blob: 4d2e3a318b4f3126d846bb569dfe30b23a65e235 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator allocates registers to a basic block at a time,
11// attempting to keep values in registers and reusing registers as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/BasicBlock.h"
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/RegAllocRegistry.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/IndexedMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumStores, "Number of stores added");
39STATISTIC(NumLoads , "Number of loads added");
40
41static RegisterRegAlloc
42 localRegAlloc("local", "local register allocator",
43 createLocalRegisterAllocator);
44
45namespace {
46 class RALocal : public MachineFunctionPass {
47 public:
48 static char ID;
49 RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
50 private:
51 const TargetMachine *TM;
52 MachineFunction *MF;
53 const TargetRegisterInfo *TRI;
54 const TargetInstrInfo *TII;
55
56 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
57 // values are spilled.
58 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
59
60 // Virt2PhysRegMap - This map contains entries for each virtual register
61 // that is currently available in a physical register.
62 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
63
64 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
65 return Virt2PhysRegMap[VirtReg];
66 }
67
68 // PhysRegsUsed - This array is effectively a map, containing entries for
69 // each physical register that currently has a value (ie, it is in
70 // Virt2PhysRegMap). The value mapped to is the virtual register
71 // corresponding to the physical register (the inverse of the
72 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
73 // because it is used by a future instruction, and to -2 if it is not
74 // allocatable. If the entry for a physical register is -1, then the
75 // physical register is "not in the map".
76 //
77 std::vector<int> PhysRegsUsed;
78
79 // PhysRegsUseOrder - This contains a list of the physical registers that
80 // currently have a virtual register value in them. This list provides an
81 // ordering of registers, imposing a reallocation order. This list is only
82 // used if all registers are allocated and we have to spill one, in which
83 // case we spill the least recently used register. Entries at the front of
84 // the list are the least recently used registers, entries at the back are
85 // the most recently used.
86 //
87 std::vector<unsigned> PhysRegsUseOrder;
88
89 // Virt2LastUseMap - This maps each virtual register to its last use
90 // (MachineInstr*, operand index pair).
91 IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
92 Virt2LastUseMap;
93
94 std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
95 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
96 return Virt2LastUseMap[Reg];
97 }
98
99 // VirtRegModified - This bitset contains information about which virtual
100 // registers need to be spilled back to memory when their registers are
101 // scavenged. If a virtual register has simply been rematerialized, there
102 // is no reason to spill it to memory when we need the register back.
103 //
104 BitVector VirtRegModified;
105
106 // UsedInMultipleBlocks - Tracks whether a particular register is used in
107 // more than one block.
108 BitVector UsedInMultipleBlocks;
109
110 void markVirtRegModified(unsigned Reg, bool Val = true) {
111 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
112 Reg -= TargetRegisterInfo::FirstVirtualRegister;
113 if (Val)
114 VirtRegModified.set(Reg);
115 else
116 VirtRegModified.reset(Reg);
117 }
118
119 bool isVirtRegModified(unsigned Reg) const {
120 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
121 assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
122 && "Illegal virtual register!");
123 return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
124 }
125
126 void AddToPhysRegsUseOrder(unsigned Reg) {
127 std::vector<unsigned>::iterator It =
128 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
129 if (It != PhysRegsUseOrder.end())
130 PhysRegsUseOrder.erase(It);
131 PhysRegsUseOrder.push_back(Reg);
132 }
133
134 void MarkPhysRegRecentlyUsed(unsigned Reg) {
135 if (PhysRegsUseOrder.empty() ||
136 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
137
138 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
139 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
140 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
141 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
142 // Add it to the end of the list
143 PhysRegsUseOrder.push_back(RegMatch);
144 if (RegMatch == Reg)
145 return; // Found an exact match, exit early
146 }
147 }
148
149 public:
150 virtual const char *getPassName() const {
151 return "Local Register Allocator";
152 }
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 AU.setPreservesCFG();
156 AU.addRequiredID(PHIEliminationID);
157 AU.addRequiredID(TwoAddressInstructionPassID);
158 MachineFunctionPass::getAnalysisUsage(AU);
159 }
160
161 private:
162 /// runOnMachineFunction - Register allocate the whole function
163 bool runOnMachineFunction(MachineFunction &Fn);
164
165 /// AllocateBasicBlock - Register allocate the specified basic block.
166 void AllocateBasicBlock(MachineBasicBlock &MBB);
167
168
169 /// areRegsEqual - This method returns true if the specified registers are
170 /// related to each other. To do this, it checks to see if they are equal
171 /// or if the first register is in the alias set of the second register.
