blob: 0979c04ea8aafa21340bb5b0de157ba91d9d9894 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the target-independent ELF writer. This file writes out
11// the ELF file in the following order:
12//
13// #1. ELF Header
14// #2. '.text' section
15// #3. '.data' section
16// #4. '.bss' section (conceptual position in file)
17// ...
18// #X. '.shstrtab' section
19// #Y. Section Table
20//
21// The entries in the section table are laid out as:
22// #0. Null entry [required]
23// #1. ".text" entry - the program code
24// #2. ".data" entry - global variables with initializers. [ if needed ]
25// #3. ".bss" entry - global variables without initializers. [ if needed ]
26// ...
27// #N. ".shstrtab" entry - String table for the section names.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "elfwriter"
32#include "ELF.h"
33#include "ELFWriter.h"
34#include "ELFCodeEmitter.h"
35#include "llvm/Constants.h"
36#include "llvm/Module.h"
37#include "llvm/PassManager.h"
38#include "llvm/DerivedTypes.h"
39#include "llvm/CodeGen/BinaryObject.h"
40#include "llvm/CodeGen/MachineCodeEmitter.h"
41#include "llvm/CodeGen/ObjectCodeEmitter.h"
42#include "llvm/CodeGen/MachineCodeEmitter.h"
43#include "llvm/CodeGen/MachineConstantPool.h"
44#include "llvm/MC/MCContext.h"
45#include "llvm/MC/MCSectionELF.h"
46#include "llvm/MC/MCAsmInfo.h"
47#include "llvm/Target/Mangler.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Target/TargetELFWriterInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetLoweringObjectFile.h"
52#include "llvm/Target/TargetMachine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/ADT/SmallString.h"
57using namespace llvm;
58
59char ELFWriter::ID = 0;
60
61//===----------------------------------------------------------------------===//
62// ELFWriter Implementation
63//===----------------------------------------------------------------------===//
64
65ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
66 : MachineFunctionPass(&ID), O(o), TM(tm),
67 OutContext(*new MCContext()),
68 TLOF(TM.getTargetLowering()->getObjFileLowering()),
69 is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
70 isLittleEndian(TM.getTargetData()->isLittleEndian()),
71 ElfHdr(isLittleEndian, is64Bit) {
72
73 MAI = TM.getMCAsmInfo();
74 TEW = TM.getELFWriterInfo();
75
76 // Create the object code emitter object for this target.
77 ElfCE = new ELFCodeEmitter(*this);
78
79 // Inital number of sections
80 NumSections = 0;
81}
82
83ELFWriter::~ELFWriter() {
84 delete ElfCE;
85 delete &OutContext;
86
87 while(!SymbolList.empty()) {
88 delete SymbolList.back();
89 SymbolList.pop_back();
90 }
91
92 while(!PrivateSyms.empty()) {
93 delete PrivateSyms.back();
94 PrivateSyms.pop_back();
95 }
96
97 while(!SectionList.empty()) {
98 delete SectionList.back();
99 SectionList.pop_back();
100 }
101
102 // Release the name mangler object.
103 delete Mang; Mang = 0;
104}
105
106// doInitialization - Emit the file header and all of the global variables for
107// the module to the ELF file.
108bool ELFWriter::doInitialization(Module &M) {
109 // Initialize TargetLoweringObjectFile.
110 const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
111
112 Mang = new Mangler(*MAI);
113
114 // ELF Header
115 // ----------
116 // Fields e_shnum e_shstrndx are only known after all section have
117 // been emitted. They locations in the ouput buffer are recorded so
118 // to be patched up later.
119 //
120 // Note
121 // ----
122 // emitWord method behaves differently for ELF32 and ELF64, writing
123 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
124
125 ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
126 ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
127 ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
128 ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
129
130 ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
131 ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
132 ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
133 ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
134
135 ElfHdr.emitWord16(ET_REL); // e_type
136 ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
137 ElfHdr.emitWord32(EV_CURRENT); // e_version
138 ElfHdr.emitWord(0); // e_entry, no entry point in .o file
139 ElfHdr.emitWord(0); // e_phoff, no program header for .o
140 ELFHdr_e_shoff_Offset = ElfHdr.size();
141 ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
142 ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
143 ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
144 ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
145 ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
146
147 // e_shentsize = Section header entry size
148 ElfHdr.emitWord16(TEW->getSHdrSize());
149
150 // e_shnum = # of section header ents
151 ELFHdr_e_shnum_Offset = ElfHdr.size();
152 ElfHdr.emitWord16(0); // Placeholder
153
154 // e_shstrndx = Section # of '.shstrtab'
155 ELFHdr_e_shstrndx_Offset = ElfHdr.size();
156 ElfHdr.emitWord16(0); // Placeholder
157
158 // Add the null section, which is required to be first in the file.
