the LLVM IR for simple functions. |
| 402 | For example: |
| 403 | |
| 404 | :: |
| 405 | |
| 406 | ready> 4+5; |
| 407 | Read top-level expression: |
| 408 | define double @""() { |
| 409 | entry: |
| 410 | %addtmp = fadd double 4.000000e+00, 5.000000e+00 |
| 411 | ret double %addtmp |
| 412 | } |
| 413 | |
| 414 | Note how the parser turns the top-level expression into anonymous |
| 415 | functions for us. This will be handy when we add `JIT |
| 416 | support <OCamlLangImpl4.html#jit>`_ in the next chapter. Also note that |
| 417 | the code is very literally transcribed, no optimizations are being |
| 418 | performed. We will `add |
| 419 | optimizations <OCamlLangImpl4.html#trivialconstfold>`_ explicitly in the |
| 420 | next chapter. |
| 421 | |
| 422 | :: |
| 423 | |
| 424 | ready> def foo(a b) a*a + 2*a*b + b*b; |
| 425 | Read function definition: |
| 426 | define double @foo(double %a, double %b) { |
| 427 | entry: |
| 428 | %multmp = fmul double %a, %a |
| 429 | %multmp1 = fmul double 2.000000e+00, %a |
| 430 | %multmp2 = fmul double %multmp1, %b |
| 431 | %addtmp = fadd double %multmp, %multmp2 |
| 432 | %multmp3 = fmul double %b, %b |
| 433 | %addtmp4 = fadd double %addtmp, %multmp3 |
| 434 | ret double %addtmp4 |
| 435 | } |
| 436 | |
| 437 | This shows some simple arithmetic. Notice the striking similarity to the |
| 438 | LLVM builder calls that we use to create the instructions. |
| 439 | |
| 440 | :: |
| 441 | |
| 442 | ready> def bar(a) foo(a, 4.0) + bar(31337); |
| 443 | Read function definition: |
| 444 | define double @bar(double %a) { |
| 445 | entry: |
| 446 | %calltmp = call double @foo(double %a, double 4.000000e+00) |
| 447 | %calltmp1 = call double @bar(double 3.133700e+04) |
| 448 | %addtmp = fadd double %calltmp, %calltmp1 |
| 449 | ret double %addtmp |
| 450 | } |
| 451 | |
| 452 | This shows some function calls. Note that this function will take a long |
| 453 | time to execute if you call it. In the future we'll add conditional |
| 454 | control flow to actually make recursion useful :). |
| 455 | |
| 456 | :: |
| 457 | |
| 458 | ready> extern cos(x); |
| 459 | Read extern: |
| 460 | declare double @cos(double) |
| 461 | |
| 462 | ready> cos(1.234); |
| 463 | Read top-level expression: |
| 464 | define double @""() { |
| 465 | entry: |
| 466 | %calltmp = call double @cos(double 1.234000e+00) |
| 467 | ret double %calltmp |
| 468 | } |
| 469 | |
| 470 | This shows an extern for the libm "cos" function, and a call to it. |
| 471 | |
| 472 | :: |
| 473 | |
| 474 | ready> ^D |
| 475 | ; ModuleID = 'my cool jit' |
| 476 | |
| 477 | define double @""() { |
| 478 | entry: |
| 479 | %addtmp = fadd double 4.000000e+00, 5.000000e+00 |
| 480 | ret double %addtmp |
| 481 | } |
| 482 | |
| 483 | define double @foo(double %a, double %b) { |
| 484 | entry: |
| 485 | %multmp = fmul double %a, %a |
| 486 | %multmp1 = fmul double 2.000000e+00, %a |
| 487 | %multmp2 = fmul double %multmp1, %b |
| 488 | %addtmp = fadd double %multmp, %multmp2 |
| 489 | %multmp3 = fmul double %b, %b |
| 490 | %addtmp4 = fadd double %addtmp, %multmp3 |
| 491 | ret double %addtmp4 |
| 492 | } |
| 493 | |
| 494 | define double @bar(double %a) { |
| 495 | entry: |
| 496 | %calltmp = call double @foo(double %a, double 4.000000e+00) |
| 497 | %calltmp1 = call double @bar(double 3.133700e+04) |
| 498 | %addtmp = fadd double %calltmp, %calltmp1 |