172 ///
173 bool areRegsEqual(unsigned R1, unsigned R2) const {
174 if (R1 == R2) return true;
175 for (const unsigned *AliasSet = TRI->getAliasSet(R2);
176 *AliasSet; ++AliasSet) {
177 if (*AliasSet == R1) return true;
178 }
179 return false;
180 }
181
182 /// getStackSpaceFor - This returns the frame index of the specified virtual
183 /// register on the stack, allocating space if necessary.
184 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
185
186 /// removePhysReg - This method marks the specified physical register as no
187 /// longer being in use.
188 ///
189 void removePhysReg(unsigned PhysReg);
190
191 /// spillVirtReg - This method spills the value specified by PhysReg into
192 /// the virtual register slot specified by VirtReg. It then updates the RA
193 /// data structures to indicate the fact that PhysReg is now available.
194 ///
195 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
196 unsigned VirtReg, unsigned PhysReg);
197
198 /// spillPhysReg - This method spills the specified physical register into
199 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
200 /// true, then the request is ignored if the physical register does not
201 /// contain a virtual register.
202 ///
203 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
204 unsigned PhysReg, bool OnlyVirtRegs = false);
205
206 /// assignVirtToPhysReg - This method updates local state so that we know
207 /// that PhysReg is the proper container for VirtReg now. The physical
208 /// register must not be used for anything else when this is called.
209 ///
210 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
211
212 /// isPhysRegAvailable - Return true if the specified physical register is
213 /// free and available for use. This also includes checking to see if
214 /// aliased registers are all free...
215 ///
216 bool isPhysRegAvailable(unsigned PhysReg) const;
217
218 /// getFreeReg - Look to see if there is a free register available in the
219 /// specified register class. If not, return 0.
220 ///
221 unsigned getFreeReg(const TargetRegisterClass *RC);
222
223 /// getReg - Find a physical register to hold the specified virtual
224 /// register. If all compatible physical registers are used, this method
225 /// spills the last used virtual register to the stack, and uses that
226 /// register. If NoFree is true, that means the caller knows there isn't
227 /// a free register, do not call getFreeReg().
228 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
229 unsigned VirtReg, bool NoFree = false);
230
231 /// reloadVirtReg - This method transforms the specified virtual
232 /// register use to refer to a physical register. This method may do this
233 /// in one of several ways: if the register is available in a physical
234 /// register already, it uses that physical register. If the value is not
235 /// in a physical register, and if there are physical registers available,
236 /// it loads it into a register: PhysReg if that is an available physical
237 /// register, otherwise any physical register of the right class.
238 /// If register pressure is high, and it is possible, it tries to fold the
239 /// load of the virtual register into the instruction itself. It avoids
240 /// doing this if register pressure is low to improve the chance that
241 /// subsequent instructions can use the reloaded value. This method
242 /// returns the modified instruction.
243 ///
244 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
245 unsigned OpNum, SmallSet<unsigned, 4> &RRegs,
246 unsigned PhysReg);
247
248 /// ComputeLocalLiveness - Computes liveness of registers within a basic
249 /// block, setting the killed/dead flags as appropriate.
250 void ComputeLocalLiveness(MachineBasicBlock& MBB);
251
252 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
253 unsigned PhysReg);
254 };
255 char RALocal::ID = 0;
256}
257
258/// getStackSpaceFor - This allocates space for the specified virtual register
259/// to be held on the stack.
260int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
261 // Find the location Reg would belong...
262 int SS = StackSlotForVirtReg[VirtReg];
263 if (SS != -1)
264 return SS; // Already has space allocated?
265
266 // Allocate a new stack object for this spill location...
267 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
268 RC->getAlignment());
269
270 // Assign the slot...
271 StackSlotForVirtReg[VirtReg] = FrameIdx;
272 return FrameIdx;
273}
274
275
276/// removePhysReg - This method marks the specified physical register as no
277/// longer being in use.
278///
279void RALocal::removePhysReg(unsigned PhysReg) {
280 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
281
282 std::vector<unsigned>::iterator It =
283 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
284 if (It != PhysRegsUseOrder.end())
285 PhysRegsUseOrder.erase(It);
286}
287
288
289/// spillVirtReg - This method spills the value specified by PhysReg into the
290/// virtual register slot specified by VirtReg. It then updates the RA data
291/// structures to indicate the fact that PhysReg is now available.
292///
293void RALocal::spillVirtReg(MachineBasicBlock &MBB,
294 MachineBasicBlock::iterator I,
295 unsigned VirtReg, unsigned PhysReg) {
296 assert(VirtReg && "Spilling a physical register is illegal!"
