Shih-wei Liao | e264f62 | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements lowering for the llvm.gc* intrinsics for targets that do |
| 11 | // not natively support them (which includes the C backend). Note that the code |
| 12 | // generated is not quite as efficient as algorithms which generate stack maps |
| 13 | // to identify roots. |
| 14 | // |
| 15 | // This pass implements the code transformation described in this paper: |
| 16 | // "Accurate Garbage Collection in an Uncooperative Environment" |
| 17 | // Fergus Henderson, ISMM, 2002 |
| 18 | // |
| 19 | // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with |
| 20 | // ShadowStackGC. |
| 21 | // |
| 22 | // In order to support this particular transformation, all stack roots are |
| 23 | // coallocated in the stack. This allows a fully target-independent stack map |
| 24 | // while introducing only minor runtime overhead. |
| 25 | // |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #define DEBUG_TYPE "shadowstackgc" |
| 29 | #include "llvm/CodeGen/GCs.h" |
| 30 | #include "llvm/ADT/StringExtras.h" |
| 31 | #include "llvm/CodeGen/GCStrategy.h" |
| 32 | #include "llvm/IntrinsicInst.h" |
| 33 | #include "llvm/Module.h" |
| 34 | #include "llvm/Support/IRBuilder.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | |
| 38 | namespace { |
| 39 | |
| 40 | class ShadowStackGC : public GCStrategy { |
| 41 | /// RootChain - This is the global linked-list that contains the chain of GC |
| 42 | /// roots. |
| 43 | GlobalVariable *Head; |
| 44 | |
| 45 | /// StackEntryTy - Abstract type of a link in the shadow stack. |
| 46 | /// |
| 47 | const StructType *StackEntryTy; |
| 48 | |
| 49 | /// Roots - GC roots in the current function. Each is a pair of the |
| 50 | /// intrinsic call and its corresponding alloca. |
| 51 | std::vector<std::pair<CallInst*,AllocaInst*> > Roots; |
| 52 | |
| 53 | public: |
| 54 | ShadowStackGC(); |
| 55 | |
| 56 | bool initializeCustomLowering(Module &M); |
| 57 | bool performCustomLowering(Function &F); |
| 58 | |
| 59 | private: |
| 60 | bool IsNullValue(Value *V); |
| 61 | Constant *GetFrameMap(Function &F); |
| 62 | const Type* GetConcreteStackEntryType(Function &F); |
| 63 | void CollectRoots(Function &F); |
| 64 | static GetElementPtrInst *CreateGEP(LLVMContext &Context, |
| 65 | IRBuilder<> &B, Value *BasePtr, |
| 66 | int Idx1, const char *Name); |
| 67 | static GetElementPtrInst *CreateGEP(LLVMContext &Context, |
| 68 | IRBuilder<> &B, Value *BasePtr, |
| 69 | int Idx1, int Idx2, const char *Name); |
| 70 | }; |
| 71 | |
| 72 | } |
| 73 | |
| 74 | static GCRegistry::Add<ShadowStackGC> |
| 75 | X("shadow-stack", "Very portable GC for uncooperative code generators"); |
| 76 | |
| 77 | namespace { |
| 78 | /// EscapeEnumerator - This is a little algorithm to find all escape points |
| 79 | /// from a function so that "finally"-style code can be inserted. In addition |
| 80 | /// to finding the existing return and unwind instructions, it also (if |
| 81 | /// necessary) transforms any call instructions into invokes and sends them to |
| 82 | /// a landing pad. |
| 83 | /// |
| 84 | /// It's wrapped up in a state machine using the same transform C# uses for |
| 85 | /// 'yield return' enumerators, This transform allows it to be non-allocating. |
| 86 | class EscapeEnumerator { |
| 87 | Function &F; |
| 88 | const char *CleanupBBName; |
| 89 | |
| 90 | // State. |
| 91 | int State; |
| 92 | Function::iterator StateBB, StateE; |
| 93 | IRBuilder<> Builder; |
| 94 | |
| 95 | public: |
| 96 | EscapeEnumerator(Function &F, const char *N = "cleanup") |
| 97 | : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {} |
| 98 | |
| 99 | IRBuilder<> *Next() { |