| 499 | ret double %addtmp |
| 500 | } |
| 501 | |
| 502 | declare double @cos(double) |
| 503 | |
| 504 | define double @""() { |
| 505 | entry: |
| 506 | %calltmp = call double @cos(double 1.234000e+00) |
| 507 | ret double %calltmp |
| 508 | } |
| 509 | |
| 510 | When you quit the current demo, it dumps out the IR for the entire |
| 511 | module generated. Here you can see the big picture with all the |
| 512 | functions referencing each other. |
| 513 | |
| 514 | This wraps up the third chapter of the Kaleidoscope tutorial. Up next, |
| 515 | we'll describe how to `add JIT codegen and optimizer |
| 516 | support <OCamlLangImpl4.html>`_ to this so we can actually start running |
| 517 | code! |
| 518 | |
| 519 | Full Code Listing |
| 520 | ================= |
| 521 | |
| 522 | Here is the complete code listing for our running example, enhanced with |
| 523 | the LLVM code generator. Because this uses the LLVM libraries, we need |
| 524 | to link them in. To do this, we use the |
| 525 | `llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform |
| 526 | our makefile/command line about which options to use: |
| 527 | |
| 528 | .. code-block:: bash |
| 529 | |
| 530 | # Compile |
| 531 | ocamlbuild toy.byte |
| 532 | # Run |
| 533 | ./toy.byte |
| 534 | |
| 535 | Here is the code: |
| 536 | |
| 537 | \_tags: |
| 538 | :: |
| 539 | |
| 540 | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) |
| 541 | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis |
| 542 | |
| 543 | myocamlbuild.ml: |
| 544 | .. code-block:: ocaml |
| 545 | |
| 546 | open Ocamlbuild_plugin;; |
| 547 | |
| 548 | ocaml_lib ~extern:true "llvm";; |
| 549 | ocaml_lib ~extern:true "llvm_analysis";; |
| 550 | |
| 551 | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; |
| 552 | |
| 553 | token.ml: |
| 554 | .. code-block:: ocaml |
| 555 | |
| 556 | (*===----------------------------------------------------------------------=== |
| 557 | * Lexer Tokens |
| 558 | *===----------------------------------------------------------------------===*) |
| 559 | |
| 560 | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of |
| 561 | * these others for known things. *) |
| 562 | type token = |
| 563 | (* commands *) |
| 564 | | Def | Extern |
| 565 | |
| 566 | (* primary *) |
| 567 | | Ident of string | Number of float |
| 568 | |
| 569 | (* unknown *) |
| 570 | | Kwd of char |
| 571 | |
| 572 | lexer.ml: |
| 573 | .. code-block:: ocaml |
| 574 | |
| 575 | (*===----------------------------------------------------------------------=== |
| 576 | * Lexer |
| 577 | *===----------------------------------------------------------------------===*) |
| 578 | |
| 579 | let rec lex = parser |
| 580 | (* Skip any whitespace. *) |
| 581 | | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream |
| 582 | |
| 583 | (* identifier: [a-zA-Z][a-zA-Z0-9] *) |
| 584 | | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> |
| 585 | let buffer = Buffer.create 1 in |
| 586 | Buffer.add_char buffer c; |
| 587 | lex_ident buffer stream |
| 588 | |
| 589 | (* number: [0-9.]+ *) |
| 590 | | [< ' ('0' .. '9' as c); stream >] -> |
| 591 | let buffer = Buffer.create 1 in |
| 592 | Buffer.add_char buffer c; |
| 593 | lex_number buffer stream |
| 594 | |
| 595 | (* Comment until end of line. *) |
| 596 | | [< ' ('#'); stream >] -> |
| 597 | lex_comment stream |
| 598 | |
| 599 | (* Otherwise, just return the character as its ascii value. *) |