297 " Must not have appropriate kill for the register or use exists beyond"
298 " the intended one.");
299 DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg)
300 << " containing %reg" << VirtReg);
301
302 if (!isVirtRegModified(VirtReg)) {
303 DEBUG(dbgs() << " which has not been modified, so no store necessary!");
304 std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
305 if (LastUse.first)
306 LastUse.first->getOperand(LastUse.second).setIsKill();
307 } else {
308 // Otherwise, there is a virtual register corresponding to this physical
309 // register. We only need to spill it into its stack slot if it has been
310 // modified.
311 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
312 int FrameIndex = getStackSpaceFor(VirtReg, RC);
313 DEBUG(dbgs() << " to stack slot #" << FrameIndex);
314 // If the instruction reads the register that's spilled, (e.g. this can
315 // happen if it is a move to a physical register), then the spill
316 // instruction is not a kill.
317 bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
318 TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
319 ++NumStores; // Update statistics
320 }
321
322 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
323
324 DEBUG(dbgs() << '\n');
325 removePhysReg(PhysReg);
326}
327
328
329/// spillPhysReg - This method spills the specified physical register into the
330/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
331/// then the request is ignored if the physical register does not contain a
332/// virtual register.
333///
334void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
335 unsigned PhysReg, bool OnlyVirtRegs) {
336 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
337 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
338 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
339 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
340 } else {
341 // If the selected register aliases any other registers, we must make
342 // sure that one of the aliases isn't alive.
343 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
344 *AliasSet; ++AliasSet)
345 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
346 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
347 if (PhysRegsUsed[*AliasSet])
348 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
349 }
350}
351
352
353/// assignVirtToPhysReg - This method updates local state so that we know
354/// that PhysReg is the proper container for VirtReg now. The physical
355/// register must not be used for anything else when this is called.
356///
357void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
358 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
359 // Update information to note the fact that this register was just used, and
360 // it holds VirtReg.
361 PhysRegsUsed[PhysReg] = VirtReg;
362 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
363 AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
364}
365
366
367/// isPhysRegAvailable - Return true if the specified physical register is free
368/// and available for use. This also includes checking to see if aliased
369/// registers are all free...
370///
371bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
372 if (PhysRegsUsed[PhysReg] != -1) return false;
373
374 // If the selected register aliases any other allocated registers, it is
375 // not free!
376 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
377 *AliasSet; ++AliasSet)
378 if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
379 return false; // Can't use this reg then.
380 return true;
381}
382
383
384/// getFreeReg - Look to see if there is a free register available in the
385/// specified register class. If not, return 0.
386///
387unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
388 // Get iterators defining the range of registers that are valid to allocate in
389 // this class, which also specifies the preferred allocation order.
390 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
391 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
392
393 for (; RI != RE; ++RI)
394 if (isPhysRegAvailable(*RI)) { // Is reg unused?
395 assert(*RI != 0 && "Cannot use register!");
396 return *RI; // Found an unused register!
397 }
398 return 0;
399}
400
401
402/// getReg - Find a physical register to hold the specified virtual
403/// register. If all compatible physical registers are used, this method spills
404/// the last used virtual register to the stack, and uses that register.
405///
406unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
407 unsigned VirtReg, bool NoFree) {
408 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
409
410 // First check to see if we have a free register of the requested type...
411 unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
412
413 // If we didn't find an unused register, scavenge one now!
414 if (PhysReg == 0) {
415 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
416
417 // Loop over all of the preallocated registers from the least recently used
418 // to the most recently used. When we find one that is capable of holding
419 // our register, use it.
420 for (unsigned i = 0; PhysReg == 0; ++i) {
421 assert(i != PhysRegsUseOrder.size() &&
422 "Couldn't find a register of the appropriate class!");
423
424 unsigned R = PhysRegsUseOrder[i];
425
426 // We can only use this register if it holds a virtual register (ie, it
427 // can be spilled). Do not use it if it is an explicitly allocated
428 // physical register!
429 assert(PhysRegsUsed[R] != -1 &&
430 "PhysReg in PhysRegsUseOrder, but is not allocated?");
431 if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
432 // If the current register is compatible, use it.
433 if (RC->contains(R)) {
434 PhysReg = R;
435 break;
436 } else {
437 // If one of the registers aliased to the current register is
438 // compatible, use it.
439 for (const unsigned *AliasIt = TRI->getAliasSet(R);
440 *AliasIt; ++AliasIt) {
441 if (RC->contains(*AliasIt) &&
442 // If this is pinned down for some reason, don't use it. For
443 // example, if CL is pinned, and we run across CH, don't use
444 // CH as justification for using scavenging ECX (which will
445 // fail).
446 PhysRegsUsed[*AliasIt] != 0 &&
447
448 // Make sure the register is allocatable. Don't allocate SIL on
449 // x86-32.
