blob: e2a98d4d862d76296eba4b0d2296c31869c10221 [file] [log] [blame]
Nate Begeman36f891b2005-07-30 00:12:19 +00001//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/ScalarEvolutionExpander.h"
18using namespace llvm;
19
20Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
21 const Type *Ty = S->getType();
22 int FirstOp = 0; // Set if we should emit a subtract.
23 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
24 if (SC->getValue()->isAllOnesValue())
25 FirstOp = 1;
26
27 int i = S->getNumOperands()-2;
28 Value *V = expandInTy(S->getOperand(i+1), Ty);
29
30 // Emit a bunch of multiply instructions
31 for (; i >= FirstOp; --i)
32 V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
33 "tmp.", InsertPt);
34 // -1 * ... ---> 0 - ...
35 if (FirstOp == 1)
36 V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
37 return V;
38}
39
40Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
41 const Type *Ty = S->getType();
42 const Loop *L = S->getLoop();
43 // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
44 assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
45
46 // {X,+,F} --> X + {0,+,F}
47 if (!isa<SCEVConstant>(S->getStart()) ||
48 !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
49 Value *Start = expandInTy(S->getStart(), Ty);
50 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
51 NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
52 Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
53
54 // FIXME: look for an existing add to use.
55 return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
56 }
57
58 // {0,+,1} --> Insert a canonical induction variable into the loop!
59 if (S->getNumOperands() == 2 &&
60 S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
61 // Create and insert the PHI node for the induction variable in the
62 // specified loop.
63 BasicBlock *Header = L->getHeader();
64 PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
65 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
66
67 pred_iterator HPI = pred_begin(Header);
68 assert(HPI != pred_end(Header) && "Loop with zero preds???");
69 if (!L->contains(*HPI)) ++HPI;
70 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
71 "No backedge in loop?");
72
73 // Insert a unit add instruction right before the terminator corresponding
74 // to the back-edge.
75 Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
76 : ConstantInt::get(Ty, 1);
77 Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
78 (*HPI)->getTerminator());
79
80 pred_iterator PI = pred_begin(Header);
81 if (*PI == L->getLoopPreheader())
82 ++PI;
83 PN->addIncoming(Add, *PI);
84 return PN;
85 }
86
87 // Get the canonical induction variable I for this loop.
88 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
89
Chris Lattnerdf14a042005-10-30 06:24:33 +000090 // If this is a simple linear addrec, emit it now as a special case.
Nate Begeman36f891b2005-07-30 00:12:19 +000091 if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
92 Value *F = expandInTy(S->getOperand(1), Ty);
Chris Lattnerdf14a042005-10-30 06:24:33 +000093
94 // IF the step is by one, just return the inserted IV.
95 if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(F))
96 if (CI->getRawValue() == 1)
97 return I;
98
99 // If the insert point is directly inside of the loop, emit the multiply at
100 // the insert point. Otherwise, L is a loop that is a parent of the insert
101 // point loop. If we can, move the multiply to the outer most loop that it
102 // is safe to be in.
103 Instruction *MulInsertPt = InsertPt;
104 Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
105 if (InsertPtLoop != L && InsertPtLoop &&
106 L->contains(InsertPtLoop->getHeader())) {
107 while (InsertPtLoop != L) {
108 // If we cannot hoist the multiply out of this loop, don't.
109 if (!InsertPtLoop->isLoopInvariant(F)) break;
110
111 // Otherwise, move the insert point to the preheader of the loop.
112 MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
113 InsertPtLoop = InsertPtLoop->getParentLoop();
114 }
115 }
116
117 return BinaryOperator::createMul(I, F, "tmp.", MulInsertPt);
Nate Begeman36f891b2005-07-30 00:12:19 +0000118 }
119
120 // If this is a chain of recurrences, turn it into a closed form, using the
121 // folders, then expandCodeFor the closed form. This allows the folders to
122 // simplify the expression without having to build a bunch of special code
123 // into this folder.
124 SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
125
126 SCEVHandle V = S->evaluateAtIteration(IH);
127 //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
128
129 return expandInTy(V, Ty);
130}