blob: 2158b05f6323531dd6fd971c2830ad6571f6a387 [file] [log] [blame]
Tim Northover72062f52013-01-31 12:12:40 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
Tim Northover19254c42013-02-05 13:24:47 +000021#include "Utils/AArch64BaseInfo.h"
Tim Northover72062f52013-01-31 12:12:40 +000022#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33 const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35 if (Subtarget->isTargetLinux())
36 return new AArch64LinuxTargetObjectFile();
37 if (Subtarget->isTargetELF())
38 return new TargetLoweringObjectFileELF();
39 llvm_unreachable("unknown subtarget type");
40}
41
42
43AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
44 : TargetLowering(TM, createTLOF(TM)),
45 Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
46 RegInfo(TM.getRegisterInfo()),
47 Itins(TM.getInstrItineraryData()) {
48
49 // SIMD compares set the entire lane's bits to 1
50 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
51
52 // Scalar register <-> type mapping
53 addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
54 addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
55 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
56 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
57 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
58 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
59
60 // And the vectors
61 addRegisterClass(MVT::v8i8, &AArch64::VPR64RegClass);
62 addRegisterClass(MVT::v4i16, &AArch64::VPR64RegClass);
63 addRegisterClass(MVT::v2i32, &AArch64::VPR64RegClass);
64 addRegisterClass(MVT::v2f32, &AArch64::VPR64RegClass);
65 addRegisterClass(MVT::v16i8, &AArch64::VPR128RegClass);
66 addRegisterClass(MVT::v8i16, &AArch64::VPR128RegClass);
67 addRegisterClass(MVT::v4i32, &AArch64::VPR128RegClass);
68 addRegisterClass(MVT::v4f32, &AArch64::VPR128RegClass);
69 addRegisterClass(MVT::v2f64, &AArch64::VPR128RegClass);
70
71 computeRegisterProperties();
72
73 // Some atomic operations can be folded into load-acquire or store-release
74 // instructions on AArch64. It's marginally simpler to let LLVM expand
75 // everything out to a barrier and then recombine the (few) barriers we can.
76 setInsertFencesForAtomic(true);
77 setTargetDAGCombine(ISD::ATOMIC_FENCE);
78 setTargetDAGCombine(ISD::ATOMIC_STORE);
79
80 // We combine OR nodes for bitfield and NEON BSL operations.
81 setTargetDAGCombine(ISD::OR);
82
83 setTargetDAGCombine(ISD::AND);
84 setTargetDAGCombine(ISD::SRA);
85
86 // AArch64 does not have i1 loads, or much of anything for i1 really.
87 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
89 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
90
91 setStackPointerRegisterToSaveRestore(AArch64::XSP);
92 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
93 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
94 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
95
96 // We'll lower globals to wrappers for selection.
97 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
98 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
99
100 // A64 instructions have the comparison predicate attached to the user of the
101 // result, but having a separate comparison is valuable for matching.
102 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
103 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
104 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
105 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
106
107 setOperationAction(ISD::SELECT, MVT::i32, Custom);
108 setOperationAction(ISD::SELECT, MVT::i64, Custom);
109 setOperationAction(ISD::SELECT, MVT::f32, Custom);
110 setOperationAction(ISD::SELECT, MVT::f64, Custom);
111
112 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
113 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
114 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
115 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
116
117 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
118
119 setOperationAction(ISD::SETCC, MVT::i32, Custom);
120 setOperationAction(ISD::SETCC, MVT::i64, Custom);
121 setOperationAction(ISD::SETCC, MVT::f32, Custom);
122 setOperationAction(ISD::SETCC, MVT::f64, Custom);
123
124 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
125 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
126 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
127
128 setOperationAction(ISD::VASTART, MVT::Other, Custom);
129 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
130 setOperationAction(ISD::VAEND, MVT::Other, Expand);
131 setOperationAction(ISD::VAARG, MVT::Other, Expand);
132
133 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
134
135 setOperationAction(ISD::ROTL, MVT::i32, Expand);
136 setOperationAction(ISD::ROTL, MVT::i64, Expand);
137
138 setOperationAction(ISD::UREM, MVT::i32, Expand);
139 setOperationAction(ISD::UREM, MVT::i64, Expand);
140 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
141 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
142
143 setOperationAction(ISD::SREM, MVT::i32, Expand);
144 setOperationAction(ISD::SREM, MVT::i64, Expand);
145 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
146 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
147
148 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
149 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
150
151 // Legal floating-point operations.
152 setOperationAction(ISD::FABS, MVT::f32, Legal);
153 setOperationAction(ISD::FABS, MVT::f64, Legal);
154
155 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
156 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
157
158 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
159 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
160
161 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
162 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
163
164 setOperationAction(ISD::FNEG, MVT::f32, Legal);
165 setOperationAction(ISD::FNEG, MVT::f64, Legal);
166
167 setOperationAction(ISD::FRINT, MVT::f32, Legal);
168 setOperationAction(ISD::FRINT, MVT::f64, Legal);
169
170 setOperationAction(ISD::FSQRT, MVT::f32, Legal);
171 setOperationAction(ISD::FSQRT, MVT::f64, Legal);
172
173 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
174 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
175
176 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
177 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
178 setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
179
180 // Illegal floating-point operations.
181 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
182 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
183
184 setOperationAction(ISD::FCOS, MVT::f32, Expand);
185 setOperationAction(ISD::FCOS, MVT::f64, Expand);
186
187 setOperationAction(ISD::FEXP, MVT::f32, Expand);
188 setOperationAction(ISD::FEXP, MVT::f64, Expand);
189
190 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
191 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
192
193 setOperationAction(ISD::FLOG, MVT::f32, Expand);
194 setOperationAction(ISD::FLOG, MVT::f64, Expand);
195
196 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
197 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
198
199 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
200 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
201
202 setOperationAction(ISD::FPOW, MVT::f32, Expand);
203 setOperationAction(ISD::FPOW, MVT::f64, Expand);
204
205 setOperationAction(ISD::FPOWI, MVT::f32, Expand);
206 setOperationAction(ISD::FPOWI, MVT::f64, Expand);
207
208 setOperationAction(ISD::FREM, MVT::f32, Expand);
209 setOperationAction(ISD::FREM, MVT::f64, Expand);
210
211 setOperationAction(ISD::FSIN, MVT::f32, Expand);
212 setOperationAction(ISD::FSIN, MVT::f64, Expand);
213
214
215 // Virtually no operation on f128 is legal, but LLVM can't expand them when
216 // there's a valid register class, so we need custom operations in most cases.
217 setOperationAction(ISD::FABS, MVT::f128, Expand);
218 setOperationAction(ISD::FADD, MVT::f128, Custom);
219 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
220 setOperationAction(ISD::FCOS, MVT::f128, Expand);
221 setOperationAction(ISD::FDIV, MVT::f128, Custom);
222 setOperationAction(ISD::FMA, MVT::f128, Expand);
223 setOperationAction(ISD::FMUL, MVT::f128, Custom);
224 setOperationAction(ISD::FNEG, MVT::f128, Expand);
225 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
226 setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
227 setOperationAction(ISD::FPOW, MVT::f128, Expand);
228 setOperationAction(ISD::FREM, MVT::f128, Expand);
229 setOperationAction(ISD::FRINT, MVT::f128, Expand);
230 setOperationAction(ISD::FSIN, MVT::f128, Expand);
231 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
232 setOperationAction(ISD::FSUB, MVT::f128, Custom);
233 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
234 setOperationAction(ISD::SETCC, MVT::f128, Custom);
235 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
236 setOperationAction(ISD::SELECT, MVT::f128, Expand);
237 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
238 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
239
240 // Lowering for many of the conversions is actually specified by the non-f128
241 // type. The LowerXXX function will be trivial when f128 isn't involved.
242 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
243 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
244 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
245 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
246 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
247 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
248 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
249 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
250 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
251 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
252 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
253 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
254 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
255 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
256
257 // This prevents LLVM trying to compress double constants into a floating
258 // constant-pool entry and trying to load from there. It's of doubtful benefit
259 // for A64: we'd need LDR followed by FCVT, I believe.
260 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
261 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
262 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
263
264 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
265 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
266 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
267 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
268 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
269 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
270
271 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
272 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
273
274 setExceptionPointerRegister(AArch64::X0);
275 setExceptionSelectorRegister(AArch64::X1);
276}
277
278EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
279 // It's reasonably important that this value matches the "natural" legal
280 // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
281 // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
282 if (!VT.isVector()) return MVT::i32;
283 return VT.changeVectorElementTypeToInteger();
284}
285
286static void getExclusiveOperation(unsigned Size, unsigned &ldrOpc,
287 unsigned &strOpc) {
288 switch (Size) {
289 default: llvm_unreachable("unsupported size for atomic binary op!");
290 case 1:
291 ldrOpc = AArch64::LDXR_byte;
292 strOpc = AArch64::STXR_byte;
293 break;
294 case 2:
295 ldrOpc = AArch64::LDXR_hword;
296 strOpc = AArch64::STXR_hword;
297 break;
298 case 4:
299 ldrOpc = AArch64::LDXR_word;
300 strOpc = AArch64::STXR_word;
301 break;
302 case 8:
303 ldrOpc = AArch64::LDXR_dword;
304 strOpc = AArch64::STXR_dword;
305 break;
306 }
307}
308
309MachineBasicBlock *
310AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
311 unsigned Size,
312 unsigned BinOpcode) const {
313 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
314 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
315
316 const BasicBlock *LLVM_BB = BB->getBasicBlock();
317 MachineFunction *MF = BB->getParent();
318 MachineFunction::iterator It = BB;
319 ++It;
320
321 unsigned dest = MI->getOperand(0).getReg();
322 unsigned ptr = MI->getOperand(1).getReg();
323 unsigned incr = MI->getOperand(2).getReg();
324 DebugLoc dl = MI->getDebugLoc();
325
326 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
327
328 unsigned ldrOpc, strOpc;
329 getExclusiveOperation(Size, ldrOpc, strOpc);
330
331 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
332 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
333 MF->insert(It, loopMBB);
334 MF->insert(It, exitMBB);
335
336 // Transfer the remainder of BB and its successor edges to exitMBB.
337 exitMBB->splice(exitMBB->begin(), BB,
338 llvm::next(MachineBasicBlock::iterator(MI)),
339 BB->end());
340 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
341
342 const TargetRegisterClass *TRC
343 = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
344 unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
345
346 // thisMBB:
347 // ...
348 // fallthrough --> loopMBB
349 BB->addSuccessor(loopMBB);
350
351 // loopMBB:
352 // ldxr dest, ptr
353 // <binop> scratch, dest, incr
354 // stxr stxr_status, scratch, ptr
355 // cmp stxr_status, #0
356 // b.ne loopMBB
357 // fallthrough --> exitMBB
358 BB = loopMBB;
359 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
360 if (BinOpcode) {
361 // All arithmetic operations we'll be creating are designed to take an extra
362 // shift or extend operand, which we can conveniently set to zero.
363
364 // Operand order needs to go the other way for NAND.
365 if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
366 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
367 .addReg(incr).addReg(dest).addImm(0);
368 else
369 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
370 .addReg(dest).addReg(incr).addImm(0);
371 }
372
373 // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
374 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
375 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
376
377 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
378 BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
379 .addReg(stxr_status).addImm(0);
380 BuildMI(BB, dl, TII->get(AArch64::Bcc))
381 .addImm(A64CC::NE).addMBB(loopMBB);
382
383 BB->addSuccessor(loopMBB);
384 BB->addSuccessor(exitMBB);
385
386 // exitMBB:
387 // ...
388 BB = exitMBB;
389
390 MI->eraseFromParent(); // The instruction is gone now.
391
392 return BB;
393}
394
395MachineBasicBlock *
396AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
397 MachineBasicBlock *BB,
398 unsigned Size,
399 unsigned CmpOp,
400 A64CC::CondCodes Cond) const {
401 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
402
403 const BasicBlock *LLVM_BB = BB->getBasicBlock();
404 MachineFunction *MF = BB->getParent();
405 MachineFunction::iterator It = BB;
406 ++It;
407
408 unsigned dest = MI->getOperand(0).getReg();
409 unsigned ptr = MI->getOperand(1).getReg();
410 unsigned incr = MI->getOperand(2).getReg();
411 unsigned oldval = dest;
412 DebugLoc dl = MI->getDebugLoc();
413
414 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
415 const TargetRegisterClass *TRC, *TRCsp;
416 if (Size == 8) {
417 TRC = &AArch64::GPR64RegClass;
418 TRCsp = &AArch64::GPR64xspRegClass;
419 } else {
420 TRC = &AArch64::GPR32RegClass;
421 TRCsp = &AArch64::GPR32wspRegClass;
422 }
423
424 unsigned ldrOpc, strOpc;
425 getExclusiveOperation(Size, ldrOpc, strOpc);
426
427 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
428 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
429 MF->insert(It, loopMBB);
430 MF->insert(It, exitMBB);
431
432 // Transfer the remainder of BB and its successor edges to exitMBB.