| 100 | switch (State) { |
| 101 | default: |
| 102 | return 0; |
| 103 | |
| 104 | case 0: |
| 105 | StateBB = F.begin(); |
| 106 | StateE = F.end(); |
| 107 | State = 1; |
| 108 | |
| 109 | case 1: |
| 110 | // Find all 'return' and 'unwind' instructions. |
| 111 | while (StateBB != StateE) { |
| 112 | BasicBlock *CurBB = StateBB++; |
| 113 | |
| 114 | // Branches and invokes do not escape, only unwind and return do. |
| 115 | TerminatorInst *TI = CurBB->getTerminator(); |
| 116 | if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI)) |
| 117 | continue; |
| 118 | |
| 119 | Builder.SetInsertPoint(TI->getParent(), TI); |
| 120 | return &Builder; |
| 121 | } |
| 122 | |
| 123 | State = 2; |
| 124 | |
| 125 | // Find all 'call' instructions. |
| 126 | SmallVector<Instruction*,16> Calls; |
| 127 | for (Function::iterator BB = F.begin(), |
| 128 | E = F.end(); BB != E; ++BB) |
| 129 | for (BasicBlock::iterator II = BB->begin(), |
| 130 | EE = BB->end(); II != EE; ++II) |
| 131 | if (CallInst *CI = dyn_cast<CallInst>(II)) |
| 132 | if (!CI->getCalledFunction() || |
| 133 | !CI->getCalledFunction()->getIntrinsicID()) |
| 134 | Calls.push_back(CI); |
| 135 | |
| 136 | if (Calls.empty()) |
| 137 | return 0; |
| 138 | |
| 139 | // Create a cleanup block. |
| 140 | BasicBlock *CleanupBB = BasicBlock::Create(F.getContext(), |
| 141 | CleanupBBName, &F); |
| 142 | UnwindInst *UI = new UnwindInst(F.getContext(), CleanupBB); |
| 143 | |
| 144 | // Transform the 'call' instructions into 'invoke's branching to the |
| 145 | // cleanup block. Go in reverse order to make prettier BB names. |
| 146 | SmallVector<Value*,16> Args; |
| 147 | for (unsigned I = Calls.size(); I != 0; ) { |
| 148 | CallInst *CI = cast<CallInst>(Calls[--I]); |
| 149 | |
| 150 | // Split the basic block containing the function call. |
| 151 | BasicBlock *CallBB = CI->getParent(); |
| 152 | BasicBlock *NewBB = |
| 153 | CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); |
| 154 | |
| 155 | // Remove the unconditional branch inserted at the end of CallBB. |
| 156 | CallBB->getInstList().pop_back(); |
| 157 | NewBB->getInstList().remove(CI); |
| 158 | |
| 159 | // Create a new invoke instruction. |
| 160 | Args.clear(); |
| 161 | Args.append(CI->op_begin() + 1, CI->op_end()); |
| 162 | |
| 163 | InvokeInst *II = InvokeInst::Create(CI->getOperand(0), |
| 164 | NewBB, CleanupBB, |
| 165 | Args.begin(), Args.end(), |
| 166 | CI->getName(), CallBB); |
| 167 | II->setCallingConv(CI->getCallingConv()); |
| 168 | II->setAttributes(CI->getAttributes()); |
| 169 | CI->replaceAllUsesWith(II); |
| 170 | delete CI; |
| 171 | } |
| 172 | |
| 173 | Builder.SetInsertPoint(UI->getParent(), UI); |
| 174 | return &Builder; |
| 175 | } |
| 176 | } |
| 177 | }; |
| 178 | } |
| 179 | |
| 180 | // ----------------------------------------------------------------------------- |
| 181 | |
| 182 | void llvm::linkShadowStackGC() { } |
| 183 | |
| 184 | ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) { |
| 185 | InitRoots = true; |
| 186 | CustomRoots = true; |
| 187 | } |
| 188 | |
| 189 | Constant *ShadowStackGC::GetFrameMap(Function &F) { |
| 190 | // doInitialization creates the abstract type of this value. |
| 191 | const Type *VoidPtr = Type::getInt8PtrTy(F.getContext()); |
| 192 | |
| 193 | // Truncate the ShadowStackDescriptor if some metadata is null. |
| 194 | unsigned NumMeta = 0; |
| 195 | SmallVector<Constant*,16> Metadata; |
| 196 | for (unsigned I = 0; I != Roots.size(); ++I) { |
| 197 | Constant *C = cast<Constant>(Roots[I].first->getOperand(2)); |
| 198 | if (!C->isNullValue()) |
| 199 | NumMeta = I + 1; |
| 200 | Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); |
| 201 | } |
