blob: da2e6e42a376336853cce151e09dd9dc840d944e [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64 cl::desc("Enable verbose messages in the \"fast\" "
65 "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68 cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71 cl::desc("Schedule copies of livein registers"),
72 cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77 cl::desc("Pop up a window to show dags before the first "
78 "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81 cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84 cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87 cl::desc("Pop up a window to show dags before the second "
88 "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91 cl::desc("Pop up a window to show dags before the post legalize types"
92 " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95 cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98 cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101 cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105 ViewDAGCombine2 = false,
106 ViewDAGCombineLT = false,
107 ViewISelDAGs = false, ViewSchedDAGs = false,
108 ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124 RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126 cl::init(&createDefaultScheduler),
127 cl::desc("Instruction schedulers available (before register"
128 " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132 createDefaultScheduler);
133
134namespace llvm {
135 //===--------------------------------------------------------------------===//
136 /// createDefaultScheduler - This creates an instruction scheduler appropriate
137 /// for the target.
138 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139 CodeGenOpt::Level OptLevel) {
140 const TargetLowering &TLI = IS->getTargetLowering();
141
142 if (OptLevel == CodeGenOpt::None)
143 return createFastDAGScheduler(IS, OptLevel);
144 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145 return createTDListDAGScheduler(IS, OptLevel);
146 assert(TLI.getSchedulingPreference() ==
147 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148 return createBURRListDAGScheduler(IS, OptLevel);
149 }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag. These
154// instructions are special in various ways, which require special support to
155// insert. The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162 MachineBasicBlock *MBB,
163 DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165 dbgs() << "If a target marks an instruction with "
166 "'usesCustomInserter', it must implement "
167 "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169 llvm_unreachable(0);
170 return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177 MachineBasicBlock::iterator &InsertPos,
178 unsigned VirtReg, unsigned PhysReg,
179 const TargetRegisterClass *RC,
180 DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181 const MachineRegisterInfo &MRI,
182 const TargetRegisterInfo &TRI,
183 const TargetInstrInfo &TII) {
184 unsigned NumUses = 0;
185 MachineInstr *UseMI = NULL;
186 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187 UE = MRI.use_end(); UI != UE; ++UI) {
188 UseMI = &*UI;
189 if (++NumUses > 1)
190 break;
191 }
192
193 // If the number of uses is not one, or the use is not a move instruction,
194 // don't coalesce. Also, only coalesce away a virtual register to virtual
195 // register copy.
196 bool Coalesced = false;
197 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198 if (NumUses == 1 &&
199 TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200 TargetRegisterInfo::isVirtualRegister(DstReg)) {
201 VirtReg = DstReg;
202 Coalesced = true;
203 }
204
205 // Now find an ideal location to insert the copy.
206 MachineBasicBlock::iterator Pos = InsertPos;
207 while (Pos != MBB->begin()) {
208 MachineInstr *PrevMI = prior(Pos);
209 DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210 // copyRegToReg might emit multiple instructions to do a copy.
211 unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212 if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213 // This is what the BB looks like right now:
214 // r1024 = mov r0
215 // ...
216 // r1 = mov r1024
217 //
218 // We want to insert "r1025 = mov r1". Inserting this copy below the
219 // move to r1024 makes it impossible for that move to be coalesced.
220 //
221 // r1025 = mov r1
222 // r1024 = mov r0
223 // ...
224 // r1 = mov 1024
225 // r2 = mov 1025
226 break; // Woot! Found a good location.
227 --Pos;
228 }
229
230 bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231 assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232 (void) Emitted;
233
234 CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235 if (Coalesced) {
236 if (&*InsertPos == UseMI) ++InsertPos;
237 MBB->erase(UseMI);
238 }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245 const MachineRegisterInfo &MRI,
246 const TargetRegisterInfo &TRI,
247 const TargetInstrInfo &TII) {
248 if (SchedLiveInCopies) {
249 // Emit the copies at a heuristically-determined location in the block.
250 DenseMap<MachineInstr*, unsigned> CopyRegMap;
251 MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253 E = MRI.livein_end(); LI != E; ++LI)
254 if (LI->second) {
255 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256 EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257 RC, CopyRegMap, MRI, TRI, TII);
258 }
259 } else {
260 // Emit the copies into the top of the block.
261 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262 E = MRI.livein_end(); LI != E; ++LI)
263 if (LI->second) {
264 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265 bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266 LI->second, LI->first, RC, RC);
267 assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268 (void) Emitted;
269 }
270 }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278 MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279 FuncInfo(new FunctionLoweringInfo(TLI)),
280 CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281 SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282 GFI(),
283 OptLevel(OL),
284 DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288 delete SDB;
289 delete CurDAG;
290 delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298 AU.addRequired<AliasAnalysis>();
299 AU.addPreserved<AliasAnalysis>();
300 AU.addRequired<GCModuleInfo>();
301 AU.addPreserved<GCModuleInfo>();
302 AU.addRequired<DwarfWriter>();
303 AU.addPreserved<DwarfWriter>();
304 MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308 Function &Fn = *mf.getFunction();
309
310 // Do some sanity-checking on the command-line options.