433 exitMBB->splice(exitMBB->begin(), BB,
434 llvm::next(MachineBasicBlock::iterator(MI)),
435 BB->end());
436 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
437
438 unsigned scratch = MRI.createVirtualRegister(TRC);
439 MRI.constrainRegClass(scratch, TRCsp);
440
441 // thisMBB:
442 // ...
443 // fallthrough --> loopMBB
444 BB->addSuccessor(loopMBB);
445
446 // loopMBB:
447 // ldxr dest, ptr
448 // cmp incr, dest (, sign extend if necessary)
449 // csel scratch, dest, incr, cond
450 // stxr stxr_status, scratch, ptr
451 // cmp stxr_status, #0
452 // b.ne loopMBB
453 // fallthrough --> exitMBB
454 BB = loopMBB;
455 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
456
457 // Build compare and cmov instructions.
458 MRI.constrainRegClass(incr, TRCsp);
459 BuildMI(BB, dl, TII->get(CmpOp))
460 .addReg(incr).addReg(oldval).addImm(0);
461
462 BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
463 scratch)
464 .addReg(oldval).addReg(incr).addImm(Cond);
465
466 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
467 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
468
469 BuildMI(BB, dl, TII->get(strOpc), stxr_status)
470 .addReg(scratch).addReg(ptr);
471 BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
472 .addReg(stxr_status).addImm(0);
473 BuildMI(BB, dl, TII->get(AArch64::Bcc))
474 .addImm(A64CC::NE).addMBB(loopMBB);
475
476 BB->addSuccessor(loopMBB);
477 BB->addSuccessor(exitMBB);
478
479 // exitMBB:
480 // ...
481 BB = exitMBB;
482
483 MI->eraseFromParent(); // The instruction is gone now.
484
485 return BB;
486}
487
488MachineBasicBlock *
489AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
490 MachineBasicBlock *BB,
491 unsigned Size) const {
492 unsigned dest = MI->getOperand(0).getReg();
493 unsigned ptr = MI->getOperand(1).getReg();
494 unsigned oldval = MI->getOperand(2).getReg();
495 unsigned newval = MI->getOperand(3).getReg();
496 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
497 DebugLoc dl = MI->getDebugLoc();
498
499 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
500 const TargetRegisterClass *TRCsp;
501 TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
502
503 unsigned ldrOpc, strOpc;
504 getExclusiveOperation(Size, ldrOpc, strOpc);
505
506 MachineFunction *MF = BB->getParent();
507 const BasicBlock *LLVM_BB = BB->getBasicBlock();
508 MachineFunction::iterator It = BB;
509 ++It; // insert the new blocks after the current block
510
511 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
512 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
513 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
514 MF->insert(It, loop1MBB);
515 MF->insert(It, loop2MBB);
516 MF->insert(It, exitMBB);
517
518 // Transfer the remainder of BB and its successor edges to exitMBB.
519 exitMBB->splice(exitMBB->begin(), BB,
520 llvm::next(MachineBasicBlock::iterator(MI)),
521 BB->end());
522 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
523
524 // thisMBB:
525 // ...
526 // fallthrough --> loop1MBB
527 BB->addSuccessor(loop1MBB);
528
529 // loop1MBB:
530 // ldxr dest, [ptr]
531 // cmp dest, oldval
532 // b.ne exitMBB
533 BB = loop1MBB;
534 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
535
536 unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
537 MRI.constrainRegClass(dest, TRCsp);
538 BuildMI(BB, dl, TII->get(CmpOp))
539 .addReg(dest).addReg(oldval).addImm(0);
540 BuildMI(BB, dl, TII->get(AArch64::Bcc))
541 .addImm(A64CC::NE).addMBB(exitMBB);
542 BB->addSuccessor(loop2MBB);
543 BB->addSuccessor(exitMBB);
544
545 // loop2MBB:
546 // strex stxr_status, newval, [ptr]
547 // cmp stxr_status, #0
548 // b.ne loop1MBB
549 BB = loop2MBB;
550 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
551 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
552
553 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
554 BuildMI(BB, dl, TII->get(AArch64::SUBwwi_lsl0_cmp))
555 .addReg(stxr_status).addImm(0);
556 BuildMI(BB, dl, TII->get(AArch64::Bcc))
557 .addImm(A64CC::NE).addMBB(loop1MBB);
558 BB->addSuccessor(loop1MBB);
559 BB->addSuccessor(exitMBB);
560
561 // exitMBB:
562 // ...
563 BB = exitMBB;
564
565 MI->eraseFromParent(); // The instruction is gone now.
566
567 return BB;
568}
569
570MachineBasicBlock *
571AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
572 MachineBasicBlock *MBB) const {
573 // We materialise the F128CSEL pseudo-instruction using conditional branches
574 // and loads, giving an instruciton sequence like:
575 // str q0, [sp]
576 // b.ne IfTrue
577 // b Finish
578 // IfTrue:
579 // str q1, [sp]
580 // Finish:
581 // ldr q0, [sp]
582 //
583 // Using virtual registers would probably not be beneficial since COPY
584 // instructions are expensive for f128 (there's no actual instruction to
585 // implement them).
586 //
587 // An alternative would be to do an integer-CSEL on some address. E.g.:
588 // mov x0, sp
589 // add x1, sp, #16
590 // str q0, [x0]
591 // str q1, [x1]
592 // csel x0, x0, x1, ne
593 // ldr q0, [x0]
594 //
595 // It's unclear which approach is actually optimal.
596 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
597 MachineFunction *MF = MBB->getParent();
598 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
599 DebugLoc DL = MI->getDebugLoc();
600 MachineFunction::iterator It = MBB;
601 ++It;
602
603 unsigned DestReg = MI->getOperand(0).getReg();
604 unsigned IfTrueReg = MI->getOperand(1).getReg();
605 unsigned IfFalseReg = MI->getOperand(2).getReg();
606 unsigned CondCode = MI->getOperand(3).getImm();
607 bool NZCVKilled = MI->getOperand(4).isKill();
608
609 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
610 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
611 MF->insert(It, TrueBB);
612 MF->insert(It, EndBB);
613
614 // Transfer rest of current basic-block to EndBB
615 EndBB->splice(EndBB->begin(), MBB,
616 llvm::next(MachineBasicBlock::iterator(MI)),
617 MBB->end());
618 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
619
620 // We need somewhere to store the f128 value needed.
621 int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
622
623 // [... start of incoming MBB ...]
624 // str qIFFALSE, [sp]
625 // b.cc IfTrue
626 // b Done
627 BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
628 .addReg(IfFalseReg)
629 .addFrameIndex(ScratchFI)
630 .addImm(0);
631 BuildMI(MBB, DL, TII->get(AArch64::Bcc))
632 .addImm(CondCode)
633 .addMBB(TrueBB);
634 BuildMI(MBB, DL, TII->get(AArch64::Bimm))
635 .addMBB(EndBB);
636 MBB->addSuccessor(TrueBB);
637 MBB->addSuccessor(EndBB);
638
639 // IfTrue:
640 // str qIFTRUE, [sp]
641 BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
642 .addReg(IfTrueReg)
643 .addFrameIndex(ScratchFI)
644 .addImm(0);
645
646 // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
647 // blocks.
648 TrueBB->addSuccessor(EndBB);
649
650 // Done:
651 // ldr qDEST, [sp]
652 // [... rest of incoming MBB ...]
653 if (!NZCVKilled)
654 EndBB->addLiveIn(AArch64::NZCV);
655 MachineInstr *StartOfEnd = EndBB->begin();
656 BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
657 .addFrameIndex(ScratchFI)
658 .addImm(0);
659
660 MI->eraseFromParent();
661 return EndBB;
662}
663
664MachineBasicBlock *
665AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
666 MachineBasicBlock *MBB) const {
667 switch (MI->getOpcode()) {
668 default: llvm_unreachable("Unhandled instruction with custom inserter");
669 case AArch64::F128CSEL:
670 return EmitF128CSEL(MI, MBB);
671 case AArch64::ATOMIC_LOAD_ADD_I8:
672 return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
673 case AArch64::ATOMIC_LOAD_ADD_I16:
674 return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
675 case AArch64::ATOMIC_LOAD_ADD_I32:
676 return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
677 case AArch64::ATOMIC_LOAD_ADD_I64:
678 return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
679
680 case AArch64::ATOMIC_LOAD_SUB_I8:
681 return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
682 case AArch64::ATOMIC_LOAD_SUB_I16:
683 return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
684 case AArch64::ATOMIC_LOAD_SUB_I32:
685 return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
686 case AArch64::ATOMIC_LOAD_SUB_I64:
687 return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
688
689 case AArch64::ATOMIC_LOAD_AND_I8:
690 return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
691 case AArch64::ATOMIC_LOAD_AND_I16:
692 return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
693 case AArch64::ATOMIC_LOAD_AND_I32:
694 return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
695 case AArch64::ATOMIC_LOAD_AND_I64:
696 return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
697
698 case AArch64::ATOMIC_LOAD_OR_I8:
699 return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
700 case AArch64::ATOMIC_LOAD_OR_I16:
701 return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
702 case AArch64::ATOMIC_LOAD_OR_I32:
703 return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
704 case AArch64::ATOMIC_LOAD_OR_I64:
705 return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
706
707 case AArch64::ATOMIC_LOAD_XOR_I8:
708 return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
709 case AArch64::ATOMIC_LOAD_XOR_I16:
710 return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
711 case AArch64::ATOMIC_LOAD_XOR_I32:
712 return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
713 case AArch64::ATOMIC_LOAD_XOR_I64:
714 return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
715
716 case AArch64::ATOMIC_LOAD_NAND_I8:
717 return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
718 case AArch64::ATOMIC_LOAD_NAND_I16:
719 return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
720 case AArch64::ATOMIC_LOAD_NAND_I32:
721 return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
722 case AArch64::ATOMIC_LOAD_NAND_I64:
723 return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
724
725 case AArch64::ATOMIC_LOAD_MIN_I8:
726 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
727 case AArch64::ATOMIC_LOAD_MIN_I16:
728 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
729 case AArch64::ATOMIC_LOAD_MIN_I32:
730 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
731 case AArch64::ATOMIC_LOAD_MIN_I64:
732 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
733
734 case AArch64::ATOMIC_LOAD_MAX_I8:
735 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
736 case AArch64::ATOMIC_LOAD_MAX_I16:
737 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
738 case AArch64::ATOMIC_LOAD_MAX_I32:
739 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
740 case AArch64::ATOMIC_LOAD_MAX_I64:
741 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
742
743 case AArch64::ATOMIC_LOAD_UMIN_I8:
744 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
745 case AArch64::ATOMIC_LOAD_UMIN_I16:
746 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
747 case AArch64::ATOMIC_LOAD_UMIN_I32:
748 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
749 case AArch64::ATOMIC_LOAD_UMIN_I64:
750 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
751
752 case AArch64::ATOMIC_LOAD_UMAX_I8:
753 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
754 case AArch64::ATOMIC_LOAD_UMAX_I16:
755 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
756 case AArch64::ATOMIC_LOAD_UMAX_I32:
757 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
758 case AArch64::ATOMIC_LOAD_UMAX_I64:
759 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
760
761 case AArch64::ATOMIC_SWAP_I8:
762 return emitAtomicBinary(MI, MBB, 1, 0);
763 case AArch64::ATOMIC_SWAP_I16:
764 return emitAtomicBinary(MI, MBB, 2, 0);
765 case AArch64::ATOMIC_SWAP_I32:
766 return emitAtomicBinary(MI, MBB, 4, 0);
767 case AArch64::ATOMIC_SWAP_I64:
768 return emitAtomicBinary(MI, MBB, 8, 0);
769
770 case AArch64::ATOMIC_CMP_SWAP_I8:
771 return emitAtomicCmpSwap(MI, MBB, 1);
772 case AArch64::ATOMIC_CMP_SWAP_I16:
773 return emitAtomicCmpSwap(MI, MBB, 2);
774 case AArch64::ATOMIC_CMP_SWAP_I32:
775 return emitAtomicCmpSwap(MI, MBB, 4);
776 case AArch64::ATOMIC_CMP_SWAP_I64:
777 return emitAtomicCmpSwap(MI, MBB, 8);
778 }
779}
780
781
782const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
783 switch (Opcode) {
784 case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
785 case AArch64ISD::Call: return "AArch64ISD::Call";
786 case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
787 case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
788 case AArch64ISD::BFI: return "AArch64ISD::BFI";
789 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
790 case AArch64ISD::Ret: return "AArch64ISD::Ret";
791 case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
792 case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
793 case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
794 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
795 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
796 case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
797 case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
798
799 default: return NULL;
800 }
801}
802
803static const uint16_t AArch64FPRArgRegs[] = {
804 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
805 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
806};
807static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
808
809static const uint16_t AArch64ArgRegs[] = {
810 AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
811 AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
812};
813static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
814
815static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
816 CCValAssign::LocInfo LocInfo,
817 ISD::ArgFlagsTy ArgFlags, CCState &State) {
818 // Mark all remaining general purpose registers as allocated. We don't
819 // backtrack: if (for example) an i128 gets put on the stack, no subsequent
820 // i64 will go in registers (C.11).