| 600 | | [< 'c; stream >] -> |
| 601 | [< 'Token.Kwd c; lex stream >] |
| 602 | |
| 603 | (* end of stream. *) |
| 604 | | [< >] -> [< >] |
| 605 | |
| 606 | and lex_number buffer = parser |
| 607 | | [< ' ('0' .. '9' | '.' as c); stream >] -> |
| 608 | Buffer.add_char buffer c; |
| 609 | lex_number buffer stream |
| 610 | | [< stream=lex >] -> |
| 611 | [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] |
| 612 | |
| 613 | and lex_ident buffer = parser |
| 614 | | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> |
| 615 | Buffer.add_char buffer c; |
| 616 | lex_ident buffer stream |
| 617 | | [< stream=lex >] -> |
| 618 | match Buffer.contents buffer with |
| 619 | | "def" -> [< 'Token.Def; stream >] |
| 620 | | "extern" -> [< 'Token.Extern; stream >] |
| 621 | | id -> [< 'Token.Ident id; stream >] |
| 622 | |
| 623 | and lex_comment = parser |
| 624 | | [< ' ('\n'); stream=lex >] -> stream |
| 625 | | [< 'c; e=lex_comment >] -> e |
| 626 | | [< >] -> [< >] |
| 627 | |
| 628 | ast.ml: |
| 629 | .. code-block:: ocaml |
| 630 | |
| 631 | (*===----------------------------------------------------------------------=== |
| 632 | * Abstract Syntax Tree (aka Parse Tree) |
| 633 | *===----------------------------------------------------------------------===*) |
| 634 | |
| 635 | (* expr - Base type for all expression nodes. *) |
| 636 | type expr = |
| 637 | (* variant for numeric literals like "1.0". *) |
| 638 | | Number of float |
| 639 | |
| 640 | (* variant for referencing a variable, like "a". *) |
| 641 | | Variable of string |
| 642 | |
| 643 | (* variant for a binary operator. *) |
| 644 | | Binary of char * expr * expr |
| 645 | |
| 646 | (* variant for function calls. *) |
| 647 | | Call of string * expr array |
| 648 | |
| 649 | (* proto - This type represents the "prototype" for a function, which captures |
| 650 | * its name, and its argument names (thus implicitly the number of arguments the |
| 651 | * function takes). *) |
| 652 | type proto = Prototype of string * string array |
| 653 | |
| 654 | (* func - This type represents a function definition itself. *) |
| 655 | type func = Function of proto * expr |
| 656 | |
| 657 | parser.ml: |
| 658 | .. code-block:: ocaml |
| 659 | |
| 660 | (*===---------------------------------------------------------------------=== |
| 661 | * Parser |
| 662 | *===---------------------------------------------------------------------===*) |
| 663 | |
| 664 | (* binop_precedence - This holds the precedence for each binary operator that is |
| 665 | * defined *) |
| 666 | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 |
| 667 | |
| 668 | (* precedence - Get the precedence of the pending binary operator token. *) |
| 669 | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 |
| 670 | |
| 671 | (* primary |
| 672 | * ::= identifier |
| 673 | * ::= numberexpr |
| 674 | * ::= parenexpr *) |
| 675 | let rec parse_primary = parser |
| 676 | (* numberexpr ::= number *) |
| 677 | | [< 'Token.Number n >] -> Ast.Number n |
| 678 | |
| 679 | (* parenexpr ::= '(' expression ')' *) |
| 680 | | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e |
| 681 | |
| 682 | (* identifierexpr |
| 683 | * ::= identifier |
| 684 | * ::= identifier '(' argumentexpr ')' *) |
| 685 | | [< 'Token.Ident id; stream >] -> |
| 686 | let rec parse_args accumulator = parser |