311 assert((!EnableFastISelVerbose || EnableFastISel) &&
312 "-fast-isel-verbose requires -fast-isel");
313 assert((!EnableFastISelAbort || EnableFastISel) &&
314 "-fast-isel-abort requires -fast-isel");
315
316 // Get alias analysis for load/store combining.
317 AA = &getAnalysis<AliasAnalysis>();
318
319 MF = &mf;
320 const TargetInstrInfo &TII = *TM.getInstrInfo();
321 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323 if (Fn.hasGC())
324 GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325 else
326 GFI = 0;
327 RegInfo = &MF->getRegInfo();
328 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331 DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332 CurDAG->init(*MF, MMI, DW);
333 FuncInfo->set(Fn, *MF, EnableFastISel);
334 SDB->init(GFI, *AA);
335
336 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338 // Mark landing pad.
339 FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341 SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343 // If the first basic block in the function has live ins that need to be
344 // copied into vregs, emit the copies into the top of the block before
345 // emitting the code for the block.
346 EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348 // Add function live-ins to entry block live-in set.
349 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350 E = RegInfo->livein_end(); I != E; ++I)
351 MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354 assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355 "Not all catch info was assigned to a landing pad!");
356#endif
357
358 FuncInfo->clear();
359
360 return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366 SelectionDAGBuilder *SDB,
367 FastISel *FastIS, MachineFunction *MF) {
368 if (isa<DbgInfoIntrinsic>(I)) return;
369
370 if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371 DILocation DILoc(Dbg);
372 DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374 SDB->setCurDebugLoc(Loc);
375
376 if (FastIS)
377 FastIS->setCurDebugLoc(Loc);
378
379 // If the function doesn't have a default debug location yet, set
380 // it. This is kind of a hack.
381 if (MF->getDefaultDebugLoc().isUnknown())
382 MF->setDefaultDebugLoc(Loc);
383 }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388 SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389 if (FastIS)
390 FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394 BasicBlock::iterator Begin,
395 BasicBlock::iterator End,
396 bool &HadTailCall) {
397 SDB->setCurrentBasicBlock(BB);
398 unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400 // Lower all of the non-terminator instructions. If a call is emitted
401 // as a tail call, cease emitting nodes for this block.
402 for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403 SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405 if (!isa<TerminatorInst>(I)) {
406 SDB->visit(*I);
407
408 // Set the current debug location back to "unknown" so that it doesn't
409 // spuriously apply to subsequent instructions.
410 ResetDebugLoc(SDB, 0);
411 }
412 }
413
414 if (!SDB->HasTailCall) {
415 // Ensure that all instructions which are used outside of their defining
416 // blocks are available as virtual registers. Invoke is handled elsewhere.
417 for (BasicBlock::iterator I = Begin; I != End; ++I)
418 if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419 SDB->CopyToExportRegsIfNeeded(I);
420
421 // Handle PHI nodes in successor blocks.
422 if (End == LLVMBB->end()) {
423 HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425 // Lower the terminator after the copies are emitted.
426 SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427 SDB->visit(*LLVMBB->getTerminator());
428 ResetDebugLoc(SDB, 0);
429 }
430 }
431
432 // Make sure the root of the DAG is up-to-date.
433 CurDAG->setRoot(SDB->getControlRoot());
434
435 // Final step, emit the lowered DAG as machine code.
436 CodeGenAndEmitDAG();
437 HadTailCall = SDB->HasTailCall;
438 SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445 SmallVector<SDNode*, 128> &Worklist;
446public:
447 SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449 virtual void NodeDeleted(SDNode *N, SDNode *E) {
450 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451 Worklist.end());
452 }
453
454 virtual void NodeUpdated(SDNode *N) {
455 // Ignore updates.
456 }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463 TargetLowering::TargetLoweringOpt &TLO) {
464 SDValue N0 = Op.getOperand(0);
465 EVT VT = Op.getValueType();
466 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467 N0.getOpcode() == ISD::SIGN_EXTEND ||
468 N0.getOpcode() == ISD::ANY_EXTEND) &&
469 N0.getOperand(0).getValueType() == VT) {
470 return TLO.CombineTo(Op, N0.getOperand(0));
471 }
472 return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479 SmallVector<SDNode*, 128> Worklist;
480
481 // Add all the dag nodes to the worklist.
482 Worklist.reserve(CurDAG->allnodes_size());
483 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484 E = CurDAG->allnodes_end(); I != E; ++I)
485 Worklist.push_back(I);
486
487 APInt Mask;
488 APInt KnownZero;
489 APInt KnownOne;
490
491 TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492 while (!Worklist.empty()) {
493 SDNode *N = Worklist.pop_back_val();
494
495 if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496 CurDAG->DeleteNode(N);
497 continue;
498 }
499
500 // Run ShrinkDemandedOp on scalar binary operations.
501 if (N->getNumValues() == 1 &&
502 N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503 unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504 APInt Demanded = APInt::getAllOnesValue(BitWidth);
505 APInt KnownZero, KnownOne;
506 if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507 KnownZero, KnownOne, TLO) ||
508 (N->getOpcode() == ISD::TRUNCATE &&
509 TrivialTruncElim(SDValue(N, 0), TLO))) {
510 // Revisit the node.