821 for (unsigned i = 0; i < NumArgRegs; ++i)
822 State.AllocateReg(AArch64ArgRegs[i]);
823
824 return false;
825}
826
827#include "AArch64GenCallingConv.inc"
828
829CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
830
831 switch(CC) {
832 default: llvm_unreachable("Unsupported calling convention");
833 case CallingConv::Fast:
834 case CallingConv::C:
835 return CC_A64_APCS;
836 }
837}
838
839void
840AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
841 DebugLoc DL, SDValue &Chain) const {
842 MachineFunction &MF = DAG.getMachineFunction();
843 MachineFrameInfo *MFI = MF.getFrameInfo();
Tim Northoverdfe076a2013-02-05 13:24:56 +0000844 AArch64MachineFunctionInfo *FuncInfo
845 = MF.getInfo<AArch64MachineFunctionInfo>();
Tim Northover72062f52013-01-31 12:12:40 +0000846
847 SmallVector<SDValue, 8> MemOps;
848
849 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
850 NumArgRegs);
851 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
852 NumFPRArgRegs);
853
854 unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
855 int GPRIdx = 0;
856 if (GPRSaveSize != 0) {
857 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
858
859 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
860
861 for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
862 unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
863 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
864 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
865 MachinePointerInfo::getStack(i * 8),
866 false, false, 0);
867 MemOps.push_back(Store);
868 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
869 DAG.getConstant(8, getPointerTy()));
870 }
871 }
872
873 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
874 int FPRIdx = 0;
875 if (FPRSaveSize != 0) {
876 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
877
878 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
879
880 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
881 unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
882 &AArch64::FPR128RegClass);
883 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
884 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
885 MachinePointerInfo::getStack(i * 16),
886 false, false, 0);
887 MemOps.push_back(Store);
888 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
889 DAG.getConstant(16, getPointerTy()));
890 }
891 }
892
893 int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
894
895 FuncInfo->setVariadicStackIdx(StackIdx);
896 FuncInfo->setVariadicGPRIdx(GPRIdx);
897 FuncInfo->setVariadicGPRSize(GPRSaveSize);
898 FuncInfo->setVariadicFPRIdx(FPRIdx);
899 FuncInfo->setVariadicFPRSize(FPRSaveSize);
900
901 if (!MemOps.empty()) {
902 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
903 MemOps.size());
904 }
905}
906
907
908SDValue
909AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
910 CallingConv::ID CallConv, bool isVarArg,
911 const SmallVectorImpl<ISD::InputArg> &Ins,
912 DebugLoc dl, SelectionDAG &DAG,
913 SmallVectorImpl<SDValue> &InVals) const {
914 MachineFunction &MF = DAG.getMachineFunction();
915 AArch64MachineFunctionInfo *FuncInfo
916 = MF.getInfo<AArch64MachineFunctionInfo>();
917 MachineFrameInfo *MFI = MF.getFrameInfo();
918 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
919
920 SmallVector<CCValAssign, 16> ArgLocs;
921 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
922 getTargetMachine(), ArgLocs, *DAG.getContext());
923 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
924
925 SmallVector<SDValue, 16> ArgValues;
926
927 SDValue ArgValue;
928 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
929 CCValAssign &VA = ArgLocs[i];
930 ISD::ArgFlagsTy Flags = Ins[i].Flags;
931
932 if (Flags.isByVal()) {
933 // Byval is used for small structs and HFAs in the PCS, but the system
934 // should work in a non-compliant manner for larger structs.
935 EVT PtrTy = getPointerTy();
936 int Size = Flags.getByValSize();
937 unsigned NumRegs = (Size + 7) / 8;
938
939 unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
940 VA.getLocMemOffset(),
941 false);
942 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
943 InVals.push_back(FrameIdxN);
944
945 continue;
946 } else if (VA.isRegLoc()) {
947 MVT RegVT = VA.getLocVT();
948 const TargetRegisterClass *RC = getRegClassFor(RegVT);
949 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
950
951 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
952 } else { // VA.isRegLoc()
953 assert(VA.isMemLoc());
954
955 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
956 VA.getLocMemOffset(), true);
957
958 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
959 ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
960 MachinePointerInfo::getFixedStack(FI),
961 false, false, false, 0);
962
963
964 }
965
966 switch (VA.getLocInfo()) {
967 default: llvm_unreachable("Unknown loc info!");
968 case CCValAssign::Full: break;
969 case CCValAssign::BCvt:
970 ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
971 break;
972 case CCValAssign::SExt:
973 case CCValAssign::ZExt:
974 case CCValAssign::AExt: {
975 unsigned DestSize = VA.getValVT().getSizeInBits();
976 unsigned DestSubReg;
977
978 switch (DestSize) {
979 case 8: DestSubReg = AArch64::sub_8; break;
980 case 16: DestSubReg = AArch64::sub_16; break;
981 case 32: DestSubReg = AArch64::sub_32; break;
982 case 64: DestSubReg = AArch64::sub_64; break;
983 default: llvm_unreachable("Unexpected argument promotion");
984 }
985
986 ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
987 VA.getValVT(), ArgValue,
988 DAG.getTargetConstant(DestSubReg, MVT::i32)),
989 0);
990 break;
991 }
992 }
993
994 InVals.push_back(ArgValue);
995 }
996
997 if (isVarArg)
998 SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
999
1000 unsigned StackArgSize = CCInfo.getNextStackOffset();
1001 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1002 // This is a non-standard ABI so by fiat I say we're allowed to make full
1003 // use of the stack area to be popped, which must be aligned to 16 bytes in
1004 // any case:
1005 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1006
1007 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1008 // a multiple of 16.
1009 FuncInfo->setArgumentStackToRestore(StackArgSize);
1010
1011 // This realignment carries over to the available bytes below. Our own
1012 // callers will guarantee the space is free by giving an aligned value to
1013 // CALLSEQ_START.
1014 }
1015 // Even if we're not expected to free up the space, it's useful to know how
1016 // much is there while considering tail calls (because we can reuse it).
1017 FuncInfo->setBytesInStackArgArea(StackArgSize);
1018
1019 return Chain;
1020}
1021
1022SDValue
1023AArch64TargetLowering::LowerReturn(SDValue Chain,
1024 CallingConv::ID CallConv, bool isVarArg,
1025 const SmallVectorImpl<ISD::OutputArg> &Outs,
1026 const SmallVectorImpl<SDValue> &OutVals,
1027 DebugLoc dl, SelectionDAG &DAG) const {
1028 // CCValAssign - represent the assignment of the return value to a location.
1029 SmallVector<CCValAssign, 16> RVLocs;
1030
1031 // CCState - Info about the registers and stack slots.
1032 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1033 getTargetMachine(), RVLocs, *DAG.getContext());
1034
1035 // Analyze outgoing return values.
1036 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1037
1038 // If this is the first return lowered for this function, add
1039 // the regs to the liveout set for the function.
1040 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1041 for (unsigned i = 0; i != RVLocs.size(); ++i)
1042 if (RVLocs[i].isRegLoc())
1043 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1044 }
1045
1046 SDValue Flag;
1047
1048 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
Tim Northoverdfe076a2013-02-05 13:24:56 +00001049 // PCS: "If the type, T, of the result of a function is such that
1050 // void func(T arg) would require that arg be passed as a value in a
1051 // register (or set of registers) according to the rules in 5.4, then the
1052 // result is returned in the same registers as would be used for such an
1053 // argument.
Tim Northover72062f52013-01-31 12:12:40 +00001054 //
1055 // Otherwise, the caller shall reserve a block of memory of sufficient
1056 // size and alignment to hold the result. The address of the memory block
1057 // shall be passed as an additional argument to the function in x8."
1058 //
1059 // This is implemented in two places. The register-return values are dealt
1060 // with here, more complex returns are passed as an sret parameter, which
1061 // means we don't have to worry about it during actual return.
1062 CCValAssign &VA = RVLocs[i];
1063 assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1064
1065
1066 SDValue Arg = OutVals[i];
1067
1068 // There's no convenient note in the ABI about this as there is for normal
1069 // arguments, but it says return values are passed in the same registers as
1070 // an argument would be. I believe that includes the comments about
1071 // unspecified higher bits, putting the burden of widening on the *caller*
1072 // for return values.
1073 switch (VA.getLocInfo()) {
1074 default: llvm_unreachable("Unknown loc info");
1075 case CCValAssign::Full: break;
1076 case CCValAssign::SExt:
1077 case CCValAssign::ZExt:
1078 case CCValAssign::AExt:
1079 // Floating-point values should only be extended when they're going into
1080 // memory, which can't happen here so an integer extend is acceptable.
1081 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1082 break;
1083 case CCValAssign::BCvt:
1084 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1085 break;
1086 }
1087
1088 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1089 Flag = Chain.getValue(1);
1090 }
1091
1092 if (Flag.getNode()) {
1093 return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, Chain, Flag);
1094 } else {
1095 return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, Chain);
1096 }
1097}
1098
1099SDValue
1100AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1101 SmallVectorImpl<SDValue> &InVals) const {
1102 SelectionDAG &DAG = CLI.DAG;
1103 DebugLoc &dl = CLI.DL;
1104 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1105 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
1106 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
1107 SDValue Chain = CLI.Chain;
1108 SDValue Callee = CLI.Callee;
1109 bool &IsTailCall = CLI.IsTailCall;
1110 CallingConv::ID CallConv = CLI.CallConv;
1111 bool IsVarArg = CLI.IsVarArg;
1112
1113 MachineFunction &MF = DAG.getMachineFunction();
1114 AArch64MachineFunctionInfo *FuncInfo
1115 = MF.getInfo<AArch64MachineFunctionInfo>();
1116 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1117 bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1118 bool IsSibCall = false;
1119
1120 if (IsTailCall) {
1121 IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1122 IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1123 Outs, OutVals, Ins, DAG);
1124
1125 // A sibling call is one where we're under the usual C ABI and not planning
1126 // to change that but can still do a tail call:
1127 if (!TailCallOpt && IsTailCall)
1128 IsSibCall = true;
1129 }
1130
1131 SmallVector<CCValAssign, 16> ArgLocs;
1132 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1133 getTargetMachine(), ArgLocs, *DAG.getContext());
1134 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1135
1136 // On AArch64 (and all other architectures I'm aware of) the most this has to
1137 // do is adjust the stack pointer.
1138 unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1139 if (IsSibCall) {
1140 // Since we're not changing the ABI to make this a tail call, the memory
1141 // operands are already available in the caller's incoming argument space.
1142 NumBytes = 0;
1143 }
1144
1145 // FPDiff is the byte offset of the call's argument area from the callee's.
1146 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1147 // by this amount for a tail call. In a sibling call it must be 0 because the
1148 // caller will deallocate the entire stack and the callee still expects its
1149 // arguments to begin at SP+0. Completely unused for non-tail calls.
