blob: aeda78bf6b9a8ad226ee8f395bf52517539e6e20 [file] [log] [blame]
Bill Schmidt646cd792013-07-30 00:50:39 +00001//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the PowerPC-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// PPCGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "ppcfastisel"
17#include "PPC.h"
18#include "PPCISelLowering.h"
19#include "PPCSubtarget.h"
20#include "PPCTargetMachine.h"
21#include "MCTargetDesc/PPCPredicates.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39
40using namespace llvm;
41
42namespace {
43
44typedef struct Address {
45 enum {
46 RegBase,
47 FrameIndexBase
48 } BaseType;
49
50 union {
51 unsigned Reg;
52 int FI;
53 } Base;
54
Bill Schmidt72489682013-08-30 02:29:45 +000055 long Offset;
Bill Schmidt646cd792013-07-30 00:50:39 +000056
57 // Innocuous defaults for our address.
58 Address()
59 : BaseType(RegBase), Offset(0) {
60 Base.Reg = 0;
61 }
62} Address;
63
64class PPCFastISel : public FastISel {
65
66 const TargetMachine &TM;
67 const TargetInstrInfo &TII;
68 const TargetLowering &TLI;
69 const PPCSubtarget &PPCSubTarget;
70 LLVMContext *Context;
71
72 public:
73 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
74 const TargetLibraryInfo *LibInfo)
75 : FastISel(FuncInfo, LibInfo),
76 TM(FuncInfo.MF->getTarget()),
77 TII(*TM.getInstrInfo()),
78 TLI(*TM.getTargetLowering()),
79 PPCSubTarget(
80 *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
81 ),
82 Context(&FuncInfo.Fn->getContext()) { }
83
84 // Backend specific FastISel code.
85 private:
86 virtual bool TargetSelectInstruction(const Instruction *I);
87 virtual unsigned TargetMaterializeConstant(const Constant *C);
88 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
89 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
90 const LoadInst *LI);
91 virtual bool FastLowerArguments();
Bill Schmidt3fad2bc2013-08-25 22:33:42 +000092 virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm);
Bill Schmidt72489682013-08-30 02:29:45 +000093 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
94 const TargetRegisterClass *RC,
95 unsigned Op0, bool Op0IsKill,
96 uint64_t Imm);
97 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
98 const TargetRegisterClass *RC,
99 unsigned Op0, bool Op0IsKill);
100 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
101 const TargetRegisterClass *RC,
102 unsigned Op0, bool Op0IsKill,
103 unsigned Op1, bool Op1IsKill);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000104
105 // Instruction selection routines.
106 private:
Bill Schmidt72489682013-08-30 02:29:45 +0000107 bool SelectLoad(const Instruction *I);
108 bool SelectStore(const Instruction *I);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000109 bool SelectBranch(const Instruction *I);
110 bool SelectIndirectBr(const Instruction *I);
Bill Schmidte206efd32013-08-30 03:16:48 +0000111 bool SelectCmp(const Instruction *I);
Bill Schmidt72489682013-08-30 02:29:45 +0000112 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
Bill Schmidt055d2072013-08-26 19:42:51 +0000113 bool SelectRet(const Instruction *I);
114 bool SelectIntExt(const Instruction *I);
Bill Schmidt646cd792013-07-30 00:50:39 +0000115
116 // Utility routines.
117 private:
Bill Schmidt72489682013-08-30 02:29:45 +0000118 bool isTypeLegal(Type *Ty, MVT &VT);
119 bool isLoadTypeLegal(Type *Ty, MVT &VT);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000120 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
121 bool isZExt, unsigned DestReg);
Bill Schmidt72489682013-08-30 02:29:45 +0000122 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
123 const TargetRegisterClass *RC, bool IsZExt = true,
124 unsigned FP64LoadOpc = PPC::LFD);
125 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
126 bool PPCComputeAddress(const Value *Obj, Address &Addr);
127 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
128 unsigned &IndexReg);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000129 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
130 unsigned DestReg, bool IsZExt);
Bill Schmidt646cd792013-07-30 00:50:39 +0000131 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
Bill Schmidt72489682013-08-30 02:29:45 +0000132 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
Bill Schmidt646cd792013-07-30 00:50:39 +0000133 unsigned PPCMaterializeInt(const Constant *C, MVT VT);
134 unsigned PPCMaterialize32BitInt(int64_t Imm,
135 const TargetRegisterClass *RC);
136 unsigned PPCMaterialize64BitInt(int64_t Imm,
137 const TargetRegisterClass *RC);
138
Bill Schmidt055d2072013-08-26 19:42:51 +0000139 // Call handling routines.
140 private:
141 CCAssignFn *usePPC32CCs(unsigned Flag);
142
Bill Schmidt646cd792013-07-30 00:50:39 +0000143 private:
144 #include "PPCGenFastISel.inc"
145
146};
147
148} // end anonymous namespace
149
Bill Schmidt055d2072013-08-26 19:42:51 +0000150#include "PPCGenCallingConv.inc"
151
152// Function whose sole purpose is to kill compiler warnings
153// stemming from unused functions included from PPCGenCallingConv.inc.
154CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
155 if (Flag == 1)
156 return CC_PPC32_SVR4;
157 else if (Flag == 2)
158 return CC_PPC32_SVR4_ByVal;
159 else if (Flag == 3)
160 return CC_PPC32_SVR4_VarArg;
161 else
162 return RetCC_PPC;
163}
164
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000165static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
166 switch (Pred) {
167 // These are not representable with any single compare.
168 case CmpInst::FCMP_FALSE:
169 case CmpInst::FCMP_UEQ:
170 case CmpInst::FCMP_UGT:
171 case CmpInst::FCMP_UGE:
172 case CmpInst::FCMP_ULT:
173 case CmpInst::FCMP_ULE:
174 case CmpInst::FCMP_UNE:
175 case CmpInst::FCMP_TRUE:
176 default:
177 return Optional<PPC::Predicate>();
178
179 case CmpInst::FCMP_OEQ:
180 case CmpInst::ICMP_EQ:
181 return PPC::PRED_EQ;
182
183 case CmpInst::FCMP_OGT:
184 case CmpInst::ICMP_UGT:
185 case CmpInst::ICMP_SGT:
186 return PPC::PRED_GT;
187
188 case CmpInst::FCMP_OGE:
189 case CmpInst::ICMP_UGE:
190 case CmpInst::ICMP_SGE:
191 return PPC::PRED_GE;
192
193 case CmpInst::FCMP_OLT:
194 case CmpInst::ICMP_ULT:
195 case CmpInst::ICMP_SLT:
196 return PPC::PRED_LT;
197
198 case CmpInst::FCMP_OLE:
199 case CmpInst::ICMP_ULE:
200 case CmpInst::ICMP_SLE:
201 return PPC::PRED_LE;
202
203 case CmpInst::FCMP_ONE:
204 case CmpInst::ICMP_NE:
205 return PPC::PRED_NE;
206
207 case CmpInst::FCMP_ORD:
208 return PPC::PRED_NU;
209
210 case CmpInst::FCMP_UNO:
211 return PPC::PRED_UN;
212 }
213}
214
Bill Schmidt72489682013-08-30 02:29:45 +0000215// Determine whether the type Ty is simple enough to be handled by
216// fast-isel, and return its equivalent machine type in VT.