159 getNullSection();
160
161 // The first entry in the symtab is the null symbol and the second
162 // is a local symbol containing the module/file name
163 SymbolList.push_back(new ELFSym());
164 SymbolList.push_back(ELFSym::getFileSym());
165
166 return false;
167}
168
169// AddPendingGlobalSymbol - Add a global to be processed and to
170// the global symbol lookup, use a zero index because the table
171// index will be determined later.
172void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV,
173 bool AddToLookup /* = false */) {
174 PendingGlobals.insert(GV);
175 if (AddToLookup)
176 GblSymLookup[GV] = 0;
177}
178
179// AddPendingExternalSymbol - Add the external to be processed
180// and to the external symbol lookup, use a zero index because
181// the symbol table index will be determined later.
182void ELFWriter::AddPendingExternalSymbol(const char *External) {
183 PendingExternals.insert(External);
184 ExtSymLookup[External] = 0;
185}
186
187ELFSection &ELFWriter::getDataSection() {
188 const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
189 return getSection(Data->getSectionName(), Data->getType(),
190 Data->getFlags(), 4);
191}
192
193ELFSection &ELFWriter::getBSSSection() {
194 const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
195 return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
196}
197
198// getCtorSection - Get the static constructor section
199ELFSection &ELFWriter::getCtorSection() {
200 const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
201 return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags());
202}
203
204// getDtorSection - Get the static destructor section
205ELFSection &ELFWriter::getDtorSection() {
206 const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
207 return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
208}
209
210// getTextSection - Get the text section for the specified function
211ELFSection &ELFWriter::getTextSection(Function *F) {
212 const MCSectionELF *Text =
213 (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
214 return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
215}
216
217// getJumpTableSection - Get a read only section for constants when
218// emitting jump tables. TODO: add PIC support
219ELFSection &ELFWriter::getJumpTableSection() {
220 const MCSectionELF *JT =
221 (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
222 return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
223 TM.getTargetData()->getPointerABIAlignment());
224}
225
226// getConstantPoolSection - Get a constant pool section based on the machine
227// constant pool entry type and relocation info.
228ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
229 SectionKind Kind;
230 switch (CPE.getRelocationInfo()) {
231 default: llvm_unreachable("Unknown section kind");
232 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
233 case 1:
234 Kind = SectionKind::getReadOnlyWithRelLocal();
235 break;
236 case 0:
237 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
238 case 4: Kind = SectionKind::getMergeableConst4(); break;
239 case 8: Kind = SectionKind::getMergeableConst8(); break;
240 case 16: Kind = SectionKind::getMergeableConst16(); break;
241 default: Kind = SectionKind::getMergeableConst(); break;
242 }
243 }
244
245 const MCSectionELF *CPSect =
246 (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
247 return getSection(CPSect->getSectionName(), CPSect->getType(),
248 CPSect->getFlags(), CPE.getAlignment());
249}
250
251// getRelocSection - Return the relocation section of section 'S'. 'RelA'
252// is true if the relocation section contains entries with addends.
253ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
254 unsigned SectionType = TEW->hasRelocationAddend() ?
255 ELFSection::SHT_RELA : ELFSection::SHT_REL;
256
257 std::string SectionName(".rel");
258 if (TEW->hasRelocationAddend())
259 SectionName.append("a");
260 SectionName.append(S.getName());
261
262 return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
263}
264
265// getGlobalELFVisibility - Returns the ELF specific visibility type
266unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
267 switch (GV->getVisibility()) {
268 default:
269 llvm_unreachable("unknown visibility type");
270 case GlobalValue::DefaultVisibility:
271 return ELFSym::STV_DEFAULT;
272 case GlobalValue::HiddenVisibility:
273 return ELFSym::STV_HIDDEN;
274 case GlobalValue::ProtectedVisibility:
275 return ELFSym::STV_PROTECTED;
276 }
277 return 0;
278}
279
280// getGlobalELFBinding - Returns the ELF specific binding type
281unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
282 if (GV->hasInternalLinkage())
283 return ELFSym::STB_LOCAL;
284
285 if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
286 return ELFSym::STB_WEAK;
287
288 return ELFSym::STB_GLOBAL;
289}
290
291// getGlobalELFType - Returns the ELF specific type for a global
292unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
293 if (GV->isDeclaration())
294 return ELFSym::STT_NOTYPE;
295
296 if (isa<Function>(GV))
297 return ELFSym::STT_FUNC;
298
299 return ELFSym::STT_OBJECT;
300}
301
302// IsELFUndefSym - True if the global value must be marked as a symbol
303// which points to a SHN_UNDEF section. This means that the symbol has
304// no definition on the module.