511 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512 Worklist.end());
513 Worklist.push_back(N);
514
515 // Replace the old value with the new one.
516 DEBUG(errs() << "\nReplacing ";
517 TLO.Old.getNode()->dump(CurDAG);
518 errs() << "\nWith: ";
519 TLO.New.getNode()->dump(CurDAG);
520 errs() << '\n');
521
522 Worklist.push_back(TLO.New.getNode());
523
524 SDOPsWorkListRemover DeadNodes(Worklist);
525 CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527 if (TLO.Old.getNode()->use_empty()) {
528 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529 i != e; ++i) {
530 SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531 if (OpNode->hasOneUse()) {
532 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533 OpNode), Worklist.end());
534 Worklist.push_back(OpNode);
535 }
536 }
537
538 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539 TLO.Old.getNode()), Worklist.end());
540 CurDAG->DeleteNode(TLO.Old.getNode());
541 }
542 }
543 }
544 }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548 SmallPtrSet<SDNode*, 128> VisitedNodes;
549 SmallVector<SDNode*, 128> Worklist;
550
551 Worklist.push_back(CurDAG->getRoot().getNode());
552
553 APInt Mask;
554 APInt KnownZero;
555 APInt KnownOne;
556
557 do {
558 SDNode *N = Worklist.pop_back_val();
559
560 // If we've already seen this node, ignore it.
561 if (!VisitedNodes.insert(N))
562 continue;
563
564 // Otherwise, add all chain operands to the worklist.
565 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566 if (N->getOperand(i).getValueType() == MVT::Other)
567 Worklist.push_back(N->getOperand(i).getNode());
568
569 // If this is a CopyToReg with a vreg dest, process it.
570 if (N->getOpcode() != ISD::CopyToReg)
571 continue;
572
573 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575 continue;
576
577 // Ignore non-scalar or non-integer values.
578 SDValue Src = N->getOperand(2);
579 EVT SrcVT = Src.getValueType();
580 if (!SrcVT.isInteger() || SrcVT.isVector())
581 continue;
582
583 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587 // Only install this information if it tells us something.
588 if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589 DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590 if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591 FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592 FunctionLoweringInfo::LiveOutInfo &LOI =
593 FuncInfo->LiveOutRegInfo[DestReg];
594 LOI.NumSignBits = NumSignBits;
595 LOI.KnownOne = KnownOne;
596 LOI.KnownZero = KnownZero;
597 }
598 } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602 std::string GroupName;
603 if (TimePassesIsEnabled)
604 GroupName = "Instruction Selection and Scheduling";
605 std::string BlockName;
606 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608 ViewSUnitDAGs)
609 BlockName = MF->getFunction()->getNameStr() + ":" +
610 BB->getBasicBlock()->getNameStr();
611
612 DEBUG(dbgs() << "Initial selection DAG:\n");
613 DEBUG(CurDAG->dump());
614
615 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617 // Run the DAG combiner in pre-legalize mode.
618 if (TimePassesIsEnabled) {
619 NamedRegionTimer T("DAG Combining 1", GroupName);
620 CurDAG->Combine(Unrestricted, *AA, OptLevel);
621 } else {
622 CurDAG->Combine(Unrestricted, *AA, OptLevel);
623 }
624
625 DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626 DEBUG(CurDAG->dump());
627
628 // Second step, hack on the DAG until it only uses operations and types that
629 // the target supports.
630 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631 BlockName);
632
633 bool Changed;
634 if (TimePassesIsEnabled) {
635 NamedRegionTimer T("Type Legalization", GroupName);
636 Changed = CurDAG->LegalizeTypes();
637 } else {
638 Changed = CurDAG->LegalizeTypes();
639 }
640
641 DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642 DEBUG(CurDAG->dump());
643
644 if (Changed) {
645 if (ViewDAGCombineLT)
646 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648 // Run the DAG combiner in post-type-legalize mode.
649 if (TimePassesIsEnabled) {
650 NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652 } else {
653 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654 }
655
656 DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657 DEBUG(CurDAG->dump());
658 }
659
660 if (TimePassesIsEnabled) {
661 NamedRegionTimer T("Vector Legalization", GroupName);
662 Changed = CurDAG->LegalizeVectors();
663 } else {
664 Changed = CurDAG->LegalizeVectors();
665 }
666
667 if (Changed) {
668 if (TimePassesIsEnabled) {
669 NamedRegionTimer T("Type Legalization 2", GroupName);
670 CurDAG->LegalizeTypes();
671 } else {
672 CurDAG->LegalizeTypes();
673 }
674
675 if (ViewDAGCombineLT)
676 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678 // Run the DAG combiner in post-type-legalize mode.
679 if (TimePassesIsEnabled) {
680 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682 } else {
683 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684 }
685
686 DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687 DEBUG(CurDAG->dump());
688 }
689
690 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692 if (TimePassesIsEnabled) {
693 NamedRegionTimer T("DAG Legalization", GroupName);
694 CurDAG->Legalize(OptLevel);
695 } else {
696 CurDAG->Legalize(OptLevel);
697 }
698
699 DEBUG(dbgs() << "Legalized selection DAG:\n");
700 DEBUG(CurDAG->dump());
701
702 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704 // Run the DAG combiner in post-legalize mode.