217// FIXME: Copied directly from ARM -- factor into base class?
218bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
219 EVT Evt = TLI.getValueType(Ty, true);
220
221 // Only handle simple types.
222 if (Evt == MVT::Other || !Evt.isSimple()) return false;
223 VT = Evt.getSimpleVT();
224
225 // Handle all legal types, i.e. a register that will directly hold this
226 // value.
227 return TLI.isTypeLegal(VT);
228}
229
230// Determine whether the type Ty is simple enough to be handled by
231// fast-isel as a load target, and return its equivalent machine type in VT.
232bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
233 if (isTypeLegal(Ty, VT)) return true;
234
235 // If this is a type than can be sign or zero-extended to a basic operation
236 // go ahead and accept it now.
237 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
238 return true;
239 }
240
241 return false;
242}
243
244// Given a value Obj, create an Address object Addr that represents its
245// address. Return false if we can't handle it.
246bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
247 const User *U = NULL;
248 unsigned Opcode = Instruction::UserOp1;
249 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
250 // Don't walk into other basic blocks unless the object is an alloca from
251 // another block, otherwise it may not have a virtual register assigned.
252 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
253 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
254 Opcode = I->getOpcode();
255 U = I;
256 }
257 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
258 Opcode = C->getOpcode();
259 U = C;
260 }
261
262 switch (Opcode) {
263 default:
264 break;
265 case Instruction::BitCast:
266 // Look through bitcasts.
267 return PPCComputeAddress(U->getOperand(0), Addr);
268 case Instruction::IntToPtr:
269 // Look past no-op inttoptrs.
270 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
271 return PPCComputeAddress(U->getOperand(0), Addr);
272 break;
273 case Instruction::PtrToInt:
274 // Look past no-op ptrtoints.
275 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
276 return PPCComputeAddress(U->getOperand(0), Addr);
277 break;
278 case Instruction::GetElementPtr: {
279 Address SavedAddr = Addr;
280 long TmpOffset = Addr.Offset;
281
282 // Iterate through the GEP folding the constants into offsets where
283 // we can.
284 gep_type_iterator GTI = gep_type_begin(U);
285 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
286 II != IE; ++II, ++GTI) {
287 const Value *Op = *II;
288 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
289 const StructLayout *SL = TD.getStructLayout(STy);
290 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
291 TmpOffset += SL->getElementOffset(Idx);
292 } else {
293 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
294 for (;;) {
295 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
296 // Constant-offset addressing.
297 TmpOffset += CI->getSExtValue() * S;
298 break;
299 }
300 if (isa<AddOperator>(Op) &&
301 (!isa<Instruction>(Op) ||
302 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
303 == FuncInfo.MBB) &&
304 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
305 // An add (in the same block) with a constant operand. Fold the
306 // constant.
307 ConstantInt *CI =
308 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
309 TmpOffset += CI->getSExtValue() * S;
310 // Iterate on the other operand.
311 Op = cast<AddOperator>(Op)->getOperand(0);
312 continue;
313 }
314 // Unsupported
315 goto unsupported_gep;
316 }
317 }
318 }
319
320 // Try to grab the base operand now.
321 Addr.Offset = TmpOffset;
322 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
323
324 // We failed, restore everything and try the other options.
325 Addr = SavedAddr;
326
327 unsupported_gep:
328 break;
329 }
330 case Instruction::Alloca: {
331 const AllocaInst *AI = cast<AllocaInst>(Obj);
332 DenseMap<const AllocaInst*, int>::iterator SI =
333 FuncInfo.StaticAllocaMap.find(AI);
334 if (SI != FuncInfo.StaticAllocaMap.end()) {
335 Addr.BaseType = Address::FrameIndexBase;
336 Addr.Base.FI = SI->second;
337 return true;
338 }
339 break;
340 }
341 }
342
343 // FIXME: References to parameters fall through to the behavior
344 // below. They should be able to reference a frame index since
345 // they are stored to the stack, so we can get "ld rx, offset(r1)"
346 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
347 // just contain the parameter. Try to handle this with a FI.
348
349 // Try to get this in a register if nothing else has worked.
350 if (Addr.Base.Reg == 0)
351 Addr.Base.Reg = getRegForValue(Obj);
352
353 // Prevent assignment of base register to X0, which is inappropriate
354 // for loads and stores alike.
355 if (Addr.Base.Reg != 0)
356 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
357
358 return Addr.Base.Reg != 0;
359}
360
361// Fix up some addresses that can't be used directly. For example, if
362// an offset won't fit in an instruction field, we may need to move it
363// into an index register.
364void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
365 unsigned &IndexReg) {
366
367 // Check whether the offset fits in the instruction field.
368 if (!isInt<16>(Addr.Offset))
369 UseOffset = false;
370
371 // If this is a stack pointer and the offset needs to be simplified then
372 // put the alloca address into a register, set the base type back to
373 // register and continue. This should almost never happen.
374 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
375 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
377 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
378 Addr.Base.Reg = ResultReg;
379 Addr.BaseType = Address::RegBase;
380 }
381
382 if (!UseOffset) {
383 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
384 : Type::getInt64Ty(*Context));
385 const ConstantInt *Offset =
386 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
387 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
388 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
389 }
390}
391
392// Emit a load instruction if possible, returning true if we succeeded,
393// otherwise false. See commentary below for how the register class of
394// the load is determined.
395bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
396 const TargetRegisterClass *RC,
397 bool IsZExt, unsigned FP64LoadOpc) {
398 unsigned Opc;
399 bool UseOffset = true;
400
401 // If ResultReg is given, it determines the register class of the load.