450 PhysRegsUsed[*AliasIt] != -2) {
451 PhysReg = *AliasIt; // Take an aliased register
452 break;
453 }
454 }
455 }
456 }
457 }
458
459 assert(PhysReg && "Physical register not assigned!?!?");
460
461 // At this point PhysRegsUseOrder[i] is the least recently used register of
462 // compatible register class. Spill it to memory and reap its remains.
463 spillPhysReg(MBB, I, PhysReg);
464 }
465
466 // Now that we know which register we need to assign this to, do it now!
467 assignVirtToPhysReg(VirtReg, PhysReg);
468 return PhysReg;
469}
470
471
472/// reloadVirtReg - This method transforms the specified virtual
473/// register use to refer to a physical register. This method may do this in
474/// one of several ways: if the register is available in a physical register
475/// already, it uses that physical register. If the value is not in a physical
476/// register, and if there are physical registers available, it loads it into a
477/// register: PhysReg if that is an available physical register, otherwise any
478/// register. If register pressure is high, and it is possible, it tries to
479/// fold the load of the virtual register into the instruction itself. It
480/// avoids doing this if register pressure is low to improve the chance that
481/// subsequent instructions can use the reloaded value. This method returns
482/// the modified instruction.
483///
484MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
485 unsigned OpNum,
486 SmallSet<unsigned, 4> &ReloadedRegs,
487 unsigned PhysReg) {
488 unsigned VirtReg = MI->getOperand(OpNum).getReg();
489
490 // If the virtual register is already available, just update the instruction
491 // and return.
492 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
493 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
494 MI->getOperand(OpNum).setReg(PR); // Assign the input register
495 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
496 return MI;
497 }
498
499 // Otherwise, we need to fold it into the current instruction, or reload it.
500 // If we have registers available to hold the value, use them.
501 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
502 // If we already have a PhysReg (this happens when the instruction is a
503 // reg-to-reg copy with a PhysReg destination) use that.
504 if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) ||
505 !isPhysRegAvailable(PhysReg))
506 PhysReg = getFreeReg(RC);
507 int FrameIndex = getStackSpaceFor(VirtReg, RC);
508
509 if (PhysReg) { // Register is available, allocate it!
510 assignVirtToPhysReg(VirtReg, PhysReg);
511 } else { // No registers available.
512 // Force some poor hapless value out of the register file to
513 // make room for the new register, and reload it.
514 PhysReg = getReg(MBB, MI, VirtReg, true);
515 }
516
517 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
518
519 DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into "
520 << TRI->getName(PhysReg) << "\n");
521
522 // Add move instruction(s)
523 TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
524 ++NumLoads; // Update statistics
525
526 MF->getRegInfo().setPhysRegUsed(PhysReg);
527 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
528 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
529
530 if (!ReloadedRegs.insert(PhysReg)) {
531 std::string msg;
532 raw_string_ostream Msg(msg);
533 Msg << "Ran out of registers during register allocation!";
534 if (MI->isInlineAsm()) {
535 Msg << "\nPlease check your inline asm statement for invalid "
536 << "constraints:\n";
537 MI->print(Msg, TM);
538 }
539 llvm_report_error(Msg.str());
540 }
541 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
542 *SubRegs; ++SubRegs) {
543 if (!ReloadedRegs.insert(*SubRegs)) {
544 std::string msg;
545 raw_string_ostream Msg(msg);
546 Msg << "Ran out of registers during register allocation!";
547 if (MI->isInlineAsm()) {
548 Msg << "\nPlease check your inline asm statement for invalid "
549 << "constraints:\n";
550 MI->print(Msg, TM);
551 }
552 llvm_report_error(Msg.str());
553 }
554 }
555
556 return MI;
557}
558
559/// isReadModWriteImplicitKill - True if this is an implicit kill for a
560/// read/mod/write register, i.e. update partial register.
561static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
562 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
563 MachineOperand& MO = MI->getOperand(i);
564 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
565 MO.isDef() && !MO.isDead())
566 return true;
567 }
568 return false;
569}
570
571/// isReadModWriteImplicitDef - True if this is an implicit def for a
572/// read/mod/write register, i.e. update partial register.
573static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
574 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
575 MachineOperand& MO = MI->getOperand(i);
576 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
577 !MO.isDef() && MO.isKill())
578 return true;
579 }
580 return false;
581}
582
583// precedes - Helper function to determine with MachineInstr A
584// precedes MachineInstr B within the same MBB.
585static bool precedes(MachineBasicBlock::iterator A,
586 MachineBasicBlock::iterator B) {
587 if (A == B)
588 return false;
589
590 MachineBasicBlock::iterator I = A->getParent()->begin();
591 while (I != A->getParent()->end()) {
592 if (I == A)
593 return true;
594 else if (I == B)
595 return false;
596
597 ++I;
598 }
599
600 return false;
601}
602
603/// ComputeLocalLiveness - Computes liveness of registers within a basic
604/// block, setting the killed/dead flags as appropriate.