705 if (TimePassesIsEnabled) {
706 NamedRegionTimer T("DAG Combining 2", GroupName);
707 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708 } else {
709 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710 }
711
712 DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713 DEBUG(CurDAG->dump());
714
715 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717 if (OptLevel != CodeGenOpt::None) {
718 ShrinkDemandedOps();
719 ComputeLiveOutVRegInfo();
720 }
721
722 // Third, instruction select all of the operations to machine code, adding the
723 // code to the MachineBasicBlock.
724 if (TimePassesIsEnabled) {
725 NamedRegionTimer T("Instruction Selection", GroupName);
726 InstructionSelect();
727 } else {
728 InstructionSelect();
729 }
730
731 DEBUG(dbgs() << "Selected selection DAG:\n");
732 DEBUG(CurDAG->dump());
733
734 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736 // Schedule machine code.
737 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738 if (TimePassesIsEnabled) {
739 NamedRegionTimer T("Instruction Scheduling", GroupName);
740 Scheduler->Run(CurDAG, BB, BB->end());
741 } else {
742 Scheduler->Run(CurDAG, BB, BB->end());
743 }
744
745 if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747 // Emit machine code to BB. This can change 'BB' to the last block being
748 // inserted into.
749 if (TimePassesIsEnabled) {
750 NamedRegionTimer T("Instruction Creation", GroupName);
751 BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752 } else {
753 BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754 }
755
756 // Free the scheduler state.
757 if (TimePassesIsEnabled) {
758 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759 delete Scheduler;
760 } else {
761 delete Scheduler;
762 }
763
764 DEBUG(dbgs() << "Selected machine code:\n");
765 DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
769 MachineFunction &MF,
770 MachineModuleInfo *MMI,
771 DwarfWriter *DW,
772 const TargetInstrInfo &TII) {
773 // Initialize the Fast-ISel state, if needed.
774 FastISel *FastIS = 0;
775 if (EnableFastISel)
776 FastIS = TLI.createFastISel(MF, MMI, DW,
777 FuncInfo->ValueMap,
778 FuncInfo->MBBMap,
779 FuncInfo->StaticAllocaMap
780#ifndef NDEBUG
781 , FuncInfo->CatchInfoLost
782#endif
783 );
784
785 unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
786
787 // Iterate over all basic blocks in the function.
788 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
789 BasicBlock *LLVMBB = &*I;
790 BB = FuncInfo->MBBMap[LLVMBB];
791
792 BasicBlock::iterator const Begin = LLVMBB->begin();
793 BasicBlock::iterator const End = LLVMBB->end();
794 BasicBlock::iterator BI = Begin;
795
796 // Lower any arguments needed in this block if this is the entry block.
797 bool SuppressFastISel = false;
798 if (LLVMBB == &Fn.getEntryBlock()) {
799 LowerArguments(LLVMBB);
800
801 // If any of the arguments has the byval attribute, forgo
802 // fast-isel in the entry block.
803 if (FastIS) {
804 unsigned j = 1;
805 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
806 I != E; ++I, ++j)
807 if (Fn.paramHasAttr(j, Attribute::ByVal)) {
808 if (EnableFastISelVerbose || EnableFastISelAbort)
809 dbgs() << "FastISel skips entry block due to byval argument\n";
810 SuppressFastISel = true;
811 break;
812 }
813 }
814 }
815
816 if (MMI && BB->isLandingPad()) {
817 // Add a label to mark the beginning of the landing pad. Deletion of the
818 // landing pad can thus be detected via the MachineModuleInfo.
819 unsigned LabelID = MMI->addLandingPad(BB);
820
821 const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
822 BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
823
824 // Mark exception register as live in.
825 unsigned Reg = TLI.getExceptionAddressRegister();
826 if (Reg) BB->addLiveIn(Reg);
827
828 // Mark exception selector register as live in.
829 Reg = TLI.getExceptionSelectorRegister();
830 if (Reg) BB->addLiveIn(Reg);
831
832 // FIXME: Hack around an exception handling flaw (PR1508): the personality
833 // function and list of typeids logically belong to the invoke (or, if you
834 // like, the basic block containing the invoke), and need to be associated
835 // with it in the dwarf exception handling tables. Currently however the
836 // information is provided by an intrinsic (eh.selector) that can be moved
837 // to unexpected places by the optimizers: if the unwind edge is critical,
838 // then breaking it can result in the intrinsics being in the successor of
839 // the landing pad, not the landing pad itself. This results
840 // in exceptions not being caught because no typeids are associated with
841 // the invoke. This may not be the only way things can go wrong, but it
842 // is the only way we try to work around for the moment.
843 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
844
845 if (Br && Br->isUnconditional()) { // Critical edge?
846 BasicBlock::iterator I, E;
847 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
848 if (isa<EHSelectorInst>(I))
849 break;
850
851 if (I == E)
852 // No catch info found - try to extract some from the successor.