402 // Otherwise, RC is the register class to use. If the result of the
403 // load isn't anticipated in this block, both may be zero, in which
404 // case we must make a conservative guess. In particular, don't assign
405 // R0 or X0 to the result register, as the result may be used in a load,
406 // store, add-immediate, or isel that won't permit this. (Though
407 // perhaps the spill and reload of live-exit values would handle this?)
408 const TargetRegisterClass *UseRC =
409 (ResultReg ? MRI.getRegClass(ResultReg) :
410 (RC ? RC :
411 (VT == MVT::f64 ? &PPC::F8RCRegClass :
412 (VT == MVT::f32 ? &PPC::F4RCRegClass :
413 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
414 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
415
416 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
417
418 switch (VT.SimpleTy) {
419 default: // e.g., vector types not handled
420 return false;
421 case MVT::i8:
422 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
423 break;
424 case MVT::i16:
425 Opc = (IsZExt ?
426 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
427 (Is32BitInt ? PPC::LHA : PPC::LHA8));
428 break;
429 case MVT::i32:
430 Opc = (IsZExt ?
431 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
432 (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
433 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
434 UseOffset = false;
435 break;
436 case MVT::i64:
437 Opc = PPC::LD;
438 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
439 "64-bit load with 32-bit target??");
440 UseOffset = ((Addr.Offset & 3) == 0);
441 break;
442 case MVT::f32:
443 Opc = PPC::LFS;
444 break;
445 case MVT::f64:
446 Opc = FP64LoadOpc;
447 break;
448 }
449
450 // If necessary, materialize the offset into a register and use
451 // the indexed form. Also handle stack pointers with special needs.
452 unsigned IndexReg = 0;
453 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
454 if (ResultReg == 0)
455 ResultReg = createResultReg(UseRC);
456
457 // Note: If we still have a frame index here, we know the offset is
458 // in range, as otherwise PPCSimplifyAddress would have converted it
459 // into a RegBase.
460 if (Addr.BaseType == Address::FrameIndexBase) {
461
462 MachineMemOperand *MMO =
463 FuncInfo.MF->getMachineMemOperand(
464 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
465 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
466 MFI.getObjectAlignment(Addr.Base.FI));
467
468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
469 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
470
471 // Base reg with offset in range.
472 } else if (UseOffset) {
473
474 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
475 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
476
477 // Indexed form.
478 } else {
479 // Get the RR opcode corresponding to the RI one. FIXME: It would be
480 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
481 // is hard to get at.
482 switch (Opc) {
483 default: llvm_unreachable("Unexpected opcode!");
484 case PPC::LBZ: Opc = PPC::LBZX; break;
485 case PPC::LBZ8: Opc = PPC::LBZX8; break;
486 case PPC::LHZ: Opc = PPC::LHZX; break;
487 case PPC::LHZ8: Opc = PPC::LHZX8; break;
488 case PPC::LHA: Opc = PPC::LHAX; break;
489 case PPC::LHA8: Opc = PPC::LHAX8; break;
490 case PPC::LWZ: Opc = PPC::LWZX; break;
491 case PPC::LWZ8: Opc = PPC::LWZX8; break;
492 case PPC::LWA: Opc = PPC::LWAX; break;
493 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
494 case PPC::LD: Opc = PPC::LDX; break;
495 case PPC::LFS: Opc = PPC::LFSX; break;
496 case PPC::LFD: Opc = PPC::LFDX; break;
497 }
498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
499 .addReg(Addr.Base.Reg).addReg(IndexReg);
500 }
501
502 return true;
503}
504
505// Attempt to fast-select a load instruction.
506bool PPCFastISel::SelectLoad(const Instruction *I) {
507 // FIXME: No atomic loads are supported.
508 if (cast<LoadInst>(I)->isAtomic())
509 return false;
510
511 // Verify we have a legal type before going any further.
512 MVT VT;
513 if (!isLoadTypeLegal(I->getType(), VT))
514 return false;
515
516 // See if we can handle this address.
517 Address Addr;
518 if (!PPCComputeAddress(I->getOperand(0), Addr))
519 return false;
520
521 // Look at the currently assigned register for this instruction
522 // to determine the required register class. This is necessary
523 // to constrain RA from using R0/X0 when this is not legal.
524 unsigned AssignedReg = FuncInfo.ValueMap[I];
525 const TargetRegisterClass *RC =
526 AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
527
528 unsigned ResultReg = 0;
529 if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
530 return false;
531 UpdateValueMap(I, ResultReg);
532 return true;
533}
534
535// Emit a store instruction to store SrcReg at Addr.
536bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
537 assert(SrcReg && "Nothing to store!");
538 unsigned Opc;
539 bool UseOffset = true;
540
541 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
542 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
543
544 switch (VT.SimpleTy) {
545 default: // e.g., vector types not handled
546 return false;
547 case MVT::i8:
548 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
549 break;
550 case MVT::i16:
551 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
552 break;
553 case MVT::i32:
554 assert(Is32BitInt && "Not GPRC for i32??");
555 Opc = PPC::STW;
556 break;
557 case MVT::i64:
558 Opc = PPC::STD;
559 UseOffset = ((Addr.Offset & 3) == 0);
560 break;
561 case MVT::f32:
562 Opc = PPC::STFS;
563 break;
564 case MVT::f64:
565 Opc = PPC::STFD;
566 break;
567 }
568
569 // If necessary, materialize the offset into a register and use
570 // the indexed form. Also handle stack pointers with special needs.
571 unsigned IndexReg = 0;
572 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
573
574 // Note: If we still have a frame index here, we know the offset is
575 // in range, as otherwise PPCSimplifyAddress would have converted it
576 // into a RegBase.
577 if (Addr.BaseType == Address::FrameIndexBase) {
578 MachineMemOperand *MMO =
579 FuncInfo.MF->getMachineMemOperand(
580 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
581 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
582 MFI.getObjectAlignment(Addr.Base.FI));
583
584 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg)
585 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
586
587 // Base reg with offset in range.
Bill Schmidt40433e52013-08-30 03:07:11 +0000588 } else if (UseOffset)
Bill Schmidt72489682013-08-30 02:29:45 +0000589 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
590 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
591
592 // Indexed form.
Bill Schmidt40433e52013-08-30 03:07:11 +0000593 else {
Bill Schmidt72489682013-08-30 02:29:45 +0000594 // Get the RR opcode corresponding to the RI one. FIXME: It would be
595 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
596 // is hard to get at.