| 687 | | [< e=parse_expr; stream >] -> |
| 688 | begin parser |
| 689 | | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e |
| 690 | | [< >] -> e :: accumulator |
| 691 | end stream |
| 692 | | [< >] -> accumulator |
| 693 | in |
| 694 | let rec parse_ident id = parser |
| 695 | (* Call. *) |
| 696 | | [< 'Token.Kwd '('; |
| 697 | args=parse_args []; |
| 698 | 'Token.Kwd ')' ?? "expected ')'">] -> |
| 699 | Ast.Call (id, Array.of_list (List.rev args)) |
| 700 | |
| 701 | (* Simple variable ref. *) |
| 702 | | [< >] -> Ast.Variable id |
| 703 | in |
| 704 | parse_ident id stream |
| 705 | |
| 706 | | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") |
| 707 | |
| 708 | (* binoprhs |
| 709 | * ::= ('+' primary)* *) |
| 710 | and parse_bin_rhs expr_prec lhs stream = |
| 711 | match Stream.peek stream with |
| 712 | (* If this is a binop, find its precedence. *) |
| 713 | | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> |
| 714 | let token_prec = precedence c in |
| 715 | |
| 716 | (* If this is a binop that binds at least as tightly as the current binop, |
| 717 | * consume it, otherwise we are done. *) |
| 718 | if token_prec < expr_prec then lhs else begin |
| 719 | (* Eat the binop. *) |
| 720 | Stream.junk stream; |
| 721 | |
| 722 | (* Parse the primary expression after the binary operator. *) |
| 723 | let rhs = parse_primary stream in |
| 724 | |
| 725 | (* Okay, we know this is a binop. *) |
| 726 | let rhs = |
| 727 | match Stream.peek stream with |
| 728 | | Some (Token.Kwd c2) -> |
| 729 | (* If BinOp binds less tightly with rhs than the operator after |
| 730 | * rhs, let the pending operator take rhs as its lhs. *) |
| 731 | let next_prec = precedence c2 in |
| 732 | if token_prec < next_prec |
| 733 | then parse_bin_rhs (token_prec + 1) rhs stream |
| 734 | else rhs |
| 735 | | _ -> rhs |
| 736 | in |
| 737 | |
| 738 | (* Merge lhs/rhs. *) |
| 739 | let lhs = Ast.Binary (c, lhs, rhs) in |
| 740 | parse_bin_rhs expr_prec lhs stream |
| 741 | end |
| 742 | | _ -> lhs |
| 743 | |
| 744 | (* expression |
| 745 | * ::= primary binoprhs *) |
| 746 | and parse_expr = parser |
| 747 | | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream |
| 748 | |
| 749 | (* prototype |
| 750 | * ::= id '(' id* ')' *) |
| 751 | let parse_prototype = |
| 752 | let rec parse_args accumulator = parser |
| 753 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e |
| 754 | | [< >] -> accumulator |
| 755 | in |
| 756 | |
| 757 | parser |
| 758 | | [< 'Token.Ident id; |
| 759 | 'Token.Kwd '(' ?? "expected '(' in prototype"; |
| 760 | args=parse_args []; |
| 761 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> |
| 762 | (* success. *) |
| 763 | Ast.Prototype (id, Array.of_list (List.rev args)) |
| 764 | |
| 765 | | [< >] -> |
| 766 | raise (Stream.Error "expected function name in prototype") |
| 767 | |
| 768 | (* definition ::= 'def' prototype expression *) |
| 769 | let parse_definition = parser |
| 770 | | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> |
| 771 | Ast.Function (p, e) |
| 772 | |
| 773 | (* toplevelexpr ::= expression *) |
| 774 | let parse_toplevel = parser |
| 775 | | [< e=parse_expr >] -> |
| 776 | (* Make an anonymous proto. *) |
| 777 | Ast.Function (Ast.Prototype ("", [||]), e) |
| 778 | |
| 779 | (* external ::= 'extern' prototype *) |
| 780 | let parse_extern = parser |
| 781 | | [< 'Token.Extern; e=parse_prototype >] -> e |