| 202 | |
| 203 | Constant *BaseElts[] = { |
| 204 | ConstantInt::get(Type::getInt32Ty(F.getContext()), Roots.size(), false), |
| 205 | ConstantInt::get(Type::getInt32Ty(F.getContext()), NumMeta, false), |
| 206 | }; |
| 207 | |
| 208 | Constant *DescriptorElts[] = { |
| 209 | ConstantStruct::get(F.getContext(), BaseElts, 2, false), |
| 210 | ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), |
| 211 | Metadata.begin(), NumMeta) |
| 212 | }; |
| 213 | |
| 214 | Constant *FrameMap = ConstantStruct::get(F.getContext(), DescriptorElts, 2, |
| 215 | false); |
| 216 | |
| 217 | std::string TypeName("gc_map."); |
| 218 | TypeName += utostr(NumMeta); |
| 219 | F.getParent()->addTypeName(TypeName, FrameMap->getType()); |
| 220 | |
| 221 | // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems |
| 222 | // that, short of multithreaded LLVM, it should be safe; all that is |
| 223 | // necessary is that a simple Module::iterator loop not be invalidated. |
| 224 | // Appending to the GlobalVariable list is safe in that sense. |
| 225 | // |
| 226 | // All of the output passes emit globals last. The ExecutionEngine |
| 227 | // explicitly supports adding globals to the module after |
| 228 | // initialization. |
| 229 | // |
| 230 | // Still, if it isn't deemed acceptable, then this transformation needs |
| 231 | // to be a ModulePass (which means it cannot be in the 'llc' pipeline |
| 232 | // (which uses a FunctionPassManager (which segfaults (not asserts) if |
| 233 | // provided a ModulePass))). |
| 234 | Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, |
| 235 | GlobalVariable::InternalLinkage, |
| 236 | FrameMap, "__gc_" + F.getName()); |
| 237 | |
| 238 | Constant *GEPIndices[2] = { |
| 239 | ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), |
| 240 | ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) |
| 241 | }; |
| 242 | return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2); |
| 243 | } |
| 244 | |
| 245 | const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) { |
| 246 | // doInitialization creates the generic version of this type. |
| 247 | std::vector<const Type*> EltTys; |
| 248 | EltTys.push_back(StackEntryTy); |
| 249 | for (size_t I = 0; I != Roots.size(); I++) |
| 250 | EltTys.push_back(Roots[I].second->getAllocatedType()); |
| 251 | Type *Ty = StructType::get(F.getContext(), EltTys); |
| 252 | |
| 253 | std::string TypeName("gc_stackentry."); |
| 254 | TypeName += F.getName(); |
| 255 | F.getParent()->addTypeName(TypeName, Ty); |
| 256 | |
| 257 | return Ty; |
| 258 | } |
| 259 | |
| 260 | /// doInitialization - If this module uses the GC intrinsics, find them now. If |
| 261 | /// not, exit fast. |
| 262 | bool ShadowStackGC::initializeCustomLowering(Module &M) { |
| 263 | // struct FrameMap { |
| 264 | // int32_t NumRoots; // Number of roots in stack frame. |
| 265 | // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. |
| 266 | // void *Meta[]; // May be absent for roots without metadata. |
| 267 | // }; |
| 268 | std::vector<const Type*> EltTys; |
| 269 | // 32 bits is ok up to a 32GB stack frame. :) |
| 270 | EltTys.push_back(Type::getInt32Ty(M.getContext())); |
| 271 | // Specifies length of variable length array. |
| 272 | EltTys.push_back(Type::getInt32Ty(M.getContext())); |
| 273 | StructType *FrameMapTy = StructType::get(M.getContext(), EltTys); |
| 274 | M.addTypeName("gc_map", FrameMapTy); |
| 275 | PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); |
| 276 | |
| 277 | // struct StackEntry { |
| 278 | // ShadowStackEntry *Next; // Caller's stack entry. |
| 279 | // FrameMap *Map; // Pointer to constant FrameMap. |
| 280 | // void *Roots[]; // Stack roots (in-place array, so we pretend). |