597 switch (Opc) {
598 default: llvm_unreachable("Unexpected opcode!");
599 case PPC::STB: Opc = PPC::STBX; break;
600 case PPC::STH : Opc = PPC::STHX; break;
601 case PPC::STW : Opc = PPC::STWX; break;
602 case PPC::STB8: Opc = PPC::STBX8; break;
603 case PPC::STH8: Opc = PPC::STHX8; break;
604 case PPC::STW8: Opc = PPC::STWX8; break;
605 case PPC::STD: Opc = PPC::STDX; break;
606 case PPC::STFS: Opc = PPC::STFSX; break;
607 case PPC::STFD: Opc = PPC::STFDX; break;
608 }
609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
610 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
611 }
612
613 return true;
614}
615
616// Attempt to fast-select a store instruction.
617bool PPCFastISel::SelectStore(const Instruction *I) {
618 Value *Op0 = I->getOperand(0);
619 unsigned SrcReg = 0;
620
621 // FIXME: No atomics loads are supported.
622 if (cast<StoreInst>(I)->isAtomic())
623 return false;
624
625 // Verify we have a legal type before going any further.
626 MVT VT;
627 if (!isLoadTypeLegal(Op0->getType(), VT))
628 return false;
629
630 // Get the value to be stored into a register.
631 SrcReg = getRegForValue(Op0);
632 if (SrcReg == 0)
633 return false;
634
635 // See if we can handle this address.
636 Address Addr;
637 if (!PPCComputeAddress(I->getOperand(1), Addr))
638 return false;
639
640 if (!PPCEmitStore(VT, SrcReg, Addr))
641 return false;
642
643 return true;
644}
645
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000646// Attempt to fast-select a branch instruction.
647bool PPCFastISel::SelectBranch(const Instruction *I) {
648 const BranchInst *BI = cast<BranchInst>(I);
649 MachineBasicBlock *BrBB = FuncInfo.MBB;
650 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
651 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
652
653 // For now, just try the simplest case where it's fed by a compare.
654 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
655 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
656 if (!OptPPCPred)
657 return false;
658
659 PPC::Predicate PPCPred = OptPPCPred.getValue();
660
661 // Take advantage of fall-through opportunities.
662 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
663 std::swap(TBB, FBB);
664 PPCPred = PPC::InvertPredicate(PPCPred);
665 }
666
667 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
668
669 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
670 CondReg))
671 return false;
672
673 BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC))
674 .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
675 FastEmitBranch(FBB, DL);
676 FuncInfo.MBB->addSuccessor(TBB);
677 return true;
678
679 } else if (const ConstantInt *CI =
680 dyn_cast<ConstantInt>(BI->getCondition())) {
681 uint64_t Imm = CI->getZExtValue();
682 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
683 FastEmitBranch(Target, DL);
684 return true;
685 }
686
687 // FIXME: ARM looks for a case where the block containing the compare
688 // has been split from the block containing the branch. If this happens,
689 // there is a vreg available containing the result of the compare. I'm
690 // not sure we can do much, as we've lost the predicate information with
691 // the compare instruction -- we have a 4-bit CR but don't know which bit
692 // to test here.
693 return false;
694}
695
696// Attempt to emit a compare of the two source values. Signed and unsigned
697// comparisons are supported. Return false if we can't handle it.
698bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
699 bool IsZExt, unsigned DestReg) {
700 Type *Ty = SrcValue1->getType();
701 EVT SrcEVT = TLI.getValueType(Ty, true);
702 if (!SrcEVT.isSimple())
703 return false;
704 MVT SrcVT = SrcEVT.getSimpleVT();
705
706 // See if operand 2 is an immediate encodeable in the compare.
707 // FIXME: Operands are not in canonical order at -O0, so an immediate
708 // operand in position 1 is a lost opportunity for now. We are
709 // similar to ARM in this regard.
710 long Imm = 0;
711 bool UseImm = false;
712
713 // Only 16-bit integer constants can be represented in compares for
714 // PowerPC. Others will be materialized into a register.
715 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
716 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
717 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
718 const APInt &CIVal = ConstInt->getValue();
719 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
720 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
721 UseImm = true;
722 }
723 }
724
725 unsigned CmpOpc;
726 bool NeedsExt = false;
727 switch (SrcVT.SimpleTy) {
728 default: return false;
729 case MVT::f32:
730 CmpOpc = PPC::FCMPUS;
731 break;
732 case MVT::f64:
733 CmpOpc = PPC::FCMPUD;
734 break;
735 case MVT::i1:
736 case MVT::i8:
737 case MVT::i16:
738 NeedsExt = true;
739 // Intentional fall-through.
740 case MVT::i32:
741 if (!UseImm)
742 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
743 else
744 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
745 break;
746 case MVT::i64:
747 if (!UseImm)
748 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
749 else
750 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
751 break;
752 }
753
754 unsigned SrcReg1 = getRegForValue(SrcValue1);
755 if (SrcReg1 == 0)
756 return false;
757
758 unsigned SrcReg2 = 0;
759 if (!UseImm) {
760 SrcReg2 = getRegForValue(SrcValue2);
761 if (SrcReg2 == 0)
762 return false;
763 }
764
765 if (NeedsExt) {
766 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
767 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
768 return false;
769 SrcReg1 = ExtReg;
770
771 if (!UseImm) {
772 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
773 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
774 return false;
775 SrcReg2 = ExtReg;
776 }
777 }
778
779 if (!UseImm)
780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
781 .addReg(SrcReg1).addReg(SrcReg2);
782 else
783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
784 .addReg(SrcReg1).addImm(Imm);
785
786 return true;
787}
788
Bill Schmidt72489682013-08-30 02:29:45 +0000789// Attempt to fast-select a binary integer operation that isn't already
790// handled automatically.
791bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
792 EVT DestVT = TLI.getValueType(I->getType(), true);
793
794 // We can get here in the case when we have a binary operation on a non-legal
795 // type and the target independent selector doesn't know how to handle it.
796 if (DestVT != MVT::i16 && DestVT != MVT::i8)
797 return false;
798
799 // Look at the currently assigned register for this instruction
800 // to determine the required register class. If there is no register,
801 // make a conservative choice (don't assign R0).