| 782 | |
| 783 | codegen.ml: |
| 784 | .. code-block:: ocaml |
| 785 | |
| 786 | (*===----------------------------------------------------------------------=== |
| 787 | * Code Generation |
| 788 | *===----------------------------------------------------------------------===*) |
| 789 | |
| 790 | open Llvm |
| 791 | |
| 792 | exception Error of string |
| 793 | |
| 794 | let context = global_context () |
| 795 | let the_module = create_module context "my cool jit" |
| 796 | let builder = builder context |
| 797 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 |
| 798 | let double_type = double_type context |
| 799 | |
| 800 | let rec codegen_expr = function |
| 801 | | Ast.Number n -> const_float double_type n |
| 802 | | Ast.Variable name -> |
| 803 | (try Hashtbl.find named_values name with |
| 804 | | Not_found -> raise (Error "unknown variable name")) |
| 805 | | Ast.Binary (op, lhs, rhs) -> |
| 806 | let lhs_val = codegen_expr lhs in |
| 807 | let rhs_val = codegen_expr rhs in |
| 808 | begin |
| 809 | match op with |
| 810 | | '+' -> build_add lhs_val rhs_val "addtmp" builder |
| 811 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder |
| 812 | | '*' -> build_mul lhs_val rhs_val "multmp" builder |
| 813 | | '<' -> |
| 814 | (* Convert bool 0/1 to double 0.0 or 1.0 *) |
| 815 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in |
| 816 | build_uitofp i double_type "booltmp" builder |
| 817 | | _ -> raise (Error "invalid binary operator") |
| 818 | end |
| 819 | | Ast.Call (callee, args) -> |
| 820 | (* Look up the name in the module table. *) |
| 821 | let callee = |
| 822 | match lookup_function callee the_module with |
| 823 | | Some callee -> callee |
| 824 | | None -> raise (Error "unknown function referenced") |
| 825 | in |
| 826 | let params = params callee in |
| 827 | |
| 828 | (* If argument mismatch error. *) |
| 829 | if Array.length params == Array.length args then () else |
| 830 | raise (Error "incorrect # arguments passed"); |
| 831 | let args = Array.map codegen_expr args in |
| 832 | build_call callee args "calltmp" builder |
| 833 | |
| 834 | let codegen_proto = function |
| 835 | | Ast.Prototype (name, args) -> |
| 836 | (* Make the function type: double(double,double) etc. *) |
| 837 | let doubles = Array.make (Array.length args) double_type in |
| 838 | let ft = function_type double_type doubles in |
| 839 | let f = |
| 840 | match lookup_function name the_module with |
| 841 | | None -> declare_function name ft the_module |
| 842 | |
| 843 | (* If 'f' conflicted, there was already something named 'name'. If it |
| 844 | * has a body, don't allow redefinition or reextern. *) |
| 845 | | Some f -> |
| 846 | (* If 'f' already has a body, reject this. *) |
| 847 | if block_begin f <> At_end f then |
| 848 | raise (Error "redefinition of function"); |
| 849 | |
| 850 | (* If 'f' took a different number of arguments, reject. *) |
| 851 | if element_type (type_of f) <> ft then |
| 852 | raise (Error "redefinition of function with different # args"); |
| 853 | f |
| 854 | in |
| 855 | |
| 856 | (* Set names for all arguments. *) |
| 857 | Array.iteri (fun i a -> |
| 858 | let n = args.(i) in |
| 859 | set_value_name n a; |
| 860 | Hashtbl.add named_values n a; |
| 861 | ) (params f); |
| 862 | f |
| 863 | |
| 864 | let codegen_func = function |
| 865 | | Ast.Function (proto, body) -> |