| 281 | // }; |
| 282 | OpaqueType *RecursiveTy = OpaqueType::get(M.getContext()); |
| 283 | |
| 284 | EltTys.clear(); |
| 285 | EltTys.push_back(PointerType::getUnqual(RecursiveTy)); |
| 286 | EltTys.push_back(FrameMapPtrTy); |
| 287 | PATypeHolder LinkTyH = StructType::get(M.getContext(), EltTys); |
| 288 | |
| 289 | RecursiveTy->refineAbstractTypeTo(LinkTyH.get()); |
| 290 | StackEntryTy = cast<StructType>(LinkTyH.get()); |
| 291 | const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); |
| 292 | M.addTypeName("gc_stackentry", LinkTyH.get()); // FIXME: Is this safe from |
| 293 | // a FunctionPass? |
| 294 | |
| 295 | // Get the root chain if it already exists. |
| 296 | Head = M.getGlobalVariable("llvm_gc_root_chain"); |
| 297 | if (!Head) { |
| 298 | // If the root chain does not exist, insert a new one with linkonce |
| 299 | // linkage! |
| 300 | Head = new GlobalVariable(M, StackEntryPtrTy, false, |
| 301 | GlobalValue::LinkOnceAnyLinkage, |
| 302 | Constant::getNullValue(StackEntryPtrTy), |
| 303 | "llvm_gc_root_chain"); |
| 304 | } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { |
| 305 | Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); |
| 306 | Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); |
| 307 | } |
| 308 | |
| 309 | return true; |
| 310 | } |
| 311 | |
| 312 | bool ShadowStackGC::IsNullValue(Value *V) { |
| 313 | if (Constant *C = dyn_cast<Constant>(V)) |
| 314 | return C->isNullValue(); |
| 315 | return false; |
| 316 | } |
| 317 | |
| 318 | void ShadowStackGC::CollectRoots(Function &F) { |
| 319 | // FIXME: Account for original alignment. Could fragment the root array. |
| 320 | // Approach 1: Null initialize empty slots at runtime. Yuck. |
| 321 | // Approach 2: Emit a map of the array instead of just a count. |
| 322 | |
| 323 | assert(Roots.empty() && "Not cleaned up?"); |
| 324 | |
| 325 | SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots; |
| 326 | |
| 327 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| 328 | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) |
| 329 | if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) |
| 330 | if (Function *F = CI->getCalledFunction()) |
| 331 | if (F->getIntrinsicID() == Intrinsic::gcroot) { |
| 332 | std::pair<CallInst*,AllocaInst*> Pair = std::make_pair( |
| 333 | CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts())); |
| 334 | if (IsNullValue(CI->getOperand(2))) |
| 335 | Roots.push_back(Pair); |
| 336 | else |
| 337 | MetaRoots.push_back(Pair); |
| 338 | } |
| 339 | |
| 340 | // Number roots with metadata (usually empty) at the beginning, so that the |
| 341 | // FrameMap::Meta array can be elided. |
| 342 | Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); |
| 343 | } |
| 344 | |
| 345 | GetElementPtrInst * |
| 346 | ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, |
| 347 | int Idx, int Idx2, const char *Name) { |
| 348 | Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), |
| 349 | ConstantInt::get(Type::getInt32Ty(Context), Idx), |
| 350 | ConstantInt::get(Type::getInt32Ty(Context), Idx2) }; |
| 351 | Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name); |
| 352 | |
| 353 | assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); |
| 354 | |
| 355 | return dyn_cast<GetElementPtrInst>(Val); |
| 356 | } |
| 357 | |
| 358 | GetElementPtrInst * |
| 359 | ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, |
| 360 | int Idx, const char *Name) { |
| 361 | Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), |
| 362 | ConstantInt::get(Type::getInt32Ty(Context), Idx) }; |
| 363 | Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name); |
| 364 | |
| 365 | assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); |