802 unsigned AssignedReg = FuncInfo.ValueMap[I];
803 const TargetRegisterClass *RC =
804 (AssignedReg ? MRI.getRegClass(AssignedReg) :
805 &PPC::GPRC_and_GPRC_NOR0RegClass);
806 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
807
808 unsigned Opc;
809 switch (ISDOpcode) {
810 default: return false;
811 case ISD::ADD:
812 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
813 break;
814 case ISD::OR:
815 Opc = IsGPRC ? PPC::OR : PPC::OR8;
816 break;
817 case ISD::SUB:
818 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
819 break;
820 }
821
822 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
823 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
824 if (SrcReg1 == 0) return false;
825
826 // Handle case of small immediate operand.
827 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
828 const APInt &CIVal = ConstInt->getValue();
829 int Imm = (int)CIVal.getSExtValue();
830 bool UseImm = true;
831 if (isInt<16>(Imm)) {
832 switch (Opc) {
833 default:
834 llvm_unreachable("Missing case!");
835 case PPC::ADD4:
836 Opc = PPC::ADDI;
837 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
838 break;
839 case PPC::ADD8:
840 Opc = PPC::ADDI8;
841 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
842 break;
843 case PPC::OR:
844 Opc = PPC::ORI;
845 break;
846 case PPC::OR8:
847 Opc = PPC::ORI8;
848 break;
849 case PPC::SUBF:
850 if (Imm == -32768)
851 UseImm = false;
852 else {
853 Opc = PPC::ADDI;
854 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
855 Imm = -Imm;
856 }
857 break;
858 case PPC::SUBF8:
859 if (Imm == -32768)
860 UseImm = false;
861 else {
862 Opc = PPC::ADDI8;
863 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
864 Imm = -Imm;
865 }
866 break;
867 }
868
869 if (UseImm) {
870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
871 .addReg(SrcReg1).addImm(Imm);
872 UpdateValueMap(I, ResultReg);
873 return true;
874 }
875 }
876 }
877
878 // Reg-reg case.
879 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
880 if (SrcReg2 == 0) return false;
881
882 // Reverse operands for subtract-from.
883 if (ISDOpcode == ISD::SUB)
884 std::swap(SrcReg1, SrcReg2);
885
886 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
887 .addReg(SrcReg1).addReg(SrcReg2);
888 UpdateValueMap(I, ResultReg);
889 return true;
890}
891
Bill Schmidt055d2072013-08-26 19:42:51 +0000892// Attempt to fast-select a return instruction.
893bool PPCFastISel::SelectRet(const Instruction *I) {
894
895 if (!FuncInfo.CanLowerReturn)
896 return false;
897
898 const ReturnInst *Ret = cast<ReturnInst>(I);
899 const Function &F = *I->getParent()->getParent();
900
901 // Build a list of return value registers.
902 SmallVector<unsigned, 4> RetRegs;
903 CallingConv::ID CC = F.getCallingConv();
904
905 if (Ret->getNumOperands() > 0) {
906 SmallVector<ISD::OutputArg, 4> Outs;
907 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
908
909 // Analyze operands of the call, assigning locations to each operand.
910 SmallVector<CCValAssign, 16> ValLocs;
911 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
912 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
913 const Value *RV = Ret->getOperand(0);
914
915 // FIXME: Only one output register for now.
916 if (ValLocs.size() > 1)
917 return false;
918
919 // Special case for returning a constant integer of any size.
920 // Materialize the constant as an i64 and copy it to the return
921 // register. This avoids an unnecessary extend or truncate.
922 if (isa<ConstantInt>(*RV)) {
923 const Constant *C = cast<Constant>(RV);
924 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
925 unsigned RetReg = ValLocs[0].getLocReg();
926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
927 RetReg).addReg(SrcReg);
928 RetRegs.push_back(RetReg);
929
930 } else {
931 unsigned Reg = getRegForValue(RV);
932
933 if (Reg == 0)
934 return false;
935
936 // Copy the result values into the output registers.
937 for (unsigned i = 0; i < ValLocs.size(); ++i) {
938
939 CCValAssign &VA = ValLocs[i];
940 assert(VA.isRegLoc() && "Can only return in registers!");
941 RetRegs.push_back(VA.getLocReg());
942 unsigned SrcReg = Reg + VA.getValNo();
943
944 EVT RVEVT = TLI.getValueType(RV->getType());
945 if (!RVEVT.isSimple())
946 return false;
947 MVT RVVT = RVEVT.getSimpleVT();
948 MVT DestVT = VA.getLocVT();
949
950 if (RVVT != DestVT && RVVT != MVT::i8 &&
951 RVVT != MVT::i16 && RVVT != MVT::i32)
952 return false;
953
954 if (RVVT != DestVT) {
955 switch (VA.getLocInfo()) {
956 default:
957 llvm_unreachable("Unknown loc info!");
958 case CCValAssign::Full:
959 llvm_unreachable("Full value assign but types don't match?");
960 case CCValAssign::AExt:
961 case CCValAssign::ZExt: {
962 const TargetRegisterClass *RC =
963 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
964 unsigned TmpReg = createResultReg(RC);
965 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
966 return false;
967 SrcReg = TmpReg;
968 break;
969 }
970 case CCValAssign::SExt: {
971 const TargetRegisterClass *RC =
972 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
973 unsigned TmpReg = createResultReg(RC);
974 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
975 return false;
976 SrcReg = TmpReg;
977 break;
978 }
979 }
980 }
981
982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
983 TII.get(TargetOpcode::COPY), RetRegs[i])
984 .addReg(SrcReg);
985 }
986 }
987 }
988
989 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
990 TII.get(PPC::BLR));
991
992 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
993 MIB.addReg(RetRegs[i], RegState::Implicit);
994
995 return true;
996}
997
Bill Schmidt3fad2bc2013-08-25 22:33:42 +0000998// Attempt to emit an integer extend of SrcReg into DestReg. Both
999// signed and zero extensions are supported. Return false if we
Bill Schmidt055d2072013-08-26 19:42:51 +00001000// can't handle it.
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001001bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1002 unsigned DestReg, bool IsZExt) {
Bill Schmidt055d2072013-08-26 19:42:51 +00001003 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1004 return false;
1005 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1006 return false;
1007
1008 // Signed extensions use EXTSB, EXTSH, EXTSW.
1009 if (!IsZExt) {
1010 unsigned Opc;
1011 if (SrcVT == MVT::i8)
1012 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1013 else if (SrcVT == MVT::i16)
1014 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1015 else {
1016 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1017 Opc = PPC::EXTSW_32_64;
1018 }
1019 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1020 .addReg(SrcReg);
1021
1022 // Unsigned 32-bit extensions use RLWINM.