1150 int FPDiff = 0;
1151
1152 if (IsTailCall && !IsSibCall) {
1153 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1154
1155 // FPDiff will be negative if this tail call requires more space than we
1156 // would automatically have in our incoming argument space. Positive if we
1157 // can actually shrink the stack.
1158 FPDiff = NumReusableBytes - NumBytes;
1159
1160 // The stack pointer must be 16-byte aligned at all times it's used for a
1161 // memory operation, which in practice means at *all* times and in
1162 // particular across call boundaries. Therefore our own arguments started at
1163 // a 16-byte aligned SP and the delta applied for the tail call should
1164 // satisfy the same constraint.
1165 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1166 }
1167
1168 if (!IsSibCall)
1169 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1170
Tim Northoverdfe076a2013-02-05 13:24:56 +00001171 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1172 getPointerTy());
Tim Northover72062f52013-01-31 12:12:40 +00001173
1174 SmallVector<SDValue, 8> MemOpChains;
1175 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1176
1177 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1178 CCValAssign &VA = ArgLocs[i];
1179 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1180 SDValue Arg = OutVals[i];
1181
1182 // Callee does the actual widening, so all extensions just use an implicit
1183 // definition of the rest of the Loc. Aesthetically, this would be nicer as
1184 // an ANY_EXTEND, but that isn't valid for floating-point types and this
1185 // alternative works on integer types too.
1186 switch (VA.getLocInfo()) {
1187 default: llvm_unreachable("Unknown loc info!");
1188 case CCValAssign::Full: break;
1189 case CCValAssign::SExt:
1190 case CCValAssign::ZExt:
1191 case CCValAssign::AExt: {
1192 unsigned SrcSize = VA.getValVT().getSizeInBits();
1193 unsigned SrcSubReg;
1194
1195 switch (SrcSize) {
1196 case 8: SrcSubReg = AArch64::sub_8; break;
1197 case 16: SrcSubReg = AArch64::sub_16; break;
1198 case 32: SrcSubReg = AArch64::sub_32; break;
1199 case 64: SrcSubReg = AArch64::sub_64; break;
1200 default: llvm_unreachable("Unexpected argument promotion");
1201 }
1202
1203 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1204 VA.getLocVT(),
1205 DAG.getUNDEF(VA.getLocVT()),
1206 Arg,
1207 DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1208 0);
1209
1210 break;
1211 }
1212 case CCValAssign::BCvt:
1213 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1214 break;
1215 }
1216
1217 if (VA.isRegLoc()) {
1218 // A normal register (sub-) argument. For now we just note it down because
1219 // we want to copy things into registers as late as possible to avoid
1220 // register-pressure (and possibly worse).
1221 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1222 continue;
1223 }
1224
1225 assert(VA.isMemLoc() && "unexpected argument location");
1226
1227 SDValue DstAddr;
1228 MachinePointerInfo DstInfo;
1229 if (IsTailCall) {
1230 uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1231 VA.getLocVT().getSizeInBits();
1232 OpSize = (OpSize + 7) / 8;
1233 int32_t Offset = VA.getLocMemOffset() + FPDiff;
1234 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1235
1236 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1237 DstInfo = MachinePointerInfo::getFixedStack(FI);
1238
1239 // Make sure any stack arguments overlapping with where we're storing are
1240 // loaded before this eventual operation. Otherwise they'll be clobbered.
1241 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1242 } else {
1243 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1244
1245 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1246 DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1247 }
1248
1249 if (Flags.isByVal()) {
1250 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1251 SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1252 Flags.getByValAlign(),
1253 /*isVolatile = */ false,
1254 /*alwaysInline = */ false,
1255 DstInfo, MachinePointerInfo(0));
1256 MemOpChains.push_back(Cpy);
1257 } else {
1258 // Normal stack argument, put it where it's needed.
1259 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1260 false, false, 0);
1261 MemOpChains.push_back(Store);
1262 }
1263 }
1264
1265 // The loads and stores generated above shouldn't clash with each
1266 // other. Combining them with this TokenFactor notes that fact for the rest of
1267 // the backend.
1268 if (!MemOpChains.empty())
1269 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1270 &MemOpChains[0], MemOpChains.size());
1271
1272 // Most of the rest of the instructions need to be glued together; we don't
1273 // want assignments to actual registers used by a call to be rearranged by a
1274 // well-meaning scheduler.
1275 SDValue InFlag;
1276
1277 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1278 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1279 RegsToPass[i].second, InFlag);
1280 InFlag = Chain.getValue(1);
1281 }
1282
1283 // The linker is responsible for inserting veneers when necessary to put a
1284 // function call destination in range, so we don't need to bother with a
1285 // wrapper here.
1286 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1287 const GlobalValue *GV = G->getGlobal();
1288 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1289 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1290 const char *Sym = S->getSymbol();
1291 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1292 }
1293
1294 // We don't usually want to end the call-sequence here because we would tidy
1295 // the frame up *after* the call, however in the ABI-changing tail-call case
1296 // we've carefully laid out the parameters so that when sp is reset they'll be
1297 // in the correct location.
1298 if (IsTailCall && !IsSibCall) {
1299 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1300 DAG.getIntPtrConstant(0, true), InFlag);
1301 InFlag = Chain.getValue(1);
1302 }
1303
1304 // We produce the following DAG scheme for the actual call instruction:
1305 // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1306 //
1307 // Most arguments aren't going to be used and just keep the values live as
1308 // far as LLVM is concerned. It's expected to be selected as simply "bl
1309 // callee" (for a direct, non-tail call).
1310 std::vector<SDValue> Ops;
1311 Ops.push_back(Chain);
1312 Ops.push_back(Callee);
1313
1314 if (IsTailCall) {
1315 // Each tail call may have to adjust the stack by a different amount, so
1316 // this information must travel along with the operation for eventual
1317 // consumption by emitEpilogue.
1318 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1319 }
1320
1321 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1322 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1323 RegsToPass[i].second.getValueType()));
1324
1325
1326 // Add a register mask operand representing the call-preserved registers. This
1327 // is used later in codegen to constrain register-allocation.
1328 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1329 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1330 assert(Mask && "Missing call preserved mask for calling convention");
1331 Ops.push_back(DAG.getRegisterMask(Mask));
1332
1333 // If we needed glue, put it in as the last argument.
1334 if (InFlag.getNode())
1335 Ops.push_back(InFlag);
1336
1337 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1338
1339 if (IsTailCall) {
1340 return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1341 }
1342
1343 Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1344 InFlag = Chain.getValue(1);
1345
1346 // Now we can reclaim the stack, just as well do it before working out where
1347 // our return value is.
1348 if (!IsSibCall) {
1349 uint64_t CalleePopBytes
1350 = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1351
1352 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1353 DAG.getIntPtrConstant(CalleePopBytes, true),
1354 InFlag);
1355 InFlag = Chain.getValue(1);
1356 }
1357
1358 return LowerCallResult(Chain, InFlag, CallConv,
1359 IsVarArg, Ins, dl, DAG, InVals);
1360}
1361
1362SDValue
1363AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1364 CallingConv::ID CallConv, bool IsVarArg,
1365 const SmallVectorImpl<ISD::InputArg> &Ins,
1366 DebugLoc dl, SelectionDAG &DAG,
1367 SmallVectorImpl<SDValue> &InVals) const {
1368 // Assign locations to each value returned by this call.
1369 SmallVector<CCValAssign, 16> RVLocs;
1370 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1371 getTargetMachine(), RVLocs, *DAG.getContext());
1372 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1373
1374 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1375 CCValAssign VA = RVLocs[i];
1376
1377 // Return values that are too big to fit into registers should use an sret
1378 // pointer, so this can be a lot simpler than the main argument code.
1379 assert(VA.isRegLoc() && "Memory locations not expected for call return");
1380
1381 SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1382 InFlag);
1383 Chain = Val.getValue(1);
1384 InFlag = Val.getValue(2);
1385
1386 switch (VA.getLocInfo()) {
1387 default: llvm_unreachable("Unknown loc info!");
1388 case CCValAssign::Full: break;
1389 case CCValAssign::BCvt:
1390 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1391 break;
1392 case CCValAssign::ZExt:
1393 case CCValAssign::SExt:
1394 case CCValAssign::AExt:
1395 // Floating-point arguments only get extended/truncated if they're going
1396 // in memory, so using the integer operation is acceptable here.
1397 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1398 break;
1399 }
1400
1401 InVals.push_back(Val);
1402 }
1403
1404 return Chain;
1405}
1406
1407bool
1408AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1409 CallingConv::ID CalleeCC,
1410 bool IsVarArg,
1411 bool IsCalleeStructRet,
1412 bool IsCallerStructRet,
1413 const SmallVectorImpl<ISD::OutputArg> &Outs,
1414 const SmallVectorImpl<SDValue> &OutVals,
1415 const SmallVectorImpl<ISD::InputArg> &Ins,
1416 SelectionDAG& DAG) const {
1417
1418 // For CallingConv::C this function knows whether the ABI needs
1419 // changing. That's not true for other conventions so they will have to opt in
1420 // manually.
1421 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1422 return false;
1423
1424 const MachineFunction &MF = DAG.getMachineFunction();
1425 const Function *CallerF = MF.getFunction();
1426 CallingConv::ID CallerCC = CallerF->getCallingConv();
1427 bool CCMatch = CallerCC == CalleeCC;
1428
1429 // Byval parameters hand the function a pointer directly into the stack area
1430 // we want to reuse during a tail call. Working around this *is* possible (see
1431 // X86) but less efficient and uglier in LowerCall.
1432 for (Function::const_arg_iterator i = CallerF->arg_begin(),
1433 e = CallerF->arg_end(); i != e; ++i)
1434 if (i->hasByValAttr())
1435 return false;
1436
1437 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1438 if (IsTailCallConvention(CalleeCC) && CCMatch)
1439 return true;
1440 return false;
1441 }
1442
1443 // Now we search for cases where we can use a tail call without changing the
1444 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1445 // concept.
1446
1447 // I want anyone implementing a new calling convention to think long and hard
1448 // about this assert.
1449 assert((!IsVarArg || CalleeCC == CallingConv::C)
1450 && "Unexpected variadic calling convention");
1451
1452 if (IsVarArg && !Outs.empty()) {
1453 // At least two cases here: if caller is fastcc then we can't have any
1454 // memory arguments (we'd be expected to clean up the stack afterwards). If
1455 // caller is C then we could potentially use its argument area.
1456
1457 // FIXME: for now we take the most conservative of these in both cases:
1458 // disallow all variadic memory operands.
1459 SmallVector<CCValAssign, 16> ArgLocs;
1460 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1461 getTargetMachine(), ArgLocs, *DAG.getContext());
1462
1463 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1464 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1465 if (!ArgLocs[i].isRegLoc())
1466 return false;
1467 }
1468
1469 // If the calling conventions do not match, then we'd better make sure the
1470 // results are returned in the same way as what the caller expects.
1471 if (!CCMatch) {
1472 SmallVector<CCValAssign, 16> RVLocs1;
1473 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1474 getTargetMachine(), RVLocs1, *DAG.getContext());
1475 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1476
1477 SmallVector<CCValAssign, 16> RVLocs2;
1478 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1479 getTargetMachine(), RVLocs2, *DAG.getContext());
1480 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1481
1482 if (RVLocs1.size() != RVLocs2.size())
1483 return false;
1484 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1485 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1486 return false;
1487 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1488 return false;
1489 if (RVLocs1[i].isRegLoc()) {
1490 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1491 return false;
1492 } else {
1493 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1494 return false;
1495 }
1496 }
1497 }
1498
1499 // Nothing more to check if the callee is taking no arguments
1500 if (Outs.empty())
1501 return true;
1502
1503 SmallVector<CCValAssign, 16> ArgLocs;
1504 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1505 getTargetMachine(), ArgLocs, *DAG.getContext());
1506
1507 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1508
1509 const AArch64MachineFunctionInfo *FuncInfo
1510 = MF.getInfo<AArch64MachineFunctionInfo>();
1511
1512 // If the stack arguments for this call would fit into our own save area then
1513 // the call can be made tail.
