blob: 449eed3d8d5d8a4d5b00db5956ee4cb4badf0a7d [file] [log] [blame]
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +00001//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which inserts x86 AVX vzeroupper instructions
11// before calls to SSE encoded functions. This avoids transition latency
12// penalty when tranfering control between AVX encoded instructions and old
13// SSE encoding mode.
14//
15//===----------------------------------------------------------------------===//
16
Eli Friedmanbd00a932011-11-04 23:46:11 +000017#define DEBUG_TYPE "x86-vzeroupper"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000018#include "X86.h"
19#include "X86InstrInfo.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
Eli Friedmanbd00a932011-11-04 23:46:11 +000023#include "llvm/CodeGen/MachineRegisterInfo.h"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000024#include "llvm/CodeGen/Passes.h"
Eli Friedmanbd00a932011-11-04 23:46:11 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000027#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
31
32namespace {
33 struct VZeroUpperInserter : public MachineFunctionPass {
34 static char ID;
35 VZeroUpperInserter() : MachineFunctionPass(ID) {}
36
37 virtual bool runOnMachineFunction(MachineFunction &MF);
38
39 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
40
41 virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
42
43 private:
44 const TargetInstrInfo *TII; // Machine instruction info.
Eli Friedmanbd00a932011-11-04 23:46:11 +000045
46 // Any YMM register live-in to this function?
47 bool FnHasLiveInYmm;
48
49 // BBState - Contains the state of each MBB: unknown, clean, dirty
50 SmallVector<uint8_t, 8> BBState;
51
52 // BBSolved - Keep track of all MBB which had been already analyzed
53 // and there is no further processing required.
54 BitVector BBSolved;
55
56 // Machine Basic Blocks are classified according this pass:
57 //
58 // ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
59 // until the MBB exit there isn't a instruction using YMM to change
60 // the state to dirty, or one of the incoming predecessors is unknown
61 // and there's not a dirty predecessor between them.
62 //
63 // ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
64 // instructions using YMM and be marked ST_CLEAN, as long as the state
65 // is cleaned by a vzeroupper before any call.
66 //
67 // ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
68 // vzeroupper instruction.
69 //
70 // ST_INIT - Placeholder for an empty state set
71 //
72 enum {
73 ST_UNKNOWN = 0,
74 ST_CLEAN = 1,
75 ST_DIRTY = 2,
76 ST_INIT = 3
77 };
78
79 // computeState - Given two states, compute the resulting state, in
80 // the following way
81 //
82 // 1) One dirty state yields another dirty state
83 // 2) All states must be clean for the result to be clean
84 // 3) If none above and one unknown, the result state is also unknown
85 //
Craig Topperf7c4d262012-08-22 05:36:44 +000086 static unsigned computeState(unsigned PrevState, unsigned CurState) {
Eli Friedmanbd00a932011-11-04 23:46:11 +000087 if (PrevState == ST_INIT)
88 return CurState;
89
90 if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
91 return ST_DIRTY;
92
93 if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
94 return ST_CLEAN;
95
96 return ST_UNKNOWN;
97 }
98
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +000099 };
100 char VZeroUpperInserter::ID = 0;
101}
102
103FunctionPass *llvm::createX86IssueVZeroUpperPass() {
104 return new VZeroUpperInserter();
105}
106
Eli Friedmanbd00a932011-11-04 23:46:11 +0000107static bool isYmmReg(unsigned Reg) {
108 if (Reg >= X86::YMM0 && Reg <= X86::YMM15)
109 return true;
110
111 return false;
112}
113
114static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
115 for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
116 E = MRI.livein_end(); I != E; ++I)
117 if (isYmmReg(I->first))
118 return true;
119
120 return false;
121}
122
123static bool hasYmmReg(MachineInstr *MI) {
Craig Topperdf8de922012-08-22 05:59:59 +0000124 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
Eli Friedmanbd00a932011-11-04 23:46:11 +0000125 const MachineOperand &MO = MI->getOperand(i);
126 if (!MO.isReg())
127 continue;
128 if (MO.isDebug())
129 continue;
130 if (isYmmReg(MO.getReg()))
131 return true;
132 }
133 return false;
134}
135
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000136/// runOnMachineFunction - Loop over all of the basic blocks, inserting
137/// vzero upper instructions before function calls.
138bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
139 TII = MF.getTarget().getInstrInfo();
Eli Friedmanbd00a932011-11-04 23:46:11 +0000140 MachineRegisterInfo &MRI = MF.getRegInfo();
141 bool EverMadeChange = false;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000142
Eli Friedmanbd00a932011-11-04 23:46:11 +0000143 // Fast check: if the function doesn't use any ymm registers, we don't need
144 // to insert any VZEROUPPER instructions. This is constant-time, so it is
145 // cheap in the common case of no ymm use.