605void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
606 MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
607 // Keep track of the most recently seen previous use or def of each reg,
608 // so that we can update them with dead/kill markers.
609 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
610 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
611 I != E; ++I) {
612 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
613 MachineOperand& MO = I->getOperand(i);
614 // Uses don't trigger any flags, but we need to save
615 // them for later. Also, we have to process these
616 // _before_ processing the defs, since an instr
617 // uses regs before it defs them.
618 if (MO.isReg() && MO.getReg() && MO.isUse()) {
619 LastUseDef[MO.getReg()] = std::make_pair(I, i);
620
621
622 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
623
624 const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
625 if (Aliases) {
626 while (*Aliases) {
627 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
628 alias = LastUseDef.find(*Aliases);
629
630 if (alias != LastUseDef.end() && alias->second.first != I)
631 LastUseDef[*Aliases] = std::make_pair(I, i);
632
633 ++Aliases;
634 }
635 }
636 }
637 }
638
639 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
640 MachineOperand& MO = I->getOperand(i);
641 // Defs others than 2-addr redefs _do_ trigger flag changes:
642 // - A def followed by a def is dead
643 // - A use followed by a def is a kill
644 if (MO.isReg() && MO.getReg() && MO.isDef()) {
645 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
646 last = LastUseDef.find(MO.getReg());
647 if (last != LastUseDef.end()) {
648 // Check if this is a two address instruction. If so, then
649 // the def does not kill the use.
650 if (last->second.first == I &&
651 I->isRegTiedToUseOperand(i))
652 continue;
653
654 MachineOperand& lastUD =
655 last->second.first->getOperand(last->second.second);
656 if (lastUD.isDef())
657 lastUD.setIsDead(true);
658 else
659 lastUD.setIsKill(true);
660 }
661
662 LastUseDef[MO.getReg()] = std::make_pair(I, i);
663 }
664 }
665 }
666
667 // Live-out (of the function) registers contain return values of the function,
668 // so we need to make sure they are alive at return time.
669 if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
670 MachineInstr* Ret = &MBB.back();
671 for (MachineRegisterInfo::liveout_iterator
672 I = MF->getRegInfo().liveout_begin(),
673 E = MF->getRegInfo().liveout_end(); I != E; ++I)
674 if (!Ret->readsRegister(*I)) {
675 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
676 LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
677 }
678 }
679
680 // Finally, loop over the final use/def of each reg
681 // in the block and determine if it is dead.
682 for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
683 I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
684 MachineInstr* MI = I->second.first;
685 unsigned idx = I->second.second;
686 MachineOperand& MO = MI->getOperand(idx);
687
688 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
689
690 // A crude approximation of "live-out" calculation
691 bool usedOutsideBlock = isPhysReg ? false :
692 UsedInMultipleBlocks.test(MO.getReg() -
693 TargetRegisterInfo::FirstVirtualRegister);
694 if (!isPhysReg && !usedOutsideBlock)
695 for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
696 UE = MRI.reg_end(); UI != UE; ++UI)
697 // Two cases:
698 // - used in another block
699 // - used in the same block before it is defined (loop)
700 if (UI->getParent() != &MBB ||
701 (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
702 UsedInMultipleBlocks.set(MO.getReg() -
703 TargetRegisterInfo::FirstVirtualRegister);
704 usedOutsideBlock = true;
705 break;
706 }
707
708 // Physical registers and those that are not live-out of the block
709 // are killed/dead at their last use/def within this block.
710 if (isPhysReg || !usedOutsideBlock) {
711 if (MO.isUse()) {
712 // Don't mark uses that are tied to defs as kills.
713 if (!MI->isRegTiedToDefOperand(idx))
714 MO.setIsKill(true);
715 } else
716 MO.setIsDead(true);
717 }
718 }
719}
720
721void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
722 // loop over each instruction
723 MachineBasicBlock::iterator MII = MBB.begin();
724
725 DEBUG({
726 const BasicBlock *LBB = MBB.getBasicBlock();
727 if (LBB)
728 dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName();
729 });
730
731 // Add live-in registers as active.
732 for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
733 E = MBB.livein_end(); I != E; ++I) {
734 unsigned Reg = *I;
735 MF->getRegInfo().setPhysRegUsed(Reg);
736 PhysRegsUsed[Reg] = 0; // It is free and reserved now
737 AddToPhysRegsUseOrder(Reg);
738 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
739 *SubRegs; ++SubRegs) {
740 if (PhysRegsUsed[*SubRegs] != -2) {
741 AddToPhysRegsUseOrder(*SubRegs);
742 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
743 MF->getRegInfo().setPhysRegUsed(*SubRegs);
744 }
745 }
746 }
747
748 ComputeLocalLiveness(MBB);
749
750 // Otherwise, sequentially allocate each instruction in the MBB.