305static bool IsELFUndefSym(const GlobalValue *GV) {
306 return GV->isDeclaration() || (isa<Function>(GV));
307}
308
309// AddToSymbolList - Update the symbol lookup and If the symbol is
310// private add it to PrivateSyms list, otherwise to SymbolList.
311void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
312 assert(GblSym->isGlobalValue() && "Symbol must be a global value");
313
314 const GlobalValue *GV = GblSym->getGlobalValue();
315 if (GV->hasPrivateLinkage()) {
316 // For a private symbols, keep track of the index inside
317 // the private list since it will never go to the symbol
318 // table and won't be patched up later.
319 PrivateSyms.push_back(GblSym);
320 GblSymLookup[GV] = PrivateSyms.size()-1;
321 } else {
322 // Non private symbol are left with zero indices until
323 // they are patched up during the symbol table emition
324 // (where the indicies are created).
325 SymbolList.push_back(GblSym);
326 GblSymLookup[GV] = 0;
327 }
328}
329
330// EmitGlobal - Choose the right section for global and emit it
331void ELFWriter::EmitGlobal(const GlobalValue *GV) {
332
333 // Check if the referenced symbol is already emitted
334 if (GblSymLookup.find(GV) != GblSymLookup.end())
335 return;
336
337 // Handle ELF Bind, Visibility and Type for the current symbol
338 unsigned SymBind = getGlobalELFBinding(GV);
339 unsigned SymType = getGlobalELFType(GV);
340 bool IsUndefSym = IsELFUndefSym(GV);
341
342 ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
343 : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
344
345 if (!IsUndefSym) {
346 assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
347 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
348
349 // Handle special llvm globals
350 if (EmitSpecialLLVMGlobal(GVar))
351 return;
352
353 // Get the ELF section where this global belongs from TLOF
354 const MCSectionELF *S =
355 (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
356 ELFSection &ES =
357 getSection(S->getSectionName(), S->getType(), S->getFlags());
358 SectionKind Kind = S->getKind();
359
360 // The symbol align should update the section alignment if needed
361 const TargetData *TD = TM.getTargetData();
362 unsigned Align = TD->getPreferredAlignment(GVar);
363 unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
364 GblSym->Size = Size;
365
366 if (S->HasCommonSymbols()) { // Symbol must go to a common section
367 GblSym->SectionIdx = ELFSection::SHN_COMMON;
368
369 // A new linkonce section is created for each global in the
370 // common section, the default alignment is 1 and the symbol
371 // value contains its alignment.
372 ES.Align = 1;
373 GblSym->Value = Align;
374
375 } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
376 GblSym->SectionIdx = ES.SectionIdx;
377
378 // Update the size with alignment and the next object can
379 // start in the right offset in the section
380 if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
381 ES.Align = std::max(ES.Align, Align);
382
383 // GblSym->Value should contain the virtual offset inside the section.
384 // Virtual because the BSS space is not allocated on ELF objects
385 GblSym->Value = ES.Size;
386 ES.Size += Size;
387
388 } else { // The symbol must go to some kind of data section
389 GblSym->SectionIdx = ES.SectionIdx;
390
391 // GblSym->Value should contain the symbol offset inside the section,
392 // and all symbols should start on their required alignment boundary
393 ES.Align = std::max(ES.Align, Align);
394 ES.emitAlignment(Align);
395 GblSym->Value = ES.size();
396
397 // Emit the global to the data section 'ES'
398 EmitGlobalConstant(GVar->getInitializer(), ES);
399 }
400 }
401
402 AddToSymbolList(GblSym);
403}
404
405void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
406 ELFSection &GblS) {
407
408 // Print the fields in successive locations. Pad to align if needed!
409 const TargetData *TD = TM.getTargetData();
410 unsigned Size = TD->getTypeAllocSize(CVS->getType());
411 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
412 uint64_t sizeSoFar = 0;
413 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
414 const Constant* field = CVS->getOperand(i);
415
416 // Check if padding is needed and insert one or more 0s.
417 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
418 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
419 - cvsLayout->getElementOffset(i)) - fieldSize;
420 sizeSoFar += fieldSize + padSize;
421
422 // Now print the actual field value.
423 EmitGlobalConstant(field, GblS);
424
425 // Insert padding - this may include padding to increase the size of the
426 // current field up to the ABI size (if the struct is not packed) as well
427 // as padding to ensure that the next field starts at the right offset.