| 366 | |
| 367 | return dyn_cast<GetElementPtrInst>(Val); |
| 368 | } |
| 369 | |
| 370 | /// runOnFunction - Insert code to maintain the shadow stack. |
| 371 | bool ShadowStackGC::performCustomLowering(Function &F) { |
| 372 | LLVMContext &Context = F.getContext(); |
| 373 | |
| 374 | // Find calls to llvm.gcroot. |
| 375 | CollectRoots(F); |
| 376 | |
| 377 | // If there are no roots in this function, then there is no need to add a |
| 378 | // stack map entry for it. |
| 379 | if (Roots.empty()) |
| 380 | return false; |
| 381 | |
| 382 | // Build the constant map and figure the type of the shadow stack entry. |
| 383 | Value *FrameMap = GetFrameMap(F); |
| 384 | const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); |
| 385 | |
| 386 | // Build the shadow stack entry at the very start of the function. |
| 387 | BasicBlock::iterator IP = F.getEntryBlock().begin(); |
| 388 | IRBuilder<> AtEntry(IP->getParent(), IP); |
| 389 | |
| 390 | Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, |
| 391 | "gc_frame"); |
| 392 | |
| 393 | while (isa<AllocaInst>(IP)) ++IP; |
| 394 | AtEntry.SetInsertPoint(IP->getParent(), IP); |
| 395 | |
| 396 | // Initialize the map pointer and load the current head of the shadow stack. |
| 397 | Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); |
| 398 | Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry, |
| 399 | 0,1,"gc_frame.map"); |
| 400 | AtEntry.CreateStore(FrameMap, EntryMapPtr); |
| 401 | |
| 402 | // After all the allocas... |
| 403 | for (unsigned I = 0, E = Roots.size(); I != E; ++I) { |
| 404 | // For each root, find the corresponding slot in the aggregate... |
| 405 | Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root"); |
| 406 | |
| 407 | // And use it in lieu of the alloca. |
| 408 | AllocaInst *OriginalAlloca = Roots[I].second; |
| 409 | SlotPtr->takeName(OriginalAlloca); |
| 410 | OriginalAlloca->replaceAllUsesWith(SlotPtr); |
| 411 | } |
| 412 | |
| 413 | // Move past the original stores inserted by GCStrategy::InitRoots. This isn't |
| 414 | // really necessary (the collector would never see the intermediate state at |
| 415 | // runtime), but it's nicer not to push the half-initialized entry onto the |
| 416 | // shadow stack. |
| 417 | while (isa<StoreInst>(IP)) ++IP; |
| 418 | AtEntry.SetInsertPoint(IP->getParent(), IP); |
| 419 | |
| 420 | // Push the entry onto the shadow stack. |
| 421 | Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, |
| 422 | StackEntry,0,0,"gc_frame.next"); |
| 423 | Instruction *NewHeadVal = CreateGEP(Context, AtEntry, |
| 424 | StackEntry, 0, "gc_newhead"); |
| 425 | AtEntry.CreateStore(CurrentHead, EntryNextPtr); |
| 426 | AtEntry.CreateStore(NewHeadVal, Head); |
| 427 | |
| 428 | // For each instruction that escapes... |
| 429 | EscapeEnumerator EE(F, "gc_cleanup"); |
| 430 | while (IRBuilder<> *AtExit = EE.Next()) { |
| 431 | // Pop the entry from the shadow stack. Don't reuse CurrentHead from |
| 432 | // AtEntry, since that would make the value live for the entire function. |
| 433 | Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0, |
| 434 | "gc_frame.next"); |
| 435 | Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); |
| 436 | AtExit->CreateStore(SavedHead, Head); |
| 437 | } |
| 438 | |
| 439 | // Delete the original allocas (which are no longer used) and the intrinsic |
| 440 | // calls (which are no longer valid). Doing this last avoids invalidating |
| 441 | // iterators. |
| 442 | for (unsigned I = 0, E = Roots.size(); I != E; ++I) { |
| 443 | Roots[I].first->eraseFromParent(); |
| 444 | Roots[I].second->eraseFromParent(); |
| 445 | } |
| 446 | |
| 447 | Roots.clear(); |
| 448 | return true; |
| 449 | } |