751 while (MII != MBB.end()) {
752 MachineInstr *MI = MII++;
753 const TargetInstrDesc &TID = MI->getDesc();
754 DEBUG({
755 dbgs() << "\nStarting RegAlloc of: " << *MI;
756 dbgs() << " Regs have values: ";
757 for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
758 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
759 dbgs() << "[" << TRI->getName(i)
760 << ",%reg" << PhysRegsUsed[i] << "] ";
761 dbgs() << '\n';
762 });
763
764 // Determine whether this is a copy instruction. The cases where the
765 // source or destination are phys regs are handled specially.
766 unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg;
767 unsigned SrcCopyPhysReg = 0U;
768 bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
769 SrcCopySubReg, DstCopySubReg);
770 if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg))
771 SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg);
772
773 // Loop over the implicit uses, making sure that they are at the head of the
774 // use order list, so they don't get reallocated.
775 if (TID.ImplicitUses) {
776 for (const unsigned *ImplicitUses = TID.ImplicitUses;
777 *ImplicitUses; ++ImplicitUses)
778 MarkPhysRegRecentlyUsed(*ImplicitUses);
779 }
780
781 SmallVector<unsigned, 8> Kills;
782 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
783 MachineOperand& MO = MI->getOperand(i);
784 if (MO.isReg() && MO.isKill()) {
785 if (!MO.isImplicit())
786 Kills.push_back(MO.getReg());
787 else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
788 // These are extra physical register kills when a sub-register
789 // is defined (def of a sub-register is a read/mod/write of the
790 // larger registers). Ignore.
791 Kills.push_back(MO.getReg());
792 }
793 }
794
795 // If any physical regs are earlyclobber, spill any value they might
796 // have in them, then mark them unallocatable.
797 // If any virtual regs are earlyclobber, allocate them now (before
798 // freeing inputs that are killed).
799 if (MI->isInlineAsm()) {
800 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
801 MachineOperand& MO = MI->getOperand(i);
802 if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
803 MO.getReg()) {
804 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
805 unsigned DestVirtReg = MO.getReg();
806 unsigned DestPhysReg;
807
808 // If DestVirtReg already has a value, use it.
809 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
810 DestPhysReg = getReg(MBB, MI, DestVirtReg);
811 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
812 markVirtRegModified(DestVirtReg);
813 getVirtRegLastUse(DestVirtReg) =
814 std::make_pair((MachineInstr*)0, 0);
815 DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
816 << " to %reg" << DestVirtReg << "\n");
817 MO.setReg(DestPhysReg); // Assign the earlyclobber register
818 } else {
819 unsigned Reg = MO.getReg();
820 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
821 // These are extra physical register defs when a sub-register
822 // is defined (def of a sub-register is a read/mod/write of the
823 // larger registers). Ignore.
824 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
825
826 MF->getRegInfo().setPhysRegUsed(Reg);
827 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
828 PhysRegsUsed[Reg] = 0; // It is free and reserved now
829 AddToPhysRegsUseOrder(Reg);
830
831 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
832 *SubRegs; ++SubRegs) {
833 if (PhysRegsUsed[*SubRegs] != -2) {
834 MF->getRegInfo().setPhysRegUsed(*SubRegs);
835 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
836 AddToPhysRegsUseOrder(*SubRegs);
837 }
838 }
839 }
840 }
841 }
842 }
843
844 // If a DBG_VALUE says something is located in a spilled register,
845 // change the DBG_VALUE to be undef, which prevents the register
846 // from being reloaded here. Doing that would change the generated
847 // code, unless another use immediately follows this instruction.
848 if (MI->isDebugValue() &&
849 MI->getNumOperands()==3 && MI->getOperand(0).isReg()) {
850 unsigned VirtReg = MI->getOperand(0).getReg();
851 if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) &&
852 !getVirt2PhysRegMapSlot(VirtReg))
853 MI->getOperand(0).setReg(0U);
854 }
855
856 // Get the used operands into registers. This has the potential to spill
857 // incoming values if we are out of registers. Note that we completely
858 // ignore physical register uses here. We assume that if an explicit
859 // physical register is referenced by the instruction, that it is guaranteed
860 // to be live-in, or the input is badly hosed.
861 //
862 SmallSet<unsigned, 4> ReloadedRegs;
863 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
864 MachineOperand& MO = MI->getOperand(i);
865 // here we are looking for only used operands (never def&use)
866 if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
867 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
868 MI = reloadVirtReg(MBB, MI, i, ReloadedRegs,
869 isCopy ? DstCopyReg : 0);
870 }
871
872 // If this instruction is the last user of this register, kill the
873 // value, freeing the register being used, so it doesn't need to be
874 // spilled to memory.