1023 } else if (DestVT == MVT::i32) {
1024 unsigned MB;
1025 if (SrcVT == MVT::i8)
1026 MB = 24;
1027 else {
1028 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1029 MB = 16;
1030 }
1031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM),
1032 DestReg)
1033 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1034
1035 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1036 } else {
1037 unsigned MB;
1038 if (SrcVT == MVT::i8)
1039 MB = 56;
1040 else if (SrcVT == MVT::i16)
1041 MB = 48;
1042 else
1043 MB = 32;
1044 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1045 TII.get(PPC::RLDICL_32_64), DestReg)
1046 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1047 }
1048
1049 return true;
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001050}
1051
1052// Attempt to fast-select an indirect branch instruction.
1053bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1054 unsigned AddrReg = getRegForValue(I->getOperand(0));
1055 if (AddrReg == 0)
1056 return false;
1057
1058 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8))
1059 .addReg(AddrReg);
1060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8));
1061
1062 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1063 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1064 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1065
1066 return true;
1067}
1068
Bill Schmidte206efd32013-08-30 03:16:48 +00001069// Attempt to fast-select a compare instruction.
1070bool PPCFastISel::SelectCmp(const Instruction *I) {
1071 const CmpInst *CI = cast<CmpInst>(I);
1072 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
1073 if (!OptPPCPred)
1074 return false;
1075
1076 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
1077
1078 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
1079 CondReg))
1080 return false;
1081
1082 UpdateValueMap(I, CondReg);
1083 return true;
1084}
1085
Bill Schmidt055d2072013-08-26 19:42:51 +00001086// Attempt to fast-select an integer extend instruction.
1087bool PPCFastISel::SelectIntExt(const Instruction *I) {
1088 Type *DestTy = I->getType();
1089 Value *Src = I->getOperand(0);
1090 Type *SrcTy = Src->getType();
1091
1092 bool IsZExt = isa<ZExtInst>(I);
1093 unsigned SrcReg = getRegForValue(Src);
1094 if (!SrcReg) return false;
1095
1096 EVT SrcEVT, DestEVT;
1097 SrcEVT = TLI.getValueType(SrcTy, true);
1098 DestEVT = TLI.getValueType(DestTy, true);
1099 if (!SrcEVT.isSimple())
1100 return false;
1101 if (!DestEVT.isSimple())
1102 return false;
1103
1104 MVT SrcVT = SrcEVT.getSimpleVT();
1105 MVT DestVT = DestEVT.getSimpleVT();
1106
1107 // If we know the register class needed for the result of this
1108 // instruction, use it. Otherwise pick the register class of the
1109 // correct size that does not contain X0/R0, since we don't know
1110 // whether downstream uses permit that assignment.
1111 unsigned AssignedReg = FuncInfo.ValueMap[I];
1112 const TargetRegisterClass *RC =
1113 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1114 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1115 &PPC::GPRC_and_GPRC_NOR0RegClass));
1116 unsigned ResultReg = createResultReg(RC);
1117
1118 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1119 return false;
1120
1121 UpdateValueMap(I, ResultReg);
1122 return true;
1123}
1124
Bill Schmidt646cd792013-07-30 00:50:39 +00001125// Attempt to fast-select an instruction that wasn't handled by
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001126// the table-generated machinery.
Bill Schmidt646cd792013-07-30 00:50:39 +00001127bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001128
1129 switch (I->getOpcode()) {
Bill Schmidt72489682013-08-30 02:29:45 +00001130 case Instruction::Load:
1131 return SelectLoad(I);
1132 case Instruction::Store:
1133 return SelectStore(I);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001134 case Instruction::Br:
1135 return SelectBranch(I);
1136 case Instruction::IndirectBr:
1137 return SelectIndirectBr(I);
Bill Schmidt72489682013-08-30 02:29:45 +00001138 case Instruction::Add:
1139 return SelectBinaryIntOp(I, ISD::ADD);
1140 case Instruction::Or:
1141 return SelectBinaryIntOp(I, ISD::OR);
1142 case Instruction::Sub:
1143 return SelectBinaryIntOp(I, ISD::SUB);
Bill Schmidt055d2072013-08-26 19:42:51 +00001144 case Instruction::Ret:
1145 return SelectRet(I);
1146 case Instruction::ZExt:
1147 case Instruction::SExt:
1148 return SelectIntExt(I);
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001149 // Here add other flavors of Instruction::XXX that automated
1150 // cases don't catch. For example, switches are terminators
1151 // that aren't yet handled.
1152 default:
1153 break;
1154 }
1155 return false;
Bill Schmidt646cd792013-07-30 00:50:39 +00001156}
1157
1158// Materialize a floating-point constant into a register, and return
1159// the register number (or zero if we failed to handle it).
1160unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1161 // No plans to handle long double here.
1162 if (VT != MVT::f32 && VT != MVT::f64)
1163 return 0;
1164
1165 // All FP constants are loaded from the constant pool.
1166 unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
1167 assert(Align > 0 && "Unexpectedly missing alignment information!");
1168 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1169 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1170 CodeModel::Model CModel = TM.getCodeModel();
1171
1172 MachineMemOperand *MMO =
1173 FuncInfo.MF->getMachineMemOperand(
1174 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1175 (VT == MVT::f32) ? 4 : 8, Align);
1176
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001177 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1178 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1179
1180 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1181 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
Bill Schmidt646cd792013-07-30 00:50:39 +00001182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001183 TmpReg)
1184 .addConstantPoolIndex(Idx).addReg(PPC::X2);
1185 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1186 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1187 } else {
Bill Schmidt646cd792013-07-30 00:50:39 +00001188 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
Bill Schmidt646cd792013-07-30 00:50:39 +00001189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1190 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1191 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1192 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1193 .addReg(TmpReg)
1194 .addMemOperand(MMO);
1195 }
1196
1197 return DestReg;
1198}
1199
Bill Schmidt72489682013-08-30 02:29:45 +00001200// Materialize the address of a global value into a register, and return
1201// the register number (or zero if we failed to handle it).
1202unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1203 assert(VT == MVT::i64 && "Non-address!");
1204 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1205 unsigned DestReg = createResultReg(RC);
1206
1207 // Global values may be plain old object addresses, TLS object
1208 // addresses, constant pool entries, or jump tables. How we generate
1209 // code for these may depend on small, medium, or large code model.