146 bool YMMUsed = false;
Craig Topperc9099502012-04-20 06:31:50 +0000147 const TargetRegisterClass *RC = &X86::VR256RegClass;
Eli Friedmanbd00a932011-11-04 23:46:11 +0000148 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
149 i != e; i++) {
150 if (MRI.isPhysRegUsed(*i)) {
151 YMMUsed = true;
152 break;
153 }
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000154 }
Eli Friedmanbd00a932011-11-04 23:46:11 +0000155 if (!YMMUsed)
156 return EverMadeChange;
157
158 // Pre-compute the existence of any live-in YMM registers to this function
159 FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
160
161 assert(BBState.empty());
162 BBState.resize(MF.getNumBlockIDs(), 0);
163 BBSolved.resize(MF.getNumBlockIDs(), 0);
164
165 // Each BB state depends on all predecessors, loop over until everything
166 // converges. (Once we converge, we can implicitly mark everything that is
167 // still ST_UNKNOWN as ST_CLEAN.)
168 while (1) {
169 bool MadeChange = false;
170
171 // Process all basic blocks.
172 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
173 MadeChange |= processBasicBlock(MF, *I);
174
175 // If this iteration over the code changed anything, keep iterating.
176 if (!MadeChange) break;
177 EverMadeChange = true;
178 }
179
180 BBState.clear();
181 BBSolved.clear();
182 return EverMadeChange;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000183}
184
185/// processBasicBlock - Loop over all of the instructions in the basic block,
186/// inserting vzero upper instructions before function calls.
187bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
188 MachineBasicBlock &BB) {
189 bool Changed = false;
Eli Friedmanbd00a932011-11-04 23:46:11 +0000190 unsigned BBNum = BB.getNumber();
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000191
Eli Friedmanbd00a932011-11-04 23:46:11 +0000192 // Don't process already solved BBs
193 if (BBSolved[BBNum])
194 return false; // No changes
195
196 // Check the state of all predecessors
197 unsigned EntryState = ST_INIT;
198 for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
199 PE = BB.pred_end(); PI != PE; ++PI) {
200 EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
201 if (EntryState == ST_DIRTY)
202 break;
203 }
204
205
Benjamin Kramerd9b0b022012-06-02 10:20:22 +0000206 // The entry MBB for the function may set the initial state to dirty if
Eli Friedmanbd00a932011-11-04 23:46:11 +0000207 // the function receives any YMM incoming arguments
Craig Topperdf8de922012-08-22 05:59:59 +0000208 if (&BB == MF.begin()) {
Eli Friedmanbd00a932011-11-04 23:46:11 +0000209 EntryState = ST_CLEAN;
210 if (FnHasLiveInYmm)
211 EntryState = ST_DIRTY;
212 }
213
214 // The current state is initialized according to the predecessors
215 unsigned CurState = EntryState;
216 bool BBHasCall = false;
217
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000218 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
219 MachineInstr *MI = I;
220 DebugLoc dl = I->getDebugLoc();
Evan Cheng5a96b3d2011-12-07 07:15:52 +0000221 bool isControlFlow = MI->isCall() || MI->isReturn();
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000222
Chad Rosiera20e1e72012-08-01 18:39:17 +0000223 // Shortcut: don't need to check regular instructions in dirty state.
Eli Friedmanbd00a932011-11-04 23:46:11 +0000224 if (!isControlFlow && CurState == ST_DIRTY)
225 continue;
226
227 if (hasYmmReg(MI)) {
228 // We found a ymm-using instruction; this could be an AVX instruction,
229 // or it could be control flow.
230 CurState = ST_DIRTY;
231 continue;
232 }
233
234 // Check for control-flow out of the current function (which might
235 // indirectly execute SSE instructions).
236 if (!isControlFlow)
237 continue;
238
239 BBHasCall = true;
240
241 // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
242 // registers. This instruction has zero latency. In addition, the processor
243 // changes back to Clean state, after which execution of Intel SSE
244 // instructions or Intel AVX instructions has no transition penalty. Add
245 // the VZEROUPPER instruction before any function call/return that might
246 // execute SSE code.
247 // FIXME: In some cases, we may want to move the VZEROUPPER into a
248 // predecessor block.
249 if (CurState == ST_DIRTY) {
250 // Only insert the VZEROUPPER in case the entry state isn't unknown.
251 // When unknown, only compute the information within the block to have
252 // it available in the exit if possible, but don't change the block.
253 if (EntryState != ST_UNKNOWN) {
Craig Topperdf8de922012-08-22 05:59:59 +0000254 BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
Eli Friedmanbd00a932011-11-04 23:46:11 +0000255 ++NumVZU;
256 }
257
258 // After the inserted VZEROUPPER the state becomes clean again, but
259 // other YMM may appear before other subsequent calls or even before
260 // the end of the BB.
261 CurState = ST_CLEAN;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000262 }
263 }
264
Eli Friedmanbd00a932011-11-04 23:46:11 +0000265 DEBUG(dbgs() << "MBB #" << BBNum
266 << ", current state: " << CurState << '\n');
267
268 // A BB can only be considered solved when we both have done all the
269 // necessary transformations, and have computed the exit state. This happens
270 // in two cases:
271 // 1) We know the entry state: this immediately implies the exit state and
272 // all the necessary transformations.
273 // 2) There are no calls, and and a non-call instruction marks this block:
274 // no transformations are necessary, and we know the exit state.
275 if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
276 BBSolved[BBNum] = true;
277
278 if (CurState != BBState[BBNum])
279 Changed = true;
280
281 BBState[BBNum] = CurState;
Bruno Cardoso Lopes3bde6fe2011-08-23 01:14:17 +0000282 return Changed;
283}