875 //
876 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
877 unsigned VirtReg = Kills[i];
878 unsigned PhysReg = VirtReg;
879 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
880 // If the virtual register was never materialized into a register, it
881 // might not be in the map, but it won't hurt to zero it out anyway.
882 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
883 PhysReg = PhysRegSlot;
884 PhysRegSlot = 0;
885 } else if (PhysRegsUsed[PhysReg] == -2) {
886 // Unallocatable register dead, ignore.
887 continue;
888 } else {
889 assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
890 "Silently clearing a virtual register?");
891 }
892
893 if (PhysReg) {
894 DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg)
895 << "[%reg" << VirtReg <<"], removing it from live set\n");
896 removePhysReg(PhysReg);
897 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
898 *SubRegs; ++SubRegs) {
899 if (PhysRegsUsed[*SubRegs] != -2) {
900 DEBUG(dbgs() << " Last use of "
901 << TRI->getName(*SubRegs) << "[%reg" << VirtReg
902 <<"], removing it from live set\n");
903 removePhysReg(*SubRegs);
904 }
905 }
906 }
907 }
908
909 // Loop over all of the operands of the instruction, spilling registers that
910 // are defined, and marking explicit destinations in the PhysRegsUsed map.
911 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
912 MachineOperand& MO = MI->getOperand(i);
913 if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
914 !MO.isEarlyClobber() &&
915 TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
916 unsigned Reg = MO.getReg();
917 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
918 // These are extra physical register defs when a sub-register
919 // is defined (def of a sub-register is a read/mod/write of the
920 // larger registers). Ignore.
921 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
922
923 MF->getRegInfo().setPhysRegUsed(Reg);
924 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
925 PhysRegsUsed[Reg] = 0; // It is free and reserved now
926 AddToPhysRegsUseOrder(Reg);
927
928 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
929 *SubRegs; ++SubRegs) {
930 if (PhysRegsUsed[*SubRegs] != -2) {
931 MF->getRegInfo().setPhysRegUsed(*SubRegs);
932 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
933 AddToPhysRegsUseOrder(*SubRegs);
934 }
935 }
936 }
937 }
938
939 // Loop over the implicit defs, spilling them as well.
940 if (TID.ImplicitDefs) {
941 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
942 *ImplicitDefs; ++ImplicitDefs) {
943 unsigned Reg = *ImplicitDefs;
944 if (PhysRegsUsed[Reg] != -2) {
945 spillPhysReg(MBB, MI, Reg, true);
946 AddToPhysRegsUseOrder(Reg);
947 PhysRegsUsed[Reg] = 0; // It is free and reserved now
948 }
949 MF->getRegInfo().setPhysRegUsed(Reg);
950 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
951 *SubRegs; ++SubRegs) {
952 if (PhysRegsUsed[*SubRegs] != -2) {
953 AddToPhysRegsUseOrder(*SubRegs);
954 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
955 MF->getRegInfo().setPhysRegUsed(*SubRegs);
956 }
957 }
958 }
959 }
960
961 SmallVector<unsigned, 8> DeadDefs;
962 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
963 MachineOperand& MO = MI->getOperand(i);
964 if (MO.isReg() && MO.isDead())
965 DeadDefs.push_back(MO.getReg());
966 }
967
968 // Okay, we have allocated all of the source operands and spilled any values
969 // that would be destroyed by defs of this instruction. Loop over the
970 // explicit defs and assign them to a register, spilling incoming values if
971 // we need to scavenge a register.
972 //
973 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
974 MachineOperand& MO = MI->getOperand(i);
975 if (MO.isReg() && MO.isDef() && MO.getReg() &&
976 !MO.isEarlyClobber() &&
977 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
978 unsigned DestVirtReg = MO.getReg();
979 unsigned DestPhysReg;
980
981 // If DestVirtReg already has a value, use it.
982 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) {
983 // If this is a copy try to reuse the input as the output;
984 // that will make the copy go away.
985 // If this is a copy, the source reg is a phys reg, and
986 // that reg is available, use that phys reg for DestPhysReg.
987 // If this is a copy, the source reg is a virtual reg, and
988 // the phys reg that was assigned to that virtual reg is now
989 // available, use that phys reg for DestPhysReg. (If it's now
990 // available that means this was the last use of the source.)