1514 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1515}
1516
1517bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1518 bool TailCallOpt) const {
1519 return CallCC == CallingConv::Fast && TailCallOpt;
1520}
1521
1522bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1523 return CallCC == CallingConv::Fast;
1524}
1525
1526SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1527 SelectionDAG &DAG,
1528 MachineFrameInfo *MFI,
1529 int ClobberedFI) const {
1530 SmallVector<SDValue, 8> ArgChains;
1531 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1532 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1533
1534 // Include the original chain at the beginning of the list. When this is
1535 // used by target LowerCall hooks, this helps legalize find the
1536 // CALLSEQ_BEGIN node.
1537 ArgChains.push_back(Chain);
1538
1539 // Add a chain value for each stack argument corresponding
1540 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1541 UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1542 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1543 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1544 if (FI->getIndex() < 0) {
1545 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1546 int64_t InLastByte = InFirstByte;
1547 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1548
1549 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1550 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1551 ArgChains.push_back(SDValue(L, 1));
1552 }
1553
1554 // Build a tokenfactor for all the chains.
1555 return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
1556 &ArgChains[0], ArgChains.size());
1557}
1558
1559static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1560 switch (CC) {
1561 case ISD::SETEQ: return A64CC::EQ;
1562 case ISD::SETGT: return A64CC::GT;
1563 case ISD::SETGE: return A64CC::GE;
1564 case ISD::SETLT: return A64CC::LT;
1565 case ISD::SETLE: return A64CC::LE;
1566 case ISD::SETNE: return A64CC::NE;
1567 case ISD::SETUGT: return A64CC::HI;
1568 case ISD::SETUGE: return A64CC::HS;
1569 case ISD::SETULT: return A64CC::LO;
1570 case ISD::SETULE: return A64CC::LS;
1571 default: llvm_unreachable("Unexpected condition code");
1572 }
1573}
1574
1575bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1576 // icmp is implemented using adds/subs immediate, which take an unsigned
1577 // 12-bit immediate, optionally shifted left by 12 bits.
1578
1579 // Symmetric by using adds/subs
1580 if (Val < 0)
1581 Val = -Val;
1582
1583 return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1584}
1585
1586SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1587 ISD::CondCode CC, SDValue &A64cc,
1588 SelectionDAG &DAG, DebugLoc &dl) const {
1589 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1590 int64_t C = 0;
1591 EVT VT = RHSC->getValueType(0);
1592 bool knownInvalid = false;
1593
1594 // I'm not convinced the rest of LLVM handles these edge cases properly, but
1595 // we can at least get it right.
1596 if (isSignedIntSetCC(CC)) {
1597 C = RHSC->getSExtValue();
1598 } else if (RHSC->getZExtValue() > INT64_MAX) {
1599 // A 64-bit constant not representable by a signed 64-bit integer is far
1600 // too big to fit into a SUBS immediate anyway.
1601 knownInvalid = true;
1602 } else {
1603 C = RHSC->getZExtValue();
1604 }
1605
1606 if (!knownInvalid && !isLegalICmpImmediate(C)) {
1607 // Constant does not fit, try adjusting it by one?
1608 switch (CC) {
1609 default: break;
1610 case ISD::SETLT:
1611 case ISD::SETGE:
1612 if (isLegalICmpImmediate(C-1)) {
1613 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1614 RHS = DAG.getConstant(C-1, VT);
1615 }
1616 break;
1617 case ISD::SETULT:
1618 case ISD::SETUGE:
1619 if (isLegalICmpImmediate(C-1)) {
1620 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1621 RHS = DAG.getConstant(C-1, VT);
1622 }
1623 break;
1624 case ISD::SETLE:
1625 case ISD::SETGT:
1626 if (isLegalICmpImmediate(C+1)) {
1627 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1628 RHS = DAG.getConstant(C+1, VT);
1629 }
1630 break;
1631 case ISD::SETULE:
1632 case ISD::SETUGT:
1633 if (isLegalICmpImmediate(C+1)) {
1634 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1635 RHS = DAG.getConstant(C+1, VT);
1636 }
1637 break;
1638 }
1639 }
1640 }
1641
1642 A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1643 A64cc = DAG.getConstant(CondCode, MVT::i32);
1644 return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1645 DAG.getCondCode(CC));
1646}
1647
1648static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1649 A64CC::CondCodes &Alternative) {
1650 A64CC::CondCodes CondCode = A64CC::Invalid;
1651 Alternative = A64CC::Invalid;
1652
1653 switch (CC) {
1654 default: llvm_unreachable("Unknown FP condition!");
1655 case ISD::SETEQ:
1656 case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1657 case ISD::SETGT:
1658 case ISD::SETOGT: CondCode = A64CC::GT; break;
1659 case ISD::SETGE:
1660 case ISD::SETOGE: CondCode = A64CC::GE; break;
1661 case ISD::SETOLT: CondCode = A64CC::MI; break;
1662 case ISD::SETOLE: CondCode = A64CC::LS; break;
1663 case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1664 case ISD::SETO: CondCode = A64CC::VC; break;
1665 case ISD::SETUO: CondCode = A64CC::VS; break;
1666 case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1667 case ISD::SETUGT: CondCode = A64CC::HI; break;
1668 case ISD::SETUGE: CondCode = A64CC::PL; break;
1669 case ISD::SETLT:
1670 case ISD::SETULT: CondCode = A64CC::LT; break;
1671 case ISD::SETLE:
1672 case ISD::SETULE: CondCode = A64CC::LE; break;
1673 case ISD::SETNE:
1674 case ISD::SETUNE: CondCode = A64CC::NE; break;
1675 }
1676 return CondCode;
1677}
1678
1679SDValue
1680AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1681 DebugLoc DL = Op.getDebugLoc();
1682 EVT PtrVT = getPointerTy();
1683 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1684
1685 assert(getTargetMachine().getCodeModel() == CodeModel::Small
1686 && "Only small code model supported at the moment");
1687
1688 // The most efficient code is PC-relative anyway for the small memory model,
1689 // so we don't need to worry about relocation model.
1690 return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1691 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1692 AArch64II::MO_NO_FLAG),
1693 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1694 AArch64II::MO_LO12),
1695 DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1696}
1697
1698
1699// (BRCOND chain, val, dest)
1700SDValue
1701AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1702 DebugLoc dl = Op.getDebugLoc();
1703 SDValue Chain = Op.getOperand(0);
1704 SDValue TheBit = Op.getOperand(1);
1705 SDValue DestBB = Op.getOperand(2);
1706
1707 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1708 // that as the consumer we are responsible for ignoring rubbish in higher
1709 // bits.
1710 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1711 DAG.getConstant(1, MVT::i32));
1712
1713 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1714 DAG.getConstant(0, TheBit.getValueType()),
1715 DAG.getCondCode(ISD::SETNE));
1716
1717 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1718 A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1719 DestBB);
1720}
1721
1722// (BR_CC chain, condcode, lhs, rhs, dest)
1723SDValue
1724AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1725 DebugLoc dl = Op.getDebugLoc();
1726 SDValue Chain = Op.getOperand(0);
1727 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1728 SDValue LHS = Op.getOperand(2);
1729 SDValue RHS = Op.getOperand(3);
1730 SDValue DestBB = Op.getOperand(4);
1731
1732 if (LHS.getValueType() == MVT::f128) {
1733 // f128 comparisons are lowered to runtime calls by a routine which sets
1734 // LHS, RHS and CC appropriately for the rest of this function to continue.
1735 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1736
1737 // If softenSetCCOperands returned a scalar, we need to compare the result
1738 // against zero to select between true and false values.
1739 if (RHS.getNode() == 0) {
1740 RHS = DAG.getConstant(0, LHS.getValueType());
1741 CC = ISD::SETNE;
1742 }
1743 }
1744
1745 if (LHS.getValueType().isInteger()) {
1746 SDValue A64cc;
1747
1748 // Integers are handled in a separate function because the combinations of
1749 // immediates and tests can get hairy and we may want to fiddle things.
1750 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1751
1752 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1753 Chain, CmpOp, A64cc, DestBB);
1754 }
1755
1756 // Note that some LLVM floating-point CondCodes can't be lowered to a single
1757 // conditional branch, hence FPCCToA64CC can set a second test, where either
1758 // passing is sufficient.
1759 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1760 CondCode = FPCCToA64CC(CC, Alternative);
1761 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1762 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1763 DAG.getCondCode(CC));
1764 SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1765 Chain, SetCC, A64cc, DestBB);
1766
1767 if (Alternative != A64CC::Invalid) {
1768 A64cc = DAG.getConstant(Alternative, MVT::i32);
1769 A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1770 A64BR_CC, SetCC, A64cc, DestBB);
1771
1772 }
1773
1774 return A64BR_CC;
1775}
1776
1777SDValue
1778AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1779 RTLIB::Libcall Call) const {
1780 ArgListTy Args;
1781 ArgListEntry Entry;
1782 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1783 EVT ArgVT = Op.getOperand(i).getValueType();
1784 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1785 Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1786 Entry.isSExt = false;
1787 Entry.isZExt = false;
1788 Args.push_back(Entry);
1789 }
1790 SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1791
1792 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1793
1794 // By default, the input chain to this libcall is the entry node of the
1795 // function. If the libcall is going to be emitted as a tail call then
1796 // isUsedByReturnOnly will change it to the right chain if the return
1797 // node which is being folded has a non-entry input chain.
1798 SDValue InChain = DAG.getEntryNode();
1799
1800 // isTailCall may be true since the callee does not reference caller stack
1801 // frame. Check if it's in the right position.
1802 SDValue TCChain = InChain;
1803 bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1804 if (isTailCall)
1805 InChain = TCChain;
1806
1807 TargetLowering::
1808 CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1809 0, getLibcallCallingConv(Call), isTailCall,
1810 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1811 Callee, Args, DAG, Op->getDebugLoc());
1812 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1813
1814 if (!CallInfo.second.getNode())
1815 // It's a tailcall, return the chain (which is the DAG root).
1816 return DAG.getRoot();
1817
1818 return CallInfo.first;
1819}
1820
1821SDValue
1822AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1823 if (Op.getOperand(0).getValueType() != MVT::f128) {
1824 // It's legal except when f128 is involved
1825 return Op;
1826 }
1827
1828 RTLIB::Libcall LC;
1829 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1830
1831 SDValue SrcVal = Op.getOperand(0);
1832 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1833 /*isSigned*/ false, Op.getDebugLoc());
1834}
1835
1836SDValue
1837AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1838 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1839
1840 RTLIB::Libcall LC;
1841 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1842
1843 return LowerF128ToCall(Op, DAG, LC);
1844}
1845
1846SDValue
1847AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1848 bool IsSigned) const {
1849 if (Op.getOperand(0).getValueType() != MVT::f128) {
1850 // It's legal except when f128 is involved
1851 return Op;
1852 }
1853
1854 RTLIB::Libcall LC;
1855 if (IsSigned)
1856 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1857 else
1858 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1859
1860 return LowerF128ToCall(Op, DAG, LC);
1861}
1862
1863SDValue
1864AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
1865 SelectionDAG &DAG) const {
1866 // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
1867 // we make that distinction here.
1868
1869 // We support the static, small memory model for now.
1870 assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1871
1872 EVT PtrVT = getPointerTy();
1873 DebugLoc dl = Op.getDebugLoc();
1874 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1875 const GlobalValue *GV = GN->getGlobal();
1876 unsigned Alignment = GV->getAlignment();
1877
1878 if (Alignment == 0) {
1879 const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
Tim Northoverdfe076a2013-02-05 13:24:56 +00001880 if (GVPtrTy->getElementType()->isSized()) {
1881 Alignment
1882 = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1883 } else {
Tim Northover72062f52013-01-31 12:12:40 +00001884 // Be conservative if we can't guess, not that it really matters:
1885 // functions and labels aren't valid for loads, and the methods used to
1886 // actually calculate an address work with any alignment.