853 CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
854 }
855 }
856
857 // Before doing SelectionDAG ISel, see if FastISel has been requested.
858 if (FastIS && !SuppressFastISel) {
859 // Emit code for any incoming arguments. This must happen before
860 // beginning FastISel on the entry block.
861 if (LLVMBB == &Fn.getEntryBlock()) {
862 CurDAG->setRoot(SDB->getControlRoot());
863 CodeGenAndEmitDAG();
864 SDB->clear();
865 }
866 FastIS->startNewBlock(BB);
867 // Do FastISel on as many instructions as possible.
868 for (; BI != End; ++BI) {
869 // Just before the terminator instruction, insert instructions to
870 // feed PHI nodes in successor blocks.
871 if (isa<TerminatorInst>(BI))
872 if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
873 ResetDebugLoc(SDB, FastIS);
874 if (EnableFastISelVerbose || EnableFastISelAbort) {
875 dbgs() << "FastISel miss: ";
876 BI->dump();
877 }
878 assert(!EnableFastISelAbort &&
879 "FastISel didn't handle a PHI in a successor");
880 break;
881 }
882
883 SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
884
885 // Try to select the instruction with FastISel.
886 if (FastIS->SelectInstruction(BI)) {
887 ResetDebugLoc(SDB, FastIS);
888 continue;
889 }
890
891 // Clear out the debug location so that it doesn't carry over to
892 // unrelated instructions.
893 ResetDebugLoc(SDB, FastIS);
894
895 // Then handle certain instructions as single-LLVM-Instruction blocks.
896 if (isa<CallInst>(BI)) {
897 if (EnableFastISelVerbose || EnableFastISelAbort) {
898 dbgs() << "FastISel missed call: ";
899 BI->dump();
900 }
901
902 if (!BI->getType()->isVoidTy()) {
903 unsigned &R = FuncInfo->ValueMap[BI];
904 if (!R)
905 R = FuncInfo->CreateRegForValue(BI);
906 }
907
908 bool HadTailCall = false;
909 SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
910
911 // If the call was emitted as a tail call, we're done with the block.
912 if (HadTailCall) {
913 BI = End;
914 break;
915 }
916
917 // If the instruction was codegen'd with multiple blocks,
918 // inform the FastISel object where to resume inserting.
919 FastIS->setCurrentBlock(BB);
920 continue;
921 }
922
923 // Otherwise, give up on FastISel for the rest of the block.
924 // For now, be a little lenient about non-branch terminators.
925 if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
926 if (EnableFastISelVerbose || EnableFastISelAbort) {
927 dbgs() << "FastISel miss: ";
928 BI->dump();
929 }
930 if (EnableFastISelAbort)
931 // The "fast" selector couldn't handle something and bailed.
932 // For the purpose of debugging, just abort.
933 llvm_unreachable("FastISel didn't select the entire block");
934 }
935 break;
936 }
937 }
938
939 // Run SelectionDAG instruction selection on the remainder of the block
940 // not handled by FastISel. If FastISel is not run, this is the entire
941 // block.
942 if (BI != End) {
943 bool HadTailCall;
944 SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
945 }
946
947 FinishBasicBlock();
948 }
949
950 delete FastIS;
951}
952
953void
954SelectionDAGISel::FinishBasicBlock() {
955
956 DEBUG(dbgs() << "Target-post-processed machine code:\n");
957 DEBUG(BB->dump());
958
959 DEBUG(dbgs() << "Total amount of phi nodes to update: "
960 << SDB->PHINodesToUpdate.size() << "\n");
961 DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
962 dbgs() << "Node " << i << " : ("
963 << SDB->PHINodesToUpdate[i].first
964 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
965
966 // Next, now that we know what the last MBB the LLVM BB expanded is, update
967 // PHI nodes in successors.
968 if (SDB->SwitchCases.empty() &&
969 SDB->JTCases.empty() &&
970 SDB->BitTestCases.empty()) {
971 for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
972 MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
973 assert(PHI->isPHI() &&
974 "This is not a machine PHI node that we are updating!");
975 PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
976 false));
977 PHI->addOperand(MachineOperand::CreateMBB(BB));
978 }
979 SDB->PHINodesToUpdate.clear();
980 return;
981 }
982
983 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
984 // Lower header first, if it wasn't already lowered
985 if (!SDB->BitTestCases[i].Emitted) {
986 // Set the current basic block to the mbb we wish to insert the code into
987 BB = SDB->BitTestCases[i].Parent;
988 SDB->setCurrentBasicBlock(BB);
989 // Emit the code
990 SDB->visitBitTestHeader(SDB->BitTestCases[i]);
991 CurDAG->setRoot(SDB->getRoot());
992 CodeGenAndEmitDAG();
993 SDB->clear();
994 }
995
996 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
997 // Set the current basic block to the mbb we wish to insert the code into
998 BB = SDB->BitTestCases[i].Cases[j].ThisBB;
999 SDB->setCurrentBasicBlock(BB);
1000 // Emit the code
1001 if (j+1 != ej)
1002 SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1003 SDB->BitTestCases[i].Reg,
1004 SDB->BitTestCases[i].Cases[j]);
1005 else
1006 SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1007 SDB->BitTestCases[i].Reg,
1008 SDB->BitTestCases[i].Cases[j]);
1009
1010
1011 CurDAG->setRoot(SDB->getRoot());
1012 CodeGenAndEmitDAG();
1013 SDB->clear();
1014 }
1015
1016 // Update PHI Nodes
1017 for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1018 MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1019 MachineBasicBlock *PHIBB = PHI->getParent();
1020 assert(PHI->isPHI() &&
1021 "This is not a machine PHI node that we are updating!");
1022 // This is "default" BB. We have two jumps to it. From "header" BB and
1023 // from last "case" BB.