428 GblS.emitZeros(padSize);
429 }
430 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
431 "Layout of constant struct may be incorrect!");
432}
433
434void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
435 const TargetData *TD = TM.getTargetData();
436 unsigned Size = TD->getTypeAllocSize(CV->getType());
437
438 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
439 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
440 EmitGlobalConstant(CVA->getOperand(i), GblS);
441 return;
442 } else if (isa<ConstantAggregateZero>(CV)) {
443 GblS.emitZeros(Size);
444 return;
445 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
446 EmitGlobalConstantStruct(CVS, GblS);
447 return;
448 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
449 APInt Val = CFP->getValueAPF().bitcastToAPInt();
450 if (CFP->getType()->isDoubleTy())
451 GblS.emitWord64(Val.getZExtValue());
452 else if (CFP->getType()->isFloatTy())
453 GblS.emitWord32(Val.getZExtValue());
454 else if (CFP->getType()->isX86_FP80Ty()) {
455 unsigned PadSize = TD->getTypeAllocSize(CFP->getType())-
456 TD->getTypeStoreSize(CFP->getType());
457 GblS.emitWordFP80(Val.getRawData(), PadSize);
458 } else if (CFP->getType()->isPPC_FP128Ty())
459 llvm_unreachable("PPC_FP128Ty global emission not implemented");
460 return;
461 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
462 if (Size == 1)
463 GblS.emitByte(CI->getZExtValue());
464 else if (Size == 2)
465 GblS.emitWord16(CI->getZExtValue());
466 else if (Size == 4)
467 GblS.emitWord32(CI->getZExtValue());
468 else
469 EmitGlobalConstantLargeInt(CI, GblS);
470 return;
471 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
472 const VectorType *PTy = CP->getType();
473 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
474 EmitGlobalConstant(CP->getOperand(I), GblS);
475 return;
476 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
477 // Resolve a constant expression which returns a (Constant, Offset)
478 // pair. If 'Res.first' is a GlobalValue, emit a relocation with
479 // the offset 'Res.second', otherwise emit a global constant like
480 // it is always done for not contant expression types.
481 CstExprResTy Res = ResolveConstantExpr(CE);
482 const Constant *Op = Res.first;
483
484 if (isa<GlobalValue>(Op))
485 EmitGlobalDataRelocation(cast<const GlobalValue>(Op),
486 TD->getTypeAllocSize(Op->getType()),
487 GblS, Res.second);
488 else
489 EmitGlobalConstant(Op, GblS);
490
491 return;
492 } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
493 // Fill the data entry with zeros or emit a relocation entry
494 if (isa<ConstantPointerNull>(CV))
495 GblS.emitZeros(Size);
496 else
497 EmitGlobalDataRelocation(cast<const GlobalValue>(CV),
498 Size, GblS);
499 return;
500 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
501 // This is a constant address for a global variable or function and
502 // therefore must be referenced using a relocation entry.
503 EmitGlobalDataRelocation(GV, Size, GblS);
504 return;
505 }
506
507 std::string msg;
508 raw_string_ostream ErrorMsg(msg);
509 ErrorMsg << "Constant unimp for type: " << *CV->getType();
510 llvm_report_error(ErrorMsg.str());
511}
512
513// ResolveConstantExpr - Resolve the constant expression until it stop
514// yielding other constant expressions.
515CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
516 const TargetData *TD = TM.getTargetData();
517
518 // There ins't constant expression inside others anymore
519 if (!isa<ConstantExpr>(CV))
520 return std::make_pair(CV, 0);
521
522 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
523 switch (CE->getOpcode()) {
524 case Instruction::BitCast:
525 return ResolveConstantExpr(CE->getOperand(0));
526
527 case Instruction::GetElementPtr: {
528 const Constant *ptrVal = CE->getOperand(0);
529 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
530 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
531 idxVec.size());
532 return std::make_pair(ptrVal, Offset);
533 }
534 case Instruction::IntToPtr: {
535 Constant *Op = CE->getOperand(0);
536 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
537 false/*ZExt*/);
538 return ResolveConstantExpr(Op);
539 }
540 case Instruction::PtrToInt: {
541 Constant *Op = CE->getOperand(0);
542 const Type *Ty = CE->getType();
543
544 // We can emit the pointer value into this slot if the slot is an
545 // integer slot greater or equal to the size of the pointer.