991 if (isCopy &&
992 TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) &&
993 isPhysRegAvailable(SrcCopyReg)) {
994 DestPhysReg = SrcCopyReg;
995 assignVirtToPhysReg(DestVirtReg, DestPhysReg);
996 } else if (isCopy &&
997 TargetRegisterInfo::isVirtualRegister(SrcCopyReg) &&
998 SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) &&
999 MF->getRegInfo().getRegClass(DestVirtReg)->
1000 contains(SrcCopyPhysReg)) {
1001 DestPhysReg = SrcCopyPhysReg;
1002 assignVirtToPhysReg(DestVirtReg, DestPhysReg);
1003 } else
1004 DestPhysReg = getReg(MBB, MI, DestVirtReg);
1005 }
1006 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
1007 markVirtRegModified(DestVirtReg);
1008 getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
1009 DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg)
1010 << " to %reg" << DestVirtReg << "\n");
1011 MO.setReg(DestPhysReg); // Assign the output register
1012 }
1013 }
1014
1015 // If this instruction defines any registers that are immediately dead,
1016 // kill them now.
1017 //
1018 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
1019 unsigned VirtReg = DeadDefs[i];
1020 unsigned PhysReg = VirtReg;
1021 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1022 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
1023 PhysReg = PhysRegSlot;
1024 assert(PhysReg != 0);
1025 PhysRegSlot = 0;
1026 } else if (PhysRegsUsed[PhysReg] == -2) {
1027 // Unallocatable register dead, ignore.
1028 continue;
1029 }
1030
1031 if (PhysReg) {
1032 DEBUG(dbgs() << " Register " << TRI->getName(PhysReg)
1033 << " [%reg" << VirtReg
1034 << "] is never used, removing it from live set\n");
1035 removePhysReg(PhysReg);
1036 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
1037 *AliasSet; ++AliasSet) {
1038 if (PhysRegsUsed[*AliasSet] != -2) {
1039 DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet)
1040 << " [%reg" << *AliasSet
1041 << "] is never used, removing it from live set\n");
1042 removePhysReg(*AliasSet);
1043 }
1044 }
1045 }
1046 }
1047
1048 // Finally, if this is a noop copy instruction, zap it. (Except that if
1049 // the copy is dead, it must be kept to avoid messing up liveness info for
1050 // the register scavenger. See pr4100.)
1051 if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
1052 SrcCopySubReg, DstCopySubReg) &&
1053 SrcCopyReg == DstCopyReg && DeadDefs.empty())
1054 MBB.erase(MI);
1055 }
1056
1057 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1058
1059 // Spill all physical registers holding virtual registers now.
1060 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
1061 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
1062 if (unsigned VirtReg = PhysRegsUsed[i])
1063 spillVirtReg(MBB, MI, VirtReg, i);
1064 else
1065 removePhysReg(i);
1066 }
1067
1068#if 0
1069 // This checking code is very expensive.
1070 bool AllOk = true;
1071 for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
1072 e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
1073 if (unsigned PR = Virt2PhysRegMap[i]) {
1074 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
1075 AllOk = false;
1076 }
1077 assert(AllOk && "Virtual registers still in phys regs?");
1078#endif
1079
1080 // Clear any physical register which appear live at the end of the basic
1081 // block, but which do not hold any virtual registers. e.g., the stack
1082 // pointer.
1083 PhysRegsUseOrder.clear();
1084}
1085
1086/// runOnMachineFunction - Register allocate the whole function
1087///
1088bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
1089 DEBUG(dbgs() << "Machine Function\n");
1090 MF = &Fn;
1091 TM = &Fn.getTarget();
1092 TRI = TM->getRegisterInfo();
1093 TII = TM->getInstrInfo();
1094
1095 PhysRegsUsed.assign(TRI->getNumRegs(), -1);
1096
1097 // At various places we want to efficiently check to see whether a register
1098 // is allocatable. To handle this, we mark all unallocatable registers as
1099 // being pinned down, permanently.
1100 {
1101 BitVector Allocable = TRI->getAllocatableSet(Fn);
1102 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
1103 if (!Allocable[i])
1104 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
1105 }
1106
1107 // initialize the virtual->physical register map to have a 'null'
1108 // mapping for all virtual registers
1109 unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
1110 StackSlotForVirtReg.grow(LastVirtReg);
1111 Virt2PhysRegMap.grow(LastVirtReg);
1112 Virt2LastUseMap.grow(LastVirtReg);
1113 VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1114 UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1115
1116 // Loop over all of the basic blocks, eliminating virtual register references
1117 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
1118 MBB != MBBe; ++MBB)
1119 AllocateBasicBlock(*MBB);
1120
1121 StackSlotForVirtReg.clear();
1122 PhysRegsUsed.clear();
1123 VirtRegModified.clear();
1124 UsedInMultipleBlocks.clear();
1125 Virt2PhysRegMap.clear();
1126 Virt2LastUseMap.clear();
1127 return true;
1128}
1129
1130FunctionPass *llvm::createLocalRegisterAllocator() {
1131 return new RALocal();
1132}