1887 Alignment = 1;
1888 }
1889 }
1890
1891 unsigned char HiFixup, LoFixup;
1892 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1893 bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
1894
1895 if (UseGOT) {
1896 HiFixup = AArch64II::MO_GOT;
1897 LoFixup = AArch64II::MO_GOT_LO12;
1898 Alignment = 8;
1899 } else {
1900 HiFixup = AArch64II::MO_NO_FLAG;
1901 LoFixup = AArch64II::MO_LO12;
1902 }
1903
1904 // AArch64's small model demands the following sequence:
1905 // ADRP x0, somewhere
1906 // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
1907 SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1908 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1909 HiFixup),
1910 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1911 LoFixup),
1912 DAG.getConstant(Alignment, MVT::i32));
1913
1914 if (UseGOT) {
1915 GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
1916 GlobalRef);
1917 }
1918
1919 if (GN->getOffset() != 0)
1920 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
1921 DAG.getConstant(GN->getOffset(), PtrVT));
1922
1923 return GlobalRef;
1924}
1925
1926SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
1927 SDValue DescAddr,
1928 DebugLoc DL,
1929 SelectionDAG &DAG) const {
1930 EVT PtrVT = getPointerTy();
1931
1932 // The function we need to call is simply the first entry in the GOT for this
1933 // descriptor, load it in preparation.
1934 SDValue Func, Chain;
1935 Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
1936 DescAddr);
1937
1938 // The function takes only one argument: the address of the descriptor itself
1939 // in X0.
1940 SDValue Glue;
1941 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
1942 Glue = Chain.getValue(1);
1943
1944 // Finally, there's a special calling-convention which means that the lookup
1945 // must preserve all registers (except X0, obviously).
1946 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1947 const AArch64RegisterInfo *A64RI
1948 = static_cast<const AArch64RegisterInfo *>(TRI);
1949 const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
1950
1951 // We're now ready to populate the argument list, as with a normal call:
1952 std::vector<SDValue> Ops;
1953 Ops.push_back(Chain);
1954 Ops.push_back(Func);
1955 Ops.push_back(SymAddr);
1956 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
1957 Ops.push_back(DAG.getRegisterMask(Mask));
1958 Ops.push_back(Glue);
1959
1960 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Tim Northoverdfe076a2013-02-05 13:24:56 +00001961 Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
1962 Ops.size());
Tim Northover72062f52013-01-31 12:12:40 +00001963 Glue = Chain.getValue(1);
1964
1965 // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
1966 // back to the generic handling code.
1967 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
1968}
1969
1970SDValue
1971AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
1972 SelectionDAG &DAG) const {
1973 assert(Subtarget->isTargetELF() &&
1974 "TLS not implemented for non-ELF targets");
1975 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1976
1977 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
1978
1979 SDValue TPOff;
1980 EVT PtrVT = getPointerTy();
1981 DebugLoc DL = Op.getDebugLoc();
1982 const GlobalValue *GV = GA->getGlobal();
1983
1984 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
1985
1986 if (Model == TLSModel::InitialExec) {
1987 TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1988 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1989 AArch64II::MO_GOTTPREL),
1990 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
1991 AArch64II::MO_GOTTPREL_LO12),
1992 DAG.getConstant(8, MVT::i32));
1993 TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
1994 TPOff);
1995 } else if (Model == TLSModel::LocalExec) {
1996 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
1997 AArch64II::MO_TPREL_G1);
1998 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
1999 AArch64II::MO_TPREL_G0_NC);
2000
2001 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2002 DAG.getTargetConstant(0, MVT::i32)), 0);
Tim Northoverdfe076a2013-02-05 13:24:56 +00002003 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2004 TPOff, LoVar,
Tim Northover72062f52013-01-31 12:12:40 +00002005 DAG.getTargetConstant(0, MVT::i32)), 0);
2006 } else if (Model == TLSModel::GeneralDynamic) {
2007 // Accesses used in this sequence go via the TLS descriptor which lives in
2008 // the GOT. Prepare an address we can use to handle this.
2009 SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2010 AArch64II::MO_TLSDESC);
2011 SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2012 AArch64II::MO_TLSDESC_LO12);
2013 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002014 HiDesc, LoDesc,
2015 DAG.getConstant(8, MVT::i32));
Tim Northover72062f52013-01-31 12:12:40 +00002016 SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2017
2018 TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2019 } else if (Model == TLSModel::LocalDynamic) {
2020 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2021 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2022 // the beginning of the module's TLS region, followed by a DTPREL offset
2023 // calculation.
2024
2025 // These accesses will need deduplicating if there's more than one.
2026 AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2027 .getInfo<AArch64MachineFunctionInfo>();
2028 MFI->incNumLocalDynamicTLSAccesses();
2029
2030
2031 // Get the location of _TLS_MODULE_BASE_:
2032 SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2033 AArch64II::MO_TLSDESC);
2034 SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2035 AArch64II::MO_TLSDESC_LO12);
2036 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002037 HiDesc, LoDesc,
2038 DAG.getConstant(8, MVT::i32));
Tim Northover72062f52013-01-31 12:12:40 +00002039 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2040
2041 ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2042
2043 // Get the variable's offset from _TLS_MODULE_BASE_
2044 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2045 AArch64II::MO_DTPREL_G1);
2046 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2047 AArch64II::MO_DTPREL_G0_NC);
2048
2049 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2050 DAG.getTargetConstant(0, MVT::i32)), 0);
Tim Northoverdfe076a2013-02-05 13:24:56 +00002051 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2052 TPOff, LoVar,
Tim Northover72062f52013-01-31 12:12:40 +00002053 DAG.getTargetConstant(0, MVT::i32)), 0);
2054 } else
2055 llvm_unreachable("Unsupported TLS access model");
2056
2057
2058 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2059}
2060
2061SDValue
2062AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2063 bool IsSigned) const {
2064 if (Op.getValueType() != MVT::f128) {
2065 // Legal for everything except f128.
2066 return Op;
2067 }
2068
2069 RTLIB::Libcall LC;
2070 if (IsSigned)
2071 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2072 else
2073 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2074
2075 return LowerF128ToCall(Op, DAG, LC);
2076}
2077
2078
2079SDValue
2080AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2081 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2082 DebugLoc dl = JT->getDebugLoc();
2083
2084 // When compiling PIC, jump tables get put in the code section so a static
2085 // relocation-style is acceptable for both cases.
2086 return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(),
2087 DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()),
2088 DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
2089 AArch64II::MO_LO12),
2090 DAG.getConstant(1, MVT::i32));
2091}
2092
2093// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2094SDValue
2095AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2096 DebugLoc dl = Op.getDebugLoc();
2097 SDValue LHS = Op.getOperand(0);
2098 SDValue RHS = Op.getOperand(1);
2099 SDValue IfTrue = Op.getOperand(2);
2100 SDValue IfFalse = Op.getOperand(3);
2101 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2102
2103 if (LHS.getValueType() == MVT::f128) {
2104 // f128 comparisons are lowered to libcalls, but slot in nicely here
2105 // afterwards.
2106 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2107
2108 // If softenSetCCOperands returned a scalar, we need to compare the result
2109 // against zero to select between true and false values.
2110 if (RHS.getNode() == 0) {
2111 RHS = DAG.getConstant(0, LHS.getValueType());
2112 CC = ISD::SETNE;
2113 }
2114 }
2115
2116 if (LHS.getValueType().isInteger()) {
2117 SDValue A64cc;
2118
2119 // Integers are handled in a separate function because the combinations of
2120 // immediates and tests can get hairy and we may want to fiddle things.
2121 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2122
2123 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2124 CmpOp, IfTrue, IfFalse, A64cc);
2125 }
2126
2127 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2128 // conditional branch, hence FPCCToA64CC can set a second test, where either
2129 // passing is sufficient.
2130 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2131 CondCode = FPCCToA64CC(CC, Alternative);
2132 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2133 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2134 DAG.getCondCode(CC));
Tim Northoverdfe076a2013-02-05 13:24:56 +00002135 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2136 Op.getValueType(),
Tim Northover72062f52013-01-31 12:12:40 +00002137 SetCC, IfTrue, IfFalse, A64cc);
2138
2139 if (Alternative != A64CC::Invalid) {
2140 A64cc = DAG.getConstant(Alternative, MVT::i32);
2141 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2142 SetCC, IfTrue, A64SELECT_CC, A64cc);
2143
2144 }
2145
2146 return A64SELECT_CC;
2147}
2148
2149// (SELECT testbit, iftrue, iffalse)
2150SDValue
2151AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2152 DebugLoc dl = Op.getDebugLoc();
2153 SDValue TheBit = Op.getOperand(0);
2154 SDValue IfTrue = Op.getOperand(1);
2155 SDValue IfFalse = Op.getOperand(2);
2156
2157 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2158 // that as the consumer we are responsible for ignoring rubbish in higher
2159 // bits.
2160 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2161 DAG.getConstant(1, MVT::i32));
2162 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2163 DAG.getConstant(0, TheBit.getValueType()),
2164 DAG.getCondCode(ISD::SETNE));
2165
2166 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2167 A64CMP, IfTrue, IfFalse,
2168 DAG.getConstant(A64CC::NE, MVT::i32));
2169}
2170
2171// (SETCC lhs, rhs, condcode)
2172SDValue
2173AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2174 DebugLoc dl = Op.getDebugLoc();
2175 SDValue LHS = Op.getOperand(0);
2176 SDValue RHS = Op.getOperand(1);
2177 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2178 EVT VT = Op.getValueType();
2179
2180 if (LHS.getValueType() == MVT::f128) {
2181 // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2182 // for the rest of the function (some i32 or i64 values).
2183 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2184
2185 // If softenSetCCOperands returned a scalar, use it.
2186 if (RHS.getNode() == 0) {
2187 assert(LHS.getValueType() == Op.getValueType() &&
2188 "Unexpected setcc expansion!");
2189 return LHS;
2190 }
2191 }
2192
2193 if (LHS.getValueType().isInteger()) {
2194 SDValue A64cc;
2195
2196 // Integers are handled in a separate function because the combinations of
2197 // immediates and tests can get hairy and we may want to fiddle things.
2198 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2199
2200 return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2201 CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2202 A64cc);
2203 }
2204
2205 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2206 // conditional branch, hence FPCCToA64CC can set a second test, where either
2207 // passing is sufficient.
2208 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2209 CondCode = FPCCToA64CC(CC, Alternative);
2210 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2211 SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2212 DAG.getCondCode(CC));
2213 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2214 CmpOp, DAG.getConstant(1, VT),
2215 DAG.getConstant(0, VT), A64cc);
2216
2217 if (Alternative != A64CC::Invalid) {
2218 A64cc = DAG.getConstant(Alternative, MVT::i32);
2219 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2220 DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2221 }
2222
2223 return A64SELECT_CC;
2224}
2225
2226SDValue
2227AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2228 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2229 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2230
2231 // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2232 // rather than just 8.
2233 return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
2234 Op.getOperand(1), Op.getOperand(2),
2235 DAG.getConstant(32, MVT::i32), 8, false, false,
2236 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2237}
2238
2239SDValue
2240AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2241 // The layout of the va_list struct is specified in the AArch64 Procedure Call
2242 // Standard, section B.3.
2243 MachineFunction &MF = DAG.getMachineFunction();
Tim Northoverdfe076a2013-02-05 13:24:56 +00002244 AArch64MachineFunctionInfo *FuncInfo
2245 = MF.getInfo<AArch64MachineFunctionInfo>();
Tim Northover72062f52013-01-31 12:12:40 +00002246 DebugLoc DL = Op.getDebugLoc();
2247
2248 SDValue Chain = Op.getOperand(0);
2249 SDValue VAList = Op.getOperand(1);
2250 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2251 SmallVector<SDValue, 4> MemOps;
2252
2253 // void *__stack at offset 0
2254 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2255 getPointerTy());
2256 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2257 MachinePointerInfo(SV), false, false, 0));
2258
2259 // void *__gr_top at offset 8
2260 int GPRSize = FuncInfo->getVariadicGPRSize();
2261 if (GPRSize > 0) {
2262 SDValue GRTop, GRTopAddr;
2263
2264 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2265 DAG.getConstant(8, getPointerTy()));
2266
2267 GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2268 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2269 DAG.getConstant(GPRSize, getPointerTy()));
2270
2271 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2272 MachinePointerInfo(SV, 8),
2273 false, false, 0));
2274 }
2275
2276 // void *__vr_top at offset 16
2277 int FPRSize = FuncInfo->getVariadicFPRSize();
2278 if (FPRSize > 0) {
2279 SDValue VRTop, VRTopAddr;
2280 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2281 DAG.getConstant(16, getPointerTy()));
2282
2283 VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2284 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2285 DAG.getConstant(FPRSize, getPointerTy()));
2286
2287 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2288 MachinePointerInfo(SV, 16),
2289 false, false, 0));
2290 }
2291
2292 // int __gr_offs at offset 24
2293 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2294 DAG.getConstant(24, getPointerTy()));
2295 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2296 GROffsAddr, MachinePointerInfo(SV, 24),
2297 false, false, 0));
2298
2299 // int __vr_offs at offset 28
2300 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2301 DAG.getConstant(28, getPointerTy()));
2302 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2303 VROffsAddr, MachinePointerInfo(SV, 28),
2304 false, false, 0));
2305
2306 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2307 MemOps.size());
2308}
2309
2310SDValue
2311AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2312 switch (Op.getOpcode()) {
2313 default: llvm_unreachable("Don't know how to custom lower this!");
2314 case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2315 case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2316 case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2317 case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2318 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2319 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2320 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2321 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2322 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2323 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2324
2325 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2326 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2327 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2328 case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2329 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2330 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2331 case ISD::SELECT: return LowerSELECT(Op, DAG);
2332 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2333 case ISD::SETCC: return LowerSETCC(Op, DAG);
2334 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2335 case ISD::VASTART: return LowerVASTART(Op, DAG);
2336 }
2337
2338 return SDValue();
2339}
2340
2341static SDValue PerformANDCombine(SDNode *N,
2342 TargetLowering::DAGCombinerInfo &DCI) {
2343
2344 SelectionDAG &DAG = DCI.DAG;
2345 DebugLoc DL = N->getDebugLoc();
2346 EVT VT = N->getValueType(0);
2347
2348 // We're looking for an SRA/SHL pair which form an SBFX.