1024 if (PHIBB == SDB->BitTestCases[i].Default) {
1025 PHI->addOperand(MachineOperand::
1026 CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1027 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1028 PHI->addOperand(MachineOperand::
1029 CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1031 back().ThisBB));
1032 }
1033 // One of "cases" BB.
1034 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1035 j != ej; ++j) {
1036 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1037 if (cBB->isSuccessor(PHIBB)) {
1038 PHI->addOperand(MachineOperand::
1039 CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1040 PHI->addOperand(MachineOperand::CreateMBB(cBB));
1041 }
1042 }
1043 }
1044 }
1045 SDB->BitTestCases.clear();
1046
1047 // If the JumpTable record is filled in, then we need to emit a jump table.
1048 // Updating the PHI nodes is tricky in this case, since we need to determine
1049 // whether the PHI is a successor of the range check MBB or the jump table MBB
1050 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1051 // Lower header first, if it wasn't already lowered
1052 if (!SDB->JTCases[i].first.Emitted) {
1053 // Set the current basic block to the mbb we wish to insert the code into
1054 BB = SDB->JTCases[i].first.HeaderBB;
1055 SDB->setCurrentBasicBlock(BB);
1056 // Emit the code
1057 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1058 CurDAG->setRoot(SDB->getRoot());
1059 CodeGenAndEmitDAG();
1060 SDB->clear();
1061 }
1062
1063 // Set the current basic block to the mbb we wish to insert the code into
1064 BB = SDB->JTCases[i].second.MBB;
1065 SDB->setCurrentBasicBlock(BB);
1066 // Emit the code
1067 SDB->visitJumpTable(SDB->JTCases[i].second);
1068 CurDAG->setRoot(SDB->getRoot());
1069 CodeGenAndEmitDAG();
1070 SDB->clear();
1071
1072 // Update PHI Nodes
1073 for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1074 MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1075 MachineBasicBlock *PHIBB = PHI->getParent();
1076 assert(PHI->isPHI() &&
1077 "This is not a machine PHI node that we are updating!");
1078 // "default" BB. We can go there only from header BB.
1079 if (PHIBB == SDB->JTCases[i].second.Default) {
1080 PHI->addOperand
1081 (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1082 PHI->addOperand
1083 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1084 }
1085 // JT BB. Just iterate over successors here
1086 if (BB->isSuccessor(PHIBB)) {
1087 PHI->addOperand
1088 (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1089 PHI->addOperand(MachineOperand::CreateMBB(BB));
1090 }
1091 }
1092 }
1093 SDB->JTCases.clear();
1094
1095 // If the switch block involved a branch to one of the actual successors, we
1096 // need to update PHI nodes in that block.
1097 for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1098 MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1099 assert(PHI->isPHI() &&
1100 "This is not a machine PHI node that we are updating!");
1101 if (BB->isSuccessor(PHI->getParent())) {
1102 PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1103 false));
1104 PHI->addOperand(MachineOperand::CreateMBB(BB));
1105 }
1106 }
1107
1108 // If we generated any switch lowering information, build and codegen any
1109 // additional DAGs necessary.
1110 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1111 // Set the current basic block to the mbb we wish to insert the code into
1112 MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1113 SDB->setCurrentBasicBlock(BB);
1114
1115 // Emit the code
1116 SDB->visitSwitchCase(SDB->SwitchCases[i]);
1117 CurDAG->setRoot(SDB->getRoot());
1118 CodeGenAndEmitDAG();
1119
1120 // Handle any PHI nodes in successors of this chunk, as if we were coming
1121 // from the original BB before switch expansion. Note that PHI nodes can
1122 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1123 // handle them the right number of times.
1124 while ((BB = SDB->SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
1125 // If new BB's are created during scheduling, the edges may have been
1126 // updated. That is, the edge from ThisBB to BB may have been split and
1127 // BB's predecessor is now another block.
1128 DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1129 SDB->EdgeMapping.find(BB);
1130 if (EI != SDB->EdgeMapping.end())
1131 ThisBB = EI->second;
1132
1133 // BB may have been removed from the CFG if a branch was constant folded.
1134 if (ThisBB->isSuccessor(BB)) {
1135 for (MachineBasicBlock::iterator Phi = BB->begin();
1136 Phi != BB->end() && Phi->isPHI();
1137 ++Phi) {
1138 // This value for this PHI node is recorded in PHINodesToUpdate.