1210 CodeModel::Model CModel = TM.getCodeModel();
1211
1212 // FIXME: Jump tables are not yet required because fast-isel doesn't
1213 // handle switches; if that changes, we need them as well. For now,
1214 // what follows assumes everything's a generic (or TLS) global address.
1215 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1216 if (!GVar) {
1217 // If GV is an alias, use the aliasee for determining thread-locality.
1218 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1219 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1220 assert((GVar || isa<Function>(GV)) && "Unexpected GV subclass!");
1221 }
1222
1223 // FIXME: We don't yet handle the complexity of TLS.
1224 bool IsTLS = GVar && GVar->isThreadLocal();
1225 if (IsTLS)
1226 return 0;
1227
1228 // For small code model, generate a simple TOC load.
1229 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1230 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg)
1231 .addGlobalAddress(GV).addReg(PPC::X2);
1232 else {
1233 // If the address is an externally defined symbol, a symbol with
1234 // common or externally available linkage, a function address, or a
1235 // jump table address (not yet needed), or if we are generating code
1236 // for large code model, we generate:
1237 // LDtocL(GV, ADDIStocHA(%X2, GV))
1238 // Otherwise we generate:
1239 // ADDItocL(ADDIStocHA(%X2, GV), GV)
1240 // Either way, start with the ADDIStocHA:
1241 unsigned HighPartReg = createResultReg(RC);
1242 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1243 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1244
1245 // !GVar implies a function address. An external variable is one
1246 // without an initializer.
1247 // If/when switches are implemented, jump tables should be handled
1248 // on the "if" path here.
1249 if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() ||
1250 GVar->hasCommonLinkage() || GVar->hasAvailableExternallyLinkage())
1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1252 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1253 else
1254 // Otherwise generate the ADDItocL.
1255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL),
1256 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1257 }
1258
1259 return DestReg;
1260}
1261
Bill Schmidt646cd792013-07-30 00:50:39 +00001262// Materialize a 32-bit integer constant into a register, and return
1263// the register number (or zero if we failed to handle it).
1264unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1265 const TargetRegisterClass *RC) {
1266 unsigned Lo = Imm & 0xFFFF;
1267 unsigned Hi = (Imm >> 16) & 0xFFFF;
1268
1269 unsigned ResultReg = createResultReg(RC);
1270 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1271
1272 if (isInt<16>(Imm))
1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1274 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1275 .addImm(Imm);
1276 else if (Lo) {
1277 // Both Lo and Hi have nonzero bits.
1278 unsigned TmpReg = createResultReg(RC);
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1280 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1281 .addImm(Hi);
1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1283 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1284 .addReg(TmpReg).addImm(Lo);
1285 } else
1286 // Just Hi bits.
1287 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1288 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
1289 .addImm(Hi);
1290
1291 return ResultReg;
1292}
1293
1294// Materialize a 64-bit integer constant into a register, and return
1295// the register number (or zero if we failed to handle it).
1296unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
1297 const TargetRegisterClass *RC) {
1298 unsigned Remainder = 0;
1299 unsigned Shift = 0;
1300
1301 // If the value doesn't fit in 32 bits, see if we can shift it
1302 // so that it fits in 32 bits.
1303 if (!isInt<32>(Imm)) {
1304 Shift = countTrailingZeros<uint64_t>(Imm);
1305 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
1306
1307 if (isInt<32>(ImmSh))
1308 Imm = ImmSh;
1309 else {
1310 Remainder = Imm;
1311 Shift = 32;
1312 Imm >>= 32;
1313 }
1314 }
1315
1316 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
1317 // (if not shifted).
1318 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
1319 if (!Shift)
1320 return TmpReg1;
1321
1322 // If upper 32 bits were not zero, we've built them and need to shift
1323 // them into place.
1324 unsigned TmpReg2;
1325 if (Imm) {
1326 TmpReg2 = createResultReg(RC);
1327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
1328 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
1329 } else
1330 TmpReg2 = TmpReg1;
1331
1332 unsigned TmpReg3, Hi, Lo;
1333 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
1334 TmpReg3 = createResultReg(RC);
1335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
1336 TmpReg3).addReg(TmpReg2).addImm(Hi);
1337 } else
1338 TmpReg3 = TmpReg2;
1339
1340 if ((Lo = Remainder & 0xFFFF)) {
1341 unsigned ResultReg = createResultReg(RC);
1342 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
1343 ResultReg).addReg(TmpReg3).addImm(Lo);
1344 return ResultReg;
1345 }
1346
1347 return TmpReg3;
1348}
1349
1350
1351// Materialize an integer constant into a register, and return
1352// the register number (or zero if we failed to handle it).
1353unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
1354
1355 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1356 VT != MVT::i8 && VT != MVT::i1)
1357 return 0;
1358
1359 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1360 &PPC::GPRCRegClass);
1361
1362 // If the constant is in range, use a load-immediate.
1363 const ConstantInt *CI = cast<ConstantInt>(C);
1364 if (isInt<16>(CI->getSExtValue())) {
1365 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
1366 unsigned ImmReg = createResultReg(RC);
1367 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
1368 .addImm(CI->getSExtValue());
1369 return ImmReg;
1370 }
1371
1372 // Construct the constant piecewise.
1373 int64_t Imm = CI->getZExtValue();
1374
1375 if (VT == MVT::i64)
1376 return PPCMaterialize64BitInt(Imm, RC);
1377 else if (VT == MVT::i32)
1378 return PPCMaterialize32BitInt(Imm, RC);
1379
1380 return 0;
1381}
1382
1383// Materialize a constant into a register, and return the register
1384// number (or zero if we failed to handle it).
1385unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
1386 EVT CEVT = TLI.getValueType(C->getType(), true);
1387
1388 // Only handle simple types.
1389 if (!CEVT.isSimple()) return 0;
1390 MVT VT = CEVT.getSimpleVT();
1391
1392 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1393 return PPCMaterializeFP(CFP, VT);
Bill Schmidt72489682013-08-30 02:29:45 +00001394 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1395 return PPCMaterializeGV(GV, VT);
Bill Schmidt646cd792013-07-30 00:50:39 +00001396 else if (isa<ConstantInt>(C))
1397 return PPCMaterializeInt(C, VT);
1398 // TBD: Global values.