2349
2350 if (VT != MVT::i32 && VT != MVT::i64)
2351 return SDValue();
2352
2353 if (!isa<ConstantSDNode>(N->getOperand(1)))
2354 return SDValue();
2355
2356 uint64_t TruncMask = N->getConstantOperandVal(1);
2357 if (!isMask_64(TruncMask))
2358 return SDValue();
2359
2360 uint64_t Width = CountPopulation_64(TruncMask);
2361 SDValue Shift = N->getOperand(0);
2362
2363 if (Shift.getOpcode() != ISD::SRL)
2364 return SDValue();
2365
2366 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2367 return SDValue();
2368 uint64_t LSB = Shift->getConstantOperandVal(1);
2369
2370 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2371 return SDValue();
2372
2373 return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2374 DAG.getConstant(LSB, MVT::i64),
2375 DAG.getConstant(LSB + Width - 1, MVT::i64));
2376}
2377
2378static SDValue PerformATOMIC_FENCECombine(SDNode *FenceNode,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002379 TargetLowering::DAGCombinerInfo &DCI) {
Tim Northover72062f52013-01-31 12:12:40 +00002380 // An atomic operation followed by an acquiring atomic fence can be reduced to
2381 // an acquiring load. The atomic operation provides a convenient pointer to
2382 // load from. If the original operation was a load anyway we can actually
2383 // combine the two operations into an acquiring load.
2384 SelectionDAG &DAG = DCI.DAG;
2385 SDValue AtomicOp = FenceNode->getOperand(0);
2386 AtomicSDNode *AtomicNode = dyn_cast<AtomicSDNode>(AtomicOp);
2387
2388 // A fence on its own can't be optimised
2389 if (!AtomicNode)
2390 return SDValue();
2391
2392 uint64_t FenceOrder = FenceNode->getConstantOperandVal(1);
2393 uint64_t FenceScope = FenceNode->getConstantOperandVal(2);
2394
2395 if (FenceOrder != Acquire || FenceScope != AtomicNode->getSynchScope())
2396 return SDValue();
2397
2398 // If the original operation was an ATOMIC_LOAD then we'll be replacing it, so
2399 // the chain we use should be its input, otherwise we'll put our store after
2400 // it so we use its output chain.
2401 SDValue Chain = AtomicNode->getOpcode() == ISD::ATOMIC_LOAD ?
2402 AtomicNode->getChain() : AtomicOp;
2403
2404 // We have an acquire fence with a handy atomic operation nearby, we can
2405 // convert the fence into a load-acquire, discarding the result.
2406 DebugLoc DL = FenceNode->getDebugLoc();
2407 SDValue Op = DAG.getAtomic(ISD::ATOMIC_LOAD, DL, AtomicNode->getMemoryVT(),
2408 AtomicNode->getValueType(0),
2409 Chain, // Chain
2410 AtomicOp.getOperand(1), // Pointer
2411 AtomicNode->getMemOperand(), Acquire,
2412 static_cast<SynchronizationScope>(FenceScope));
2413
2414 if (AtomicNode->getOpcode() == ISD::ATOMIC_LOAD)
2415 DAG.ReplaceAllUsesWith(AtomicNode, Op.getNode());
2416
2417 return Op.getValue(1);
2418}
2419
2420static SDValue PerformATOMIC_STORECombine(SDNode *N,
Tim Northoverdfe076a2013-02-05 13:24:56 +00002421 TargetLowering::DAGCombinerInfo &DCI) {
Tim Northover72062f52013-01-31 12:12:40 +00002422 // A releasing atomic fence followed by an atomic store can be combined into a
2423 // single store operation.
2424 SelectionDAG &DAG = DCI.DAG;
2425 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(N);
2426 SDValue FenceOp = AtomicNode->getOperand(0);
2427
2428 if (FenceOp.getOpcode() != ISD::ATOMIC_FENCE)
2429 return SDValue();
2430
2431 uint64_t FenceOrder
2432 = cast<ConstantSDNode>(FenceOp.getOperand(1))->getZExtValue();
2433 uint64_t FenceScope
2434 = cast<ConstantSDNode>(FenceOp.getOperand(2))->getZExtValue();
2435
2436 if (FenceOrder != Release || FenceScope != AtomicNode->getSynchScope())
2437 return SDValue();
2438
2439 DebugLoc DL = AtomicNode->getDebugLoc();
2440 return DAG.getAtomic(ISD::ATOMIC_STORE, DL, AtomicNode->getMemoryVT(),
2441 FenceOp.getOperand(0), // Chain
2442 AtomicNode->getOperand(1), // Pointer
2443 AtomicNode->getOperand(2), // Value
2444 AtomicNode->getMemOperand(), Release,
2445 static_cast<SynchronizationScope>(FenceScope));
2446}
2447
2448/// For a true bitfield insert, the bits getting into that contiguous mask
2449/// should come from the low part of an existing value: they must be formed from
2450/// a compatible SHL operation (unless they're already low). This function
2451/// checks that condition and returns the least-significant bit that's
2452/// intended. If the operation not a field preparation, -1 is returned.
2453static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
2454 SDValue &MaskedVal, uint64_t Mask) {
2455 if (!isShiftedMask_64(Mask))
2456 return -1;
2457
2458 // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2459 // instruction. BFI will do a left-shift by LSB before applying the mask we've
2460 // spotted, so in general we should pre-emptively "undo" that by making sure
2461 // the incoming bits have had a right-shift applied to them.
2462 //
2463 // This right shift, however, will combine with existing left/right shifts. In
2464 // the simplest case of a completely straight bitfield operation, it will be
2465 // expected to completely cancel out with an existing SHL. More complicated
2466 // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2467 // the BFI.
2468
2469 uint64_t LSB = CountTrailingZeros_64(Mask);
2470 int64_t ShiftRightRequired = LSB;
2471 if (MaskedVal.getOpcode() == ISD::SHL &&
2472 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2473 ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2474 MaskedVal = MaskedVal.getOperand(0);
2475 } else if (MaskedVal.getOpcode() == ISD::SRL &&
2476 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2477 ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2478 MaskedVal = MaskedVal.getOperand(0);
2479 }
2480
2481 if (ShiftRightRequired > 0)
2482 MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2483 DAG.getConstant(ShiftRightRequired, MVT::i64));
2484 else if (ShiftRightRequired < 0) {
2485 // We could actually end up with a residual left shift, for example with
2486 // "struc.bitfield = val << 1".
2487 MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2488 DAG.getConstant(-ShiftRightRequired, MVT::i64));
2489 }
2490
2491 return LSB;
2492}
2493
2494/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2495/// a mask and an extension. Returns true if a BFI was found and provides
2496/// information on its surroundings.
2497static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2498 bool &Extended) {
2499 Extended = false;
2500 if (N.getOpcode() == ISD::ZERO_EXTEND) {
2501 Extended = true;
2502 N = N.getOperand(0);
2503 }
2504
2505 if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2506 Mask = N->getConstantOperandVal(1);
2507 N = N.getOperand(0);
2508 } else {
2509 // Mask is the whole width.
2510 Mask = (1ULL << N.getValueType().getSizeInBits()) - 1;
2511 }
2512
2513 if (N.getOpcode() == AArch64ISD::BFI) {
2514 BFI = N;
2515 return true;
2516 }
2517
2518 return false;
2519}
2520
2521/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2522/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2523/// can often be further combined with a larger mask. Ultimately, we want mask
2524/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2525static SDValue tryCombineToBFI(SDNode *N,
2526 TargetLowering::DAGCombinerInfo &DCI,
2527 const AArch64Subtarget *Subtarget) {
2528 SelectionDAG &DAG = DCI.DAG;
2529 DebugLoc DL = N->getDebugLoc();
2530 EVT VT = N->getValueType(0);
2531
2532 assert(N->getOpcode() == ISD::OR && "Unexpected root");
2533
2534 // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2535 // abandon the effort.
2536 SDValue LHS = N->getOperand(0);
2537 if (LHS.getOpcode() != ISD::AND)
2538 return SDValue();
2539
2540 uint64_t LHSMask;
2541 if (isa<ConstantSDNode>(LHS.getOperand(1)))
2542 LHSMask = LHS->getConstantOperandVal(1);
2543 else
2544 return SDValue();
2545
2546 // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2547 // is or abandon the effort.
2548 SDValue RHS = N->getOperand(1);
2549 if (RHS.getOpcode() != ISD::AND)
2550 return SDValue();
2551
2552 uint64_t RHSMask;
2553 if (isa<ConstantSDNode>(RHS.getOperand(1)))
2554 RHSMask = RHS->getConstantOperandVal(1);
2555 else
2556 return SDValue();
2557
2558 // Can't do anything if the masks are incompatible.
2559 if (LHSMask & RHSMask)
2560 return SDValue();
2561
2562 // Now we need one of the masks to be a contiguous field. Without loss of
2563 // generality that should be the RHS one.
2564 SDValue Bitfield = LHS.getOperand(0);
2565 if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2566 // We know that LHS is a candidate new value, and RHS isn't already a better
2567 // one.
2568 std::swap(LHS, RHS);
2569 std::swap(LHSMask, RHSMask);
2570 }
2571
2572 // We've done our best to put the right operands in the right places, all we
2573 // can do now is check whether a BFI exists.
2574 Bitfield = RHS.getOperand(0);
2575 int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2576 if (LSB == -1)
2577 return SDValue();
2578
2579 uint32_t Width = CountPopulation_64(RHSMask);
2580 assert(Width && "Expected non-zero bitfield width");
2581
2582 SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2583 LHS.getOperand(0), Bitfield,
2584 DAG.getConstant(LSB, MVT::i64),
2585 DAG.getConstant(Width, MVT::i64));
2586
2587 // Mask is trivial
2588 if ((LHSMask | RHSMask) == (1ULL << VT.getSizeInBits()) - 1)
2589 return BFI;
2590
2591 return DAG.getNode(ISD::AND, DL, VT, BFI,
2592 DAG.getConstant(LHSMask | RHSMask, VT));
2593}
2594
2595/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
2596/// original input. This is surprisingly common because SROA splits things up
2597/// into i8 chunks, so the originally detected MaskedBFI may actually only act
2598/// on the low (say) byte of a word. This is then orred into the rest of the
2599/// word afterwards.
2600///
2601/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
2602///
2603/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
2604/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
2605/// involved.
2606static SDValue tryCombineToLargerBFI(SDNode *N,
2607 TargetLowering::DAGCombinerInfo &DCI,
2608 const AArch64Subtarget *Subtarget) {
2609 SelectionDAG &DAG = DCI.DAG;
2610 DebugLoc DL = N->getDebugLoc();
2611 EVT VT = N->getValueType(0);
2612
2613 // First job is to hunt for a MaskedBFI on either the left or right. Swap
2614 // operands if it's actually on the right.