546 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
547 return ResolveConstantExpr(Op);
548
549 llvm_unreachable("Integer size less then pointer size");
550 }
551 case Instruction::Add:
552 case Instruction::Sub: {
553 // Only handle cases where there's a constant expression with GlobalValue
554 // as first operand and ConstantInt as second, which are the cases we can
555 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
556 // 1) Instruction::Add => (global) + CstInt
557 // 2) Instruction::Sub => (global) + -CstInt
558 const Constant *Op0 = CE->getOperand(0);
559 const Constant *Op1 = CE->getOperand(1);
560 assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");
561
562 CstExprResTy Res = ResolveConstantExpr(Op0);
563 assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");
564
565 const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
566 switch (CE->getOpcode()) {
567 case Instruction::Add:
568 return std::make_pair(Res.first, RHS.getSExtValue());
569 case Instruction::Sub:
570 return std::make_pair(Res.first, (-RHS).getSExtValue());
571 }
572 }
573 }
574
575 std::string msg(CE->getOpcodeName());
576 raw_string_ostream ErrorMsg(msg);
577 ErrorMsg << ": Unsupported ConstantExpr type";
578 llvm_report_error(ErrorMsg.str());
579
580 return std::make_pair(CV, 0); // silence warning
581}
582
583void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
584 ELFSection &GblS, int64_t Offset) {
585 // Create the relocation entry for the global value
586 MachineRelocation MR =
587 MachineRelocation::getGV(GblS.getCurrentPCOffset(),
588 TEW->getAbsoluteLabelMachineRelTy(),
589 const_cast<GlobalValue*>(GV),
590 Offset);
591
592 // Fill the data entry with zeros
593 GblS.emitZeros(Size);
594
595 // Add the relocation entry for the current data section
596 GblS.addRelocation(MR);
597}
598
599void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
600 ELFSection &S) {
601 const TargetData *TD = TM.getTargetData();
602 unsigned BitWidth = CI->getBitWidth();
603 assert(isPowerOf2_32(BitWidth) &&
604 "Non-power-of-2-sized integers not handled!");
605
606 const uint64_t *RawData = CI->getValue().getRawData();
607 uint64_t Val = 0;
608 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
609 Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
610 S.emitWord64(Val);
611 }
612}
613
614/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
615/// special global used by LLVM. If so, emit it and return true, otherwise
616/// do nothing and return false.
617bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
618 if (GV->getName() == "llvm.used")
619 llvm_unreachable("not implemented yet");
620
621 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
622 if (GV->getSection() == "llvm.metadata" ||
623 GV->hasAvailableExternallyLinkage())
624 return true;
625
626 if (!GV->hasAppendingLinkage()) return false;
627
628 assert(GV->hasInitializer() && "Not a special LLVM global!");
629
630 const TargetData *TD = TM.getTargetData();
631 unsigned Align = TD->getPointerPrefAlignment();
632 if (GV->getName() == "llvm.global_ctors") {
633 ELFSection &Ctor = getCtorSection();
634 Ctor.emitAlignment(Align);
635 EmitXXStructorList(GV->getInitializer(), Ctor);
636 return true;
637 }
638
639 if (GV->getName() == "llvm.global_dtors") {
640 ELFSection &Dtor = getDtorSection();
641 Dtor.emitAlignment(Align);
642 EmitXXStructorList(GV->getInitializer(), Dtor);
643 return true;
644 }
645
646 return false;
647}
648
649/// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
650/// function pointers, ignoring the init priority.
651void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) {
652 // Should be an array of '{ int, void ()* }' structs. The first value is the
653 // init priority, which we ignore.
654 if (!isa<ConstantArray>(List)) return;
655 ConstantArray *InitList = cast<ConstantArray>(List);
656 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
657 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
658 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
659
660 if (CS->getOperand(1)->isNullValue())
661 return; // Found a null terminator, exit printing.
662 // Emit the function pointer.
663 EmitGlobalConstant(CS->getOperand(1), Xtor);
664 }
665}
666
667bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
668 // Nothing to do here, this is all done through the ElfCE object above.
669 return false;
670}
671
672/// doFinalization - Now that the module has been completely processed, emit
673/// the ELF file to 'O'.
674bool ELFWriter::doFinalization(Module &M) {
675 // Emit .data section placeholder
676 getDataSection();
677
678 // Emit .bss section placeholder
679 getBSSSection();
680
681 // Build and emit data, bss and "common" sections.
682 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
683 I != E; ++I)
684 EmitGlobal(I);
685
686 // Emit all pending globals
687 for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
688 I != E; ++I)
689 EmitGlobal(*I);
690
691 // Emit all pending externals
692 for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
693 I != E; ++I)
694 SymbolList.push_back(ELFSym::getExtSym(*I));
695
696 // Emit a symbol for each section created until now, skip null section
697 for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
698 ELFSection &ES = *SectionList[i];
699 ELFSym *SectionSym = ELFSym::getSectionSym();
700 SectionSym->SectionIdx = ES.SectionIdx;
701 SymbolList.push_back(SectionSym);
702 ES.Sym = SymbolList.back();
703 }
704
705 // Emit string table
706 EmitStringTable(M.getModuleIdentifier());
707
708 // Emit the symbol table now, if non-empty.