1139 for (unsigned pn = 0; ; ++pn) {
1140 assert(pn != SDB->PHINodesToUpdate.size() &&
1141 "Didn't find PHI entry!");
1142 if (SDB->PHINodesToUpdate[pn].first == Phi) {
1143 Phi->addOperand(MachineOperand::
1144 CreateReg(SDB->PHINodesToUpdate[pn].second,
1145 false));
1146 Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1147 break;
1148 }
1149 }
1150 }
1151 }
1152
1153 // Don't process RHS if same block as LHS.
1154 if (BB == SDB->SwitchCases[i].FalseBB)
1155 SDB->SwitchCases[i].FalseBB = 0;
1156
1157 // If we haven't handled the RHS, do so now. Otherwise, we're done.
1158 SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1159 SDB->SwitchCases[i].FalseBB = 0;
1160 }
1161 assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1162 SDB->clear();
1163 }
1164 SDB->SwitchCases.clear();
1165
1166 SDB->PHINodesToUpdate.clear();
1167}
1168
1169
1170/// Create the scheduler. If a specific scheduler was specified
1171/// via the SchedulerRegistry, use it, otherwise select the
1172/// one preferred by the target.
1173///
1174ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1175 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1176
1177 if (!Ctor) {
1178 Ctor = ISHeuristic;
1179 RegisterScheduler::setDefault(Ctor);
1180 }
1181
1182 return Ctor(this, OptLevel);
1183}
1184
1185ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1186 return new ScheduleHazardRecognizer();
1187}
1188
1189//===----------------------------------------------------------------------===//
1190// Helper functions used by the generated instruction selector.
1191//===----------------------------------------------------------------------===//
1192// Calls to these methods are generated by tblgen.
1193
1194/// CheckAndMask - The isel is trying to match something like (and X, 255). If
1195/// the dag combiner simplified the 255, we still want to match. RHS is the
1196/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1197/// specified in the .td file (e.g. 255).
1198bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1199 int64_t DesiredMaskS) const {
1200 const APInt &ActualMask = RHS->getAPIntValue();
1201 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1202
1203 // If the actual mask exactly matches, success!
1204 if (ActualMask == DesiredMask)
1205 return true;
1206
1207 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1208 if (ActualMask.intersects(~DesiredMask))
1209 return false;
1210
1211 // Otherwise, the DAG Combiner may have proven that the value coming in is
1212 // either already zero or is not demanded. Check for known zero input bits.
1213 APInt NeededMask = DesiredMask & ~ActualMask;
1214 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1215 return true;
1216
1217 // TODO: check to see if missing bits are just not demanded.
1218
1219 // Otherwise, this pattern doesn't match.
1220 return false;
1221}
1222
1223/// CheckOrMask - The isel is trying to match something like (or X, 255). If
1224/// the dag combiner simplified the 255, we still want to match. RHS is the
1225/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1226/// specified in the .td file (e.g. 255).
1227bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1228 int64_t DesiredMaskS) const {
1229 const APInt &ActualMask = RHS->getAPIntValue();
1230 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1231
1232 // If the actual mask exactly matches, success!
1233 if (ActualMask == DesiredMask)
1234 return true;
1235
1236 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1237 if (ActualMask.intersects(~DesiredMask))
1238 return false;
1239
1240 // Otherwise, the DAG Combiner may have proven that the value coming in is
1241 // either already zero or is not demanded. Check for known zero input bits.
1242 APInt NeededMask = DesiredMask & ~ActualMask;
1243
1244 APInt KnownZero, KnownOne;
1245 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1246
1247 // If all the missing bits in the or are already known to be set, match!
1248 if ((NeededMask & KnownOne) == NeededMask)
1249 return true;
1250
1251 // TODO: check to see if missing bits are just not demanded.
1252
1253 // Otherwise, this pattern doesn't match.
1254 return false;
1255}
1256
1257
1258/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1259/// by tblgen. Others should not call it.
1260void SelectionDAGISel::
1261SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1262 std::vector<SDValue> InOps;
1263 std::swap(InOps, Ops);
1264
1265 Ops.push_back(InOps[0]); // input chain.
1266 Ops.push_back(InOps[1]); // input asm string.
1267
1268 unsigned i = 2, e = InOps.size();
1269 if (InOps[e-1].getValueType() == MVT::Flag)
1270 --e; // Don't process a flag operand if it is here.
1271
1272 while (i != e) {
1273 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1274 if ((Flags & 7) != 4 /*MEM*/) {
1275 // Just skip over this operand, copying the operands verbatim.
1276 Ops.insert(Ops.end(), InOps.begin()+i,
1277 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1278 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1279 } else {
1280 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1281 "Memory operand with multiple values?");
1282 // Otherwise, this is a memory operand. Ask the target to select it.
1283 std::vector<SDValue> SelOps;
1284 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1285 llvm_report_error("Could not match memory address. Inline asm"
1286 " failure!");
1287 }
1288
1289 // Add this to the output node.
1290 Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1291 MVT::i32));
1292 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1293 i += 2;
1294 }
1295 }
1296
1297 // Add the flag input back if present.
1298 if (e != InOps.size())
1299 Ops.push_back(InOps.back());
1300}
1301
1302/// findFlagUse - Return use of EVT::Flag value produced by the specified
1303/// SDNode.