1399
1400 return 0;
1401}
1402
1403// Materialize the address created by an alloca into a register, and
1404// return the register number (or zero if we failed to handle it). TBD.
1405unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
1406 return AI && 0;
1407}
1408
Bill Schmidt72489682013-08-30 02:29:45 +00001409// Fold loads into extends when possible.
1410// FIXME: We can have multiple redundant extend/trunc instructions
1411// following a load. The folding only picks up one. Extend this
1412// to check subsequent instructions for the same pattern and remove
1413// them. Thus ResultReg should be the def reg for the last redundant
1414// instruction in a chain, and all intervening instructions can be
1415// removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
1416// to add ELF64-NOT: rldicl to the appropriate tests when this works.
Bill Schmidt646cd792013-07-30 00:50:39 +00001417bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
1418 const LoadInst *LI) {
Bill Schmidt72489682013-08-30 02:29:45 +00001419 // Verify we have a legal type before going any further.
1420 MVT VT;
1421 if (!isLoadTypeLegal(LI->getType(), VT))
1422 return false;
1423
1424 // Combine load followed by zero- or sign-extend.
1425 bool IsZExt = false;
1426 switch(MI->getOpcode()) {
1427 default:
1428 return false;
1429
1430 case PPC::RLDICL:
1431 case PPC::RLDICL_32_64: {
1432 IsZExt = true;
1433 unsigned MB = MI->getOperand(3).getImm();
1434 if ((VT == MVT::i8 && MB <= 56) ||
1435 (VT == MVT::i16 && MB <= 48) ||
1436 (VT == MVT::i32 && MB <= 32))
1437 break;
1438 return false;
1439 }
1440
1441 case PPC::RLWINM:
1442 case PPC::RLWINM8: {
1443 IsZExt = true;
1444 unsigned MB = MI->getOperand(3).getImm();
1445 if ((VT == MVT::i8 && MB <= 24) ||
1446 (VT == MVT::i16 && MB <= 16))
1447 break;
1448 return false;
1449 }
1450
1451 case PPC::EXTSB:
1452 case PPC::EXTSB8:
1453 case PPC::EXTSB8_32_64:
1454 /* There is no sign-extending load-byte instruction. */
1455 return false;
1456
1457 case PPC::EXTSH:
1458 case PPC::EXTSH8:
1459 case PPC::EXTSH8_32_64: {
1460 if (VT != MVT::i16 && VT != MVT::i8)
1461 return false;
1462 break;
1463 }
1464
1465 case PPC::EXTSW:
1466 case PPC::EXTSW_32_64: {
1467 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
1468 return false;
1469 break;
1470 }
1471 }
1472
1473 // See if we can handle this address.
1474 Address Addr;
1475 if (!PPCComputeAddress(LI->getOperand(0), Addr))
1476 return false;
1477
1478 unsigned ResultReg = MI->getOperand(0).getReg();
1479
1480 if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt))
1481 return false;
1482
1483 MI->eraseFromParent();
1484 return true;
Bill Schmidt646cd792013-07-30 00:50:39 +00001485}
1486
1487// Attempt to lower call arguments in a faster way than done by
1488// the selection DAG code.
1489bool PPCFastISel::FastLowerArguments() {
1490 // Defer to normal argument lowering for now. It's reasonably
1491 // efficient. Consider doing something like ARM to handle the
1492 // case where all args fit in registers, no varargs, no float
1493 // or vector args.
1494 return false;
1495}
1496
Bill Schmidt3fad2bc2013-08-25 22:33:42 +00001497// Handle materializing integer constants into a register. This is not
1498// automatically generated for PowerPC, so must be explicitly created here.
1499unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
1500
1501 if (Opc != ISD::Constant)
1502 return 0;
1503
1504 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1505 VT != MVT::i8 && VT != MVT::i1)
1506 return 0;
1507
1508 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1509 &PPC::GPRCRegClass);
1510 if (VT == MVT::i64)
1511 return PPCMaterialize64BitInt(Imm, RC);
1512 else
1513 return PPCMaterialize32BitInt(Imm, RC);
1514}
1515
Bill Schmidt72489682013-08-30 02:29:45 +00001516// Override for ADDI and ADDI8 to set the correct register class
1517// on RHS operand 0. The automatic infrastructure naively assumes
1518// GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
1519// for these cases. At the moment, none of the other automatically
1520// generated RI instructions require special treatment. However, once
1521// SelectSelect is implemented, "isel" requires similar handling.
1522//
1523// Also be conservative about the output register class. Avoid
1524// assigning R0 or X0 to the output register for GPRC and G8RC
1525// register classes, as any such result could be used in ADDI, etc.,
1526// where those regs have another meaning.
1527unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1528 const TargetRegisterClass *RC,
1529 unsigned Op0, bool Op0IsKill,
1530 uint64_t Imm) {
1531 if (MachineInstOpcode == PPC::ADDI)
1532 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
1533 else if (MachineInstOpcode == PPC::ADDI8)
1534 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
1535
1536 const TargetRegisterClass *UseRC =
1537 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
1538 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
1539
1540 return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
1541 Op0, Op0IsKill, Imm);
1542}
1543
1544// Override for instructions with one register operand to avoid use of
1545// R0/X0. The automatic infrastructure isn't aware of the context so
1546// we must be conservative.
1547unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1548 const TargetRegisterClass* RC,
1549 unsigned Op0, bool Op0IsKill) {
1550 const TargetRegisterClass *UseRC =
1551 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
1552 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
1553
1554 return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
1555}
1556
1557// Override for instructions with two register operands to avoid use
1558// of R0/X0. The automatic infrastructure isn't aware of the context
1559// so we must be conservative.
1560unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1561 const TargetRegisterClass* RC,
1562 unsigned Op0, bool Op0IsKill,
1563 unsigned Op1, bool Op1IsKill) {
1564 const TargetRegisterClass *UseRC =
1565 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
1566 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
1567
1568 return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
1569 Op1, Op1IsKill);
1570}
1571
Bill Schmidt646cd792013-07-30 00:50:39 +00001572namespace llvm {
1573 // Create the fast instruction selector for PowerPC64 ELF.
1574 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
1575 const TargetLibraryInfo *LibInfo) {
1576 const TargetMachine &TM = FuncInfo.MF->getTarget();
1577
1578 // Only available on 64-bit ELF for now.
1579 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
1580 if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
1581 return new PPCFastISel(FuncInfo, LibInfo);
1582
1583 return 0;
1584 }
1585}