709 EmitSymbolTable();
710
711 // Emit the relocation sections.
712 EmitRelocations();
713
714 // Emit the sections string table.
715 EmitSectionTableStringTable();
716
717 // Dump the sections and section table to the .o file.
718 OutputSectionsAndSectionTable();
719
720 return false;
721}
722
723// RelocateField - Patch relocatable field with 'Offset' in 'BO'
724// using a 'Value' of known 'Size'
725void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
726 int64_t Value, unsigned Size) {
727 if (Size == 32)
728 BO.fixWord32(Value, Offset);
729 else if (Size == 64)
730 BO.fixWord64(Value, Offset);
731 else
732 llvm_unreachable("don't know howto patch relocatable field");
733}
734
735/// EmitRelocations - Emit relocations
736void ELFWriter::EmitRelocations() {
737
738 // True if the target uses the relocation entry to hold the addend,
739 // otherwise the addend is written directly to the relocatable field.
740 bool HasRelA = TEW->hasRelocationAddend();
741
742 // Create Relocation sections for each section which needs it.
743 for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
744 ELFSection &S = *SectionList[i];
745
746 // This section does not have relocations
747 if (!S.hasRelocations()) continue;
748 ELFSection &RelSec = getRelocSection(S);
749
750 // 'Link' - Section hdr idx of the associated symbol table
751 // 'Info' - Section hdr idx of the section to which the relocation applies
752 ELFSection &SymTab = getSymbolTableSection();
753 RelSec.Link = SymTab.SectionIdx;
754 RelSec.Info = S.SectionIdx;
755 RelSec.EntSize = TEW->getRelocationEntrySize();
756
757 // Get the relocations from Section
758 std::vector<MachineRelocation> Relos = S.getRelocations();
759 for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
760 MRE = Relos.end(); MRI != MRE; ++MRI) {
761 MachineRelocation &MR = *MRI;
762
763 // Relocatable field offset from the section start
764 unsigned RelOffset = MR.getMachineCodeOffset();
765
766 // Symbol index in the symbol table
767 unsigned SymIdx = 0;
768
769 // Target specific relocation field type and size
770 unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
771 unsigned RelTySize = TEW->getRelocationTySize(RelType);
772 int64_t Addend = 0;
773
774 // There are several machine relocations types, and each one of
775 // them needs a different approach to retrieve the symbol table index.
776 if (MR.isGlobalValue()) {
777 const GlobalValue *G = MR.getGlobalValue();
778 int64_t GlobalOffset = MR.getConstantVal();
779 SymIdx = GblSymLookup[G];
780 if (G->hasPrivateLinkage()) {
781 // If the target uses a section offset in the relocation:
782 // SymIdx + Addend = section sym for global + section offset
783 unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
784 Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
785 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
786 } else {
787 Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
788 }
789 } else if (MR.isExternalSymbol()) {
790 const char *ExtSym = MR.getExternalSymbol();
791 SymIdx = ExtSymLookup[ExtSym];
792 Addend = TEW->getDefaultAddendForRelTy(RelType);
793 } else {
794 // Get the symbol index for the section symbol
795 unsigned SectionIdx = MR.getConstantVal();
796 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
797
798 // The symbol offset inside the section
799 int64_t SymOffset = (int64_t)MR.getResultPointer();
800
801 // For pc relative relocations where symbols are defined in the same
802 // section they are referenced, ignore the relocation entry and patch
803 // the relocatable field with the symbol offset directly.