1304///
1305static SDNode *findFlagUse(SDNode *N) {
1306 unsigned FlagResNo = N->getNumValues()-1;
1307 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1308 SDUse &Use = I.getUse();
1309 if (Use.getResNo() == FlagResNo)
1310 return Use.getUser();
1311 }
1312 return NULL;
1313}
1314
1315/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1316/// This function recursively traverses up the operand chain, ignoring
1317/// certain nodes.
1318static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1319 SDNode *Root,
1320 SmallPtrSet<SDNode*, 16> &Visited) {
1321 if (Use->getNodeId() < Def->getNodeId() ||
1322 !Visited.insert(Use))
1323 return false;
1324
1325 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1326 SDNode *N = Use->getOperand(i).getNode();
1327 if (N == Def) {
1328 if (Use == ImmedUse || Use == Root)
1329 continue; // We are not looking for immediate use.
1330 assert(N != Root);
1331 return true;
1332 }
1333
1334 // Traverse up the operand chain.
1335 if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1336 return true;
1337 }
1338 return false;
1339}
1340
1341/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1342/// be reached. Return true if that's the case. However, ignore direct uses
1343/// by ImmedUse (which would be U in the example illustrated in
1344/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1345/// case).
1346/// FIXME: to be really generic, we should allow direct use by any node
1347/// that is being folded. But realisticly since we only fold loads which
1348/// have one non-chain use, we only need to watch out for load/op/store
1349/// and load/op/cmp case where the root (store / cmp) may reach the load via
1350/// its chain operand.
1351static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1352 SmallPtrSet<SDNode*, 16> Visited;
1353 return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1354}
1355
1356/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1357/// U can be folded during instruction selection that starts at Root and
1358/// folding N is profitable.
1359bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1360 SDNode *Root) const {
1361 if (OptLevel == CodeGenOpt::None) return false;
1362
1363 // If Root use can somehow reach N through a path that that doesn't contain
1364 // U then folding N would create a cycle. e.g. In the following
1365 // diagram, Root can reach N through X. If N is folded into into Root, then
1366 // X is both a predecessor and a successor of U.
1367 //
1368 // [N*] //
1369 // ^ ^ //
1370 // / \ //
1371 // [U*] [X]? //
1372 // ^ ^ //
1373 // \ / //
1374 // \ / //
1375 // [Root*] //
1376 //
1377 // * indicates nodes to be folded together.
1378 //
1379 // If Root produces a flag, then it gets (even more) interesting. Since it
1380 // will be "glued" together with its flag use in the scheduler, we need to
1381 // check if it might reach N.
1382 //
1383 // [N*] //
1384 // ^ ^ //
1385 // / \ //
1386 // [U*] [X]? //
1387 // ^ ^ //
1388 // \ \ //
1389 // \ | //
1390 // [Root*] | //
1391 // ^ | //
1392 // f | //
1393 // | / //
1394 // [Y] / //
1395 // ^ / //
1396 // f / //
1397 // | / //
1398 // [FU] //
1399 //
1400 // If FU (flag use) indirectly reaches N (the load), and Root folds N
1401 // (call it Fold), then X is a predecessor of FU and a successor of
1402 // Fold. But since Fold and FU are flagged together, this will create
1403 // a cycle in the scheduling graph.
1404
1405 EVT VT = Root->getValueType(Root->getNumValues()-1);
1406 while (VT == MVT::Flag) {
1407 SDNode *FU = findFlagUse(Root);
1408 if (FU == NULL)
1409 break;
1410 Root = FU;
1411 VT = Root->getValueType(Root->getNumValues()-1);
1412 }
1413
1414 return !isNonImmUse(Root, N, U);
1415}
1416
1417SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1418 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1419 SelectInlineAsmMemoryOperands(Ops);
1420
1421 std::vector<EVT> VTs;
1422 VTs.push_back(MVT::Other);
1423 VTs.push_back(MVT::Flag);
1424 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1425 VTs, &Ops[0], Ops.size());
1426 return New.getNode();
1427}
1428
1429SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1430 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1431}
1432
1433SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1434 SDValue Chain = N->getOperand(0);
1435 unsigned C = cast<LabelSDNode>(N)->getLabelID();
1436 SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1437 return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1438 MVT::Other, Tmp, Chain);
1439}
1440
1441void SelectionDAGISel::CannotYetSelect(SDNode *N) {
1442 std::string msg;
1443 raw_string_ostream Msg(msg);
1444 Msg << "Cannot yet select: ";
1445 N->printrFull(Msg, CurDAG);
1446 llvm_report_error(Msg.str());
1447}
1448
1449void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
1450 dbgs() << "Cannot yet select: ";
1451 unsigned iid =
1452 cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
1453 MVT::Other))->getZExtValue();
1454 if (iid < Intrinsic::num_intrinsics)
1455 llvm_report_error("Cannot yet select: intrinsic %" +
1456 Intrinsic::getName((Intrinsic::ID)iid));
1457 else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1458 llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1459 tii->getName(iid));
1460}
1461
1462char SelectionDAGISel::ID = 0;