| 866 | Hashtbl.clear named_values; |
| 867 | let the_function = codegen_proto proto in |
| 868 | |
| 869 | (* Create a new basic block to start insertion into. *) |
| 870 | let bb = append_block context "entry" the_function in |
| 871 | position_at_end bb builder; |
| 872 | |
| 873 | try |
| 874 | let ret_val = codegen_expr body in |
| 875 | |
| 876 | (* Finish off the function. *) |
| 877 | let _ = build_ret ret_val builder in |
| 878 | |
| 879 | (* Validate the generated code, checking for consistency. *) |
| 880 | Llvm_analysis.assert_valid_function the_function; |
| 881 | |
| 882 | the_function |
| 883 | with e -> |
| 884 | delete_function the_function; |
| 885 | raise e |
| 886 | |
| 887 | toplevel.ml: |
| 888 | .. code-block:: ocaml |
| 889 | |
| 890 | (*===----------------------------------------------------------------------=== |
| 891 | * Top-Level parsing and JIT Driver |
| 892 | *===----------------------------------------------------------------------===*) |
| 893 | |
| 894 | open Llvm |
| 895 | |
| 896 | (* top ::= definition | external | expression | ';' *) |
| 897 | let rec main_loop stream = |
| 898 | match Stream.peek stream with |
| 899 | | None -> () |
| 900 | |
| 901 | (* ignore top-level semicolons. *) |
| 902 | | Some (Token.Kwd ';') -> |
| 903 | Stream.junk stream; |
| 904 | main_loop stream |
| 905 | |
| 906 | | Some token -> |
| 907 | begin |
| 908 | try match token with |
| 909 | | Token.Def -> |
| 910 | let e = Parser.parse_definition stream in |
| 911 | print_endline "parsed a function definition."; |
| 912 | dump_value (Codegen.codegen_func e); |
| 913 | | Token.Extern -> |
| 914 | let e = Parser.parse_extern stream in |
| 915 | print_endline "parsed an extern."; |
| 916 | dump_value (Codegen.codegen_proto e); |
| 917 | | _ -> |
| 918 | (* Evaluate a top-level expression into an anonymous function. *) |
| 919 | let e = Parser.parse_toplevel stream in |
| 920 | print_endline "parsed a top-level expr"; |
| 921 | dump_value (Codegen.codegen_func e); |
| 922 | with Stream.Error s | Codegen.Error s -> |
| 923 | (* Skip token for error recovery. *) |
| 924 | Stream.junk stream; |
| 925 | print_endline s; |
| 926 | end; |
| 927 | print_string "ready> "; flush stdout; |
| 928 | main_loop stream |
| 929 | |
| 930 | toy.ml: |
| 931 | .. code-block:: ocaml |
| 932 | |
| 933 | (*===----------------------------------------------------------------------=== |
| 934 | * Main driver code. |
| 935 | *===----------------------------------------------------------------------===*) |
| 936 | |
| 937 | open Llvm |
| 938 | |
| 939 | let main () = |
| 940 | (* Install standard binary operators. |
| 941 | * 1 is the lowest precedence. *) |
| 942 | Hashtbl.add Parser.binop_precedence '<' 10; |
| 943 | Hashtbl.add Parser.binop_precedence '+' 20; |
| 944 | Hashtbl.add Parser.binop_precedence '-' 20; |
| 945 | Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) |
| 946 | |
| 947 | (* Prime the first token. *) |
| 948 | print_string "ready> "; flush stdout; |
| 949 | let stream = Lexer.lex (Stream.of_channel stdin) in |
| 950 | |
| 951 | (* Run the main "interpreter loop" now. *) |
| 952 | Toplevel.main_loop stream; |
| 953 | |
| 954 | (* Print out all the generated code. *) |
| 955 | dump_module Codegen.the_module |
| 956 | ;; |
| 957 | |
| 958 | main () |
| 959 | |
| 960 | `Next: Adding JIT and Optimizer Support <OCamlLangImpl4.html>`_ |
| 961 | |