804 if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
805 int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
806 RelocateField(S, RelOffset, Value, RelTySize);
807 continue;
808 }
809
810 Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
811 }
812
813 // The target without addend on the relocation symbol must be
814 // patched in the relocation place itself to contain the addend
815 // otherwise write zeros to make sure there is no garbage there
816 RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
817
818 // Get the relocation entry and emit to the relocation section
819 ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
820 EmitRelocation(RelSec, Rel, HasRelA);
821 }
822 }
823}
824
825/// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
826void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
827 bool HasRelA) {
828 RelSec.emitWord(Rel.getOffset());
829 RelSec.emitWord(Rel.getInfo(is64Bit));
830 if (HasRelA)
831 RelSec.emitWord(Rel.getAddend());
832}
833
834/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
835void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
836 if (is64Bit) {
837 SymbolTable.emitWord32(Sym.NameIdx);
838 SymbolTable.emitByte(Sym.Info);
839 SymbolTable.emitByte(Sym.Other);
840 SymbolTable.emitWord16(Sym.SectionIdx);
841 SymbolTable.emitWord64(Sym.Value);
842 SymbolTable.emitWord64(Sym.Size);
843 } else {
844 SymbolTable.emitWord32(Sym.NameIdx);
845 SymbolTable.emitWord32(Sym.Value);
846 SymbolTable.emitWord32(Sym.Size);
847 SymbolTable.emitByte(Sym.Info);
848 SymbolTable.emitByte(Sym.Other);
849 SymbolTable.emitWord16(Sym.SectionIdx);
850 }
851}
852
853/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
854/// Section Header Table
855void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
856 const ELFSection &SHdr) {
857 SHdrTab.emitWord32(SHdr.NameIdx);
858 SHdrTab.emitWord32(SHdr.Type);
859 if (is64Bit) {
860 SHdrTab.emitWord64(SHdr.Flags);
861 SHdrTab.emitWord(SHdr.Addr);
862 SHdrTab.emitWord(SHdr.Offset);
863 SHdrTab.emitWord64(SHdr.Size);
864 SHdrTab.emitWord32(SHdr.Link);
865 SHdrTab.emitWord32(SHdr.Info);
866 SHdrTab.emitWord64(SHdr.Align);
867 SHdrTab.emitWord64(SHdr.EntSize);
868 } else {
869 SHdrTab.emitWord32(SHdr.Flags);
870 SHdrTab.emitWord(SHdr.Addr);
871 SHdrTab.emitWord(SHdr.Offset);
872 SHdrTab.emitWord32(SHdr.Size);
873 SHdrTab.emitWord32(SHdr.Link);
874 SHdrTab.emitWord32(SHdr.Info);
875 SHdrTab.emitWord32(SHdr.Align);
876 SHdrTab.emitWord32(SHdr.EntSize);
877 }
878}
879
880/// EmitStringTable - If the current symbol table is non-empty, emit the string
881/// table for it
882void ELFWriter::EmitStringTable(const std::string &ModuleName) {
883 if (!SymbolList.size()) return; // Empty symbol table.
884 ELFSection &StrTab = getStringTableSection();
885
886 // Set the zero'th symbol to a null byte, as required.
887 StrTab.emitByte(0);
888
889 // Walk on the symbol list and write symbol names into the string table.
890 unsigned Index = 1;
891 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
892 ELFSym &Sym = *(*I);
893
894 std::string Name;
895 if (Sym.isGlobalValue()) {
896 SmallString<40> NameStr;
897 Mang->getNameWithPrefix(NameStr, Sym.getGlobalValue(), false);
898 Name.append(NameStr.begin(), NameStr.end());
899 } else if (Sym.isExternalSym())
900 Name.append(Sym.getExternalSymbol());
901 else if (Sym.isFileType())
902 Name.append(ModuleName);
903
904 if (Name.empty()) {
905 Sym.NameIdx = 0;
906 } else {
907 Sym.NameIdx = Index;
908 StrTab.emitString(Name);
909
910 // Keep track of the number of bytes emitted to this section.
911 Index += Name.size()+1;
912 }
913 }
914 assert(Index == StrTab.size());
915 StrTab.Size = Index;
916}
917
918// SortSymbols - On the symbol table local symbols must come before
919// all other symbols with non-local bindings. The return value is
920// the position of the first non local symbol.
921unsigned ELFWriter::SortSymbols() {
922 unsigned FirstNonLocalSymbol;
923 std::vector<ELFSym*> LocalSyms, OtherSyms;
924
925 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
926 if ((*I)->isLocalBind())
927 LocalSyms.push_back(*I);
928 else
929 OtherSyms.push_back(*I);
930 }
931 SymbolList.clear();
932 FirstNonLocalSymbol = LocalSyms.size();
933
934 for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
935 SymbolList.push_back(LocalSyms[i]);
936
937 for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
938 SymbolList.push_back(*I);
939
940 LocalSyms.clear();
941 OtherSyms.clear();
942
943 return FirstNonLocalSymbol;
944}
945
946/// EmitSymbolTable - Emit the symbol table itself.
947void ELFWriter::EmitSymbolTable() {
948 if (!SymbolList.size()) return; // Empty symbol table.
949
950 // Now that we have emitted the string table and know the offset into the
951 // string table of each symbol, emit the symbol table itself.
952 ELFSection &SymTab = getSymbolTableSection();
953 SymTab.Align = TEW->getPrefELFAlignment();
954
955 // Section Index of .strtab.
956 SymTab.Link = getStringTableSection().SectionIdx;
957
958 // Size of each symtab entry.