2615 SDValue BFI;
2616 SDValue PossExtraMask;
2617 uint64_t ExistingMask = 0;
2618 bool Extended = false;
2619 if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
2620 PossExtraMask = N->getOperand(1);
2621 else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
2622 PossExtraMask = N->getOperand(0);
2623 else
2624 return SDValue();
2625
2626 // We can only combine a BFI with another compatible mask.
2627 if (PossExtraMask.getOpcode() != ISD::AND ||
2628 !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
2629 return SDValue();
2630
2631 uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
2632
2633 // Masks must be compatible.
2634 if (ExtraMask & ExistingMask)
2635 return SDValue();
2636
2637 SDValue OldBFIVal = BFI.getOperand(0);
2638 SDValue NewBFIVal = BFI.getOperand(1);
2639 if (Extended) {
2640 // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
2641 // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
2642 // need to be made compatible.
2643 assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
2644 && "Invalid types for BFI");
2645 OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
2646 NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
2647 }
2648
2649 // We need the MaskedBFI to be combined with a mask of the *same* value.
2650 if (PossExtraMask.getOperand(0) != OldBFIVal)
2651 return SDValue();
2652
2653 BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2654 OldBFIVal, NewBFIVal,
2655 BFI.getOperand(2), BFI.getOperand(3));
2656
2657 // If the masking is trivial, we don't need to create it.
2658 if ((ExtraMask | ExistingMask) == (1ULL << VT.getSizeInBits()) - 1)
2659 return BFI;
2660
2661 return DAG.getNode(ISD::AND, DL, VT, BFI,
2662 DAG.getConstant(ExtraMask | ExistingMask, VT));
2663}
2664
2665/// An EXTR instruction is made up of two shifts, ORed together. This helper
2666/// searches for and classifies those shifts.
2667static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
2668 bool &FromHi) {
2669 if (N.getOpcode() == ISD::SHL)
2670 FromHi = false;
2671 else if (N.getOpcode() == ISD::SRL)
2672 FromHi = true;
2673 else
2674 return false;
2675
2676 if (!isa<ConstantSDNode>(N.getOperand(1)))
2677 return false;
2678
2679 ShiftAmount = N->getConstantOperandVal(1);
2680 Src = N->getOperand(0);
2681 return true;
2682}
2683
2684/// EXTR instruciton extracts a contiguous chunk of bits from two existing
2685/// registers viewed as a high/low pair. This function looks for the pattern:
2686/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
2687/// EXTR. Can't quite be done in TableGen because the two immediates aren't
2688/// independent.
2689static SDValue tryCombineToEXTR(SDNode *N,
2690 TargetLowering::DAGCombinerInfo &DCI) {
2691 SelectionDAG &DAG = DCI.DAG;
2692 DebugLoc DL = N->getDebugLoc();
2693 EVT VT = N->getValueType(0);
2694
2695 assert(N->getOpcode() == ISD::OR && "Unexpected root");
2696
2697 if (VT != MVT::i32 && VT != MVT::i64)
2698 return SDValue();
2699
2700 SDValue LHS;
2701 uint32_t ShiftLHS = 0;
2702 bool LHSFromHi = 0;
2703 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
2704 return SDValue();
2705
2706 SDValue RHS;
2707 uint32_t ShiftRHS = 0;
2708 bool RHSFromHi = 0;
2709 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
2710 return SDValue();
2711
2712 // If they're both trying to come from the high part of the register, they're
2713 // not really an EXTR.
2714 if (LHSFromHi == RHSFromHi)
2715 return SDValue();
2716
2717 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
2718 return SDValue();
2719
2720 if (LHSFromHi) {
2721 std::swap(LHS, RHS);
2722 std::swap(ShiftLHS, ShiftRHS);
2723 }
2724
2725 return DAG.getNode(AArch64ISD::EXTR, DL, VT,
2726 LHS, RHS,
2727 DAG.getConstant(ShiftRHS, MVT::i64));
2728}
2729
2730/// Target-specific dag combine xforms for ISD::OR
2731static SDValue PerformORCombine(SDNode *N,
2732 TargetLowering::DAGCombinerInfo &DCI,
2733 const AArch64Subtarget *Subtarget) {
2734
2735 SelectionDAG &DAG = DCI.DAG;
2736 EVT VT = N->getValueType(0);
2737
2738 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2739 return SDValue();
2740
2741 // Attempt to recognise bitfield-insert operations.
2742 SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
2743 if (Res.getNode())
2744 return Res;
2745
2746 // Attempt to combine an existing MaskedBFI operation into one with a larger
2747 // mask.
2748 Res = tryCombineToLargerBFI(N, DCI, Subtarget);
2749 if (Res.getNode())
2750 return Res;
2751
2752 Res = tryCombineToEXTR(N, DCI);
2753 if (Res.getNode())
2754 return Res;
2755
2756 return SDValue();
2757}
2758
2759/// Target-specific dag combine xforms for ISD::SRA
2760static SDValue PerformSRACombine(SDNode *N,
2761 TargetLowering::DAGCombinerInfo &DCI) {
2762
2763 SelectionDAG &DAG = DCI.DAG;
2764 DebugLoc DL = N->getDebugLoc();
2765 EVT VT = N->getValueType(0);
2766
2767 // We're looking for an SRA/SHL pair which form an SBFX.
2768
2769 if (VT != MVT::i32 && VT != MVT::i64)
2770 return SDValue();
2771
2772 if (!isa<ConstantSDNode>(N->getOperand(1)))
2773 return SDValue();
2774
2775 uint64_t ExtraSignBits = N->getConstantOperandVal(1);
2776 SDValue Shift = N->getOperand(0);
2777
2778 if (Shift.getOpcode() != ISD::SHL)
2779 return SDValue();
2780
2781 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2782 return SDValue();
2783
2784 uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
2785 uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
2786 uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
2787
2788 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2789 return SDValue();
2790
2791 return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
2792 DAG.getConstant(LSB, MVT::i64),
2793 DAG.getConstant(LSB + Width - 1, MVT::i64));
2794}
2795
2796
2797SDValue
2798AArch64TargetLowering::PerformDAGCombine(SDNode *N,
2799 DAGCombinerInfo &DCI) const {
2800 switch (N->getOpcode()) {
2801 default: break;
2802 case ISD::AND: return PerformANDCombine(N, DCI);
2803 case ISD::ATOMIC_FENCE: return PerformATOMIC_FENCECombine(N, DCI);
2804 case ISD::ATOMIC_STORE: return PerformATOMIC_STORECombine(N, DCI);
2805 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
2806 case ISD::SRA: return PerformSRACombine(N, DCI);
2807 }
2808 return SDValue();
2809}
2810
2811AArch64TargetLowering::ConstraintType
2812AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
2813 if (Constraint.size() == 1) {
2814 switch (Constraint[0]) {
2815 default: break;
2816 case 'w': // An FP/SIMD vector register
2817 return C_RegisterClass;
2818 case 'I': // Constant that can be used with an ADD instruction
2819 case 'J': // Constant that can be used with a SUB instruction
2820 case 'K': // Constant that can be used with a 32-bit logical instruction
2821 case 'L': // Constant that can be used with a 64-bit logical instruction
2822 case 'M': // Constant that can be used as a 32-bit MOV immediate
2823 case 'N': // Constant that can be used as a 64-bit MOV immediate
2824 case 'Y': // Floating point constant zero
2825 case 'Z': // Integer constant zero
2826 return C_Other;
2827 case 'Q': // A memory reference with base register and no offset
2828 return C_Memory;
2829 case 'S': // A symbolic address
2830 return C_Other;
2831 }
2832 }
2833
2834 // FIXME: Ump, Utf, Usa, Ush
Tim Northoverdfe076a2013-02-05 13:24:56 +00002835 // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
2836 // whatever they may be
Tim Northover72062f52013-01-31 12:12:40 +00002837 // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
2838 // Usa: An absolute symbolic address
2839 // Ush: The high part (bits 32:12) of a pc-relative symbolic address
2840 assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
2841 && Constraint != "Ush" && "Unimplemented constraints");
2842
2843 return TargetLowering::getConstraintType(Constraint);
2844}
2845
2846TargetLowering::ConstraintWeight
2847AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
2848 const char *Constraint) const {
2849
2850 llvm_unreachable("Constraint weight unimplemented");
2851}
2852
2853void
2854AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2855 std::string &Constraint,
2856 std::vector<SDValue> &Ops,
2857 SelectionDAG &DAG) const {
2858 SDValue Result(0, 0);
2859
2860 // Only length 1 constraints are C_Other.
2861 if (Constraint.size() != 1) return;
2862
2863 // Only C_Other constraints get lowered like this. That means constants for us
2864 // so return early if there's no hope the constraint can be lowered.
2865
2866 switch(Constraint[0]) {
2867 default: break;
2868 case 'I': case 'J': case 'K': case 'L':
2869 case 'M': case 'N': case 'Z': {
2870 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2871 if (!C)
2872 return;
2873
2874 uint64_t CVal = C->getZExtValue();
2875 uint32_t Bits;
2876
2877 switch (Constraint[0]) {
2878 default:
2879 // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
2880 // is a peculiarly useless SUB constraint.
2881 llvm_unreachable("Unimplemented C_Other constraint");
2882 case 'I':
2883 if (CVal <= 0xfff)
2884 break;
2885 return;
2886 case 'K':
2887 if (A64Imms::isLogicalImm(32, CVal, Bits))
2888 break;
2889 return;
2890 case 'L':
2891 if (A64Imms::isLogicalImm(64, CVal, Bits))
2892 break;
2893 return;
2894 case 'Z':
2895 if (CVal == 0)
2896 break;
2897 return;
2898 }
2899
2900 Result = DAG.getTargetConstant(CVal, Op.getValueType());
2901 break;
2902 }
2903 case 'S': {
2904 // An absolute symbolic address or label reference.
2905 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
2906 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
2907 GA->getValueType(0));
Tim Northoverdfe076a2013-02-05 13:24:56 +00002908 } else if (const BlockAddressSDNode *BA
2909 = dyn_cast<BlockAddressSDNode>(Op)) {
Tim Northover72062f52013-01-31 12:12:40 +00002910 Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
2911 BA->getValueType(0));
2912 } else if (const ExternalSymbolSDNode *ES
2913 = dyn_cast<ExternalSymbolSDNode>(Op)) {
2914 Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
2915 ES->getValueType(0));
2916 } else
2917 return;
2918 break;
2919 }
2920 case 'Y':
2921 if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2922 if (CFP->isExactlyValue(0.0)) {
2923 Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
2924 break;
2925 }
2926 }
2927 return;
2928 }
2929
2930 if (Result.getNode()) {
2931 Ops.push_back(Result);
2932 return;
2933 }
2934
2935 // It's an unknown constraint for us. Let generic code have a go.
2936 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2937}
2938
2939std::pair<unsigned, const TargetRegisterClass*>
Tim Northoverdfe076a2013-02-05 13:24:56 +00002940AArch64TargetLowering::getRegForInlineAsmConstraint(
2941 const std::string &Constraint,
2942 EVT VT) const {
Tim Northover72062f52013-01-31 12:12:40 +00002943 if (Constraint.size() == 1) {
2944 switch (Constraint[0]) {
2945 case 'r':
2946 if (VT.getSizeInBits() <= 32)
2947 return std::make_pair(0U, &AArch64::GPR32RegClass);
2948 else if (VT == MVT::i64)
2949 return std::make_pair(0U, &AArch64::GPR64RegClass);
2950 break;
2951 case 'w':
2952 if (VT == MVT::f16)
2953 return std::make_pair(0U, &AArch64::FPR16RegClass);
2954 else if (VT == MVT::f32)
2955 return std::make_pair(0U, &AArch64::FPR32RegClass);
2956 else if (VT == MVT::f64)
2957 return std::make_pair(0U, &AArch64::FPR64RegClass);
2958 else if (VT.getSizeInBits() == 64)
2959 return std::make_pair(0U, &AArch64::VPR64RegClass);
2960 else if (VT == MVT::f128)
2961 return std::make_pair(0U, &AArch64::FPR128RegClass);
2962 else if (VT.getSizeInBits() == 128)
2963 return std::make_pair(0U, &AArch64::VPR128RegClass);
2964 break;
2965 }
2966 }
2967
2968 // Use the default implementation in TargetLowering to convert the register
2969 // constraint into a member of a register class.
2970 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2971}