959 SymTab.EntSize = TEW->getSymTabEntrySize();
960
961 // Reorder the symbol table with local symbols first!
962 unsigned FirstNonLocalSymbol = SortSymbols();
963
964 // Emit all the symbols to the symbol table.
965 for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
966 ELFSym &Sym = *SymbolList[i];
967
968 // Emit symbol to the symbol table
969 EmitSymbol(SymTab, Sym);
970
971 // Record the symbol table index for each symbol
972 if (Sym.isGlobalValue())
973 GblSymLookup[Sym.getGlobalValue()] = i;
974 else if (Sym.isExternalSym())
975 ExtSymLookup[Sym.getExternalSymbol()] = i;
976
977 // Keep track on the symbol index into the symbol table
978 Sym.SymTabIdx = i;
979 }
980
981 // One greater than the symbol table index of the last local symbol
982 SymTab.Info = FirstNonLocalSymbol;
983 SymTab.Size = SymTab.size();
984}
985
986/// EmitSectionTableStringTable - This method adds and emits a section for the
987/// ELF Section Table string table: the string table that holds all of the
988/// section names.
989void ELFWriter::EmitSectionTableStringTable() {
990 // First step: add the section for the string table to the list of sections:
991 ELFSection &SHStrTab = getSectionHeaderStringTableSection();
992
993 // Now that we know which section number is the .shstrtab section, update the
994 // e_shstrndx entry in the ELF header.
995 ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
996
997 // Set the NameIdx of each section in the string table and emit the bytes for
998 // the string table.
999 unsigned Index = 0;
1000
1001 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1002 ELFSection &S = *(*I);
1003 // Set the index into the table. Note if we have lots of entries with
1004 // common suffixes, we could memoize them here if we cared.
1005 S.NameIdx = Index;
1006 SHStrTab.emitString(S.getName());
1007
1008 // Keep track of the number of bytes emitted to this section.
1009 Index += S.getName().size()+1;
1010 }
1011
1012 // Set the size of .shstrtab now that we know what it is.
1013 assert(Index == SHStrTab.size());
1014 SHStrTab.Size = Index;
1015}
1016
1017/// OutputSectionsAndSectionTable - Now that we have constructed the file header
1018/// and all of the sections, emit these to the ostream destination and emit the
1019/// SectionTable.
1020void ELFWriter::OutputSectionsAndSectionTable() {
1021 // Pass #1: Compute the file offset for each section.
1022 size_t FileOff = ElfHdr.size(); // File header first.
1023
1024 // Adjust alignment of all section if needed, skip the null section.
1025 for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
1026 ELFSection &ES = *SectionList[i];
1027 if (!ES.size()) {
1028 ES.Offset = FileOff;
1029 continue;
1030 }
1031
1032 // Update Section size
1033 if (!ES.Size)
1034 ES.Size = ES.size();
1035
1036 // Align FileOff to whatever the alignment restrictions of the section are.
1037 if (ES.Align)
1038 FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
1039
1040 ES.Offset = FileOff;
1041 FileOff += ES.Size;
1042 }
1043
1044 // Align Section Header.
1045 unsigned TableAlign = TEW->getPrefELFAlignment();
1046 FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1047
1048 // Now that we know where all of the sections will be emitted, set the e_shnum
1049 // entry in the ELF header.
1050 ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
1051
1052 // Now that we know the offset in the file of the section table, update the
1053 // e_shoff address in the ELF header.
1054 ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
1055
1056 // Now that we know all of the data in the file header, emit it and all of the
1057 // sections!
1058 O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
1059 FileOff = ElfHdr.size();
1060
1061 // Section Header Table blob
1062 BinaryObject SHdrTable(isLittleEndian, is64Bit);
1063
1064 // Emit all of sections to the file and build the section header table.
1065 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1066 ELFSection &S = *(*I);
1067 DEBUG(dbgs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
1068 << ", Size: " << S.Size << ", Offset: " << S.Offset
1069 << ", SectionData Size: " << S.size() << "\n");
1070
1071 // Align FileOff to whatever the alignment restrictions of the section are.
1072 if (S.size()) {
1073 if (S.Align) {
1074 for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
1075 FileOff != NewFileOff; ++FileOff)
1076 O << (char)0xAB;
1077 }
1078 O.write((char *)&S.getData()[0], S.Size);
1079 FileOff += S.Size;
1080 }
1081
1082 EmitSectionHeader(SHdrTable, S);
1083 }
1084
1085 // Align output for the section table.
1086 for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1087 FileOff != NewFileOff; ++FileOff)
1088 O << (char)0xAB;
1089
1090 // Emit the section table itself.
1091 O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
1092}