blob: 616a66e18a4bc880f5a3b31332a940989665ce3f [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/CodeGen/JITCodeEmitter.h"
22#include "llvm/CodeGen/MachineCodeInfo.h"
23#include "llvm/ExecutionEngine/GenericValue.h"
24#include "llvm/ExecutionEngine/JITEventListener.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetJITInfo.h"
28#include "llvm/Support/Dwarf.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MutexGuard.h"
31#include "llvm/System/DynamicLibrary.h"
32#include "llvm/Config/config.h"
33
34using namespace llvm;
35
36#ifdef __APPLE__
37// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
38// of atexit). It passes the address of linker generated symbol __dso_handle
39// to the function.
40// This configuration change happened at version 5330.
41# include <AvailabilityMacros.h>
42# if defined(MAC_OS_X_VERSION_10_4) && \
43 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
44 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
45 __APPLE_CC__ >= 5330))
46# ifndef HAVE___DSO_HANDLE
47# define HAVE___DSO_HANDLE 1
48# endif
49# endif
50#endif
51
52#if HAVE___DSO_HANDLE
53extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
54#endif
55
56namespace {
57
58static struct RegisterJIT {
59 RegisterJIT() { JIT::Register(); }
60} JITRegistrator;
61
62}
63
64extern "C" void LLVMLinkInJIT() {
65}
66
67
68#if defined(__GNUC__) && !defined(__ARM__EABI__)
69
70// libgcc defines the __register_frame function to dynamically register new
71// dwarf frames for exception handling. This functionality is not portable
72// across compilers and is only provided by GCC. We use the __register_frame
73// function here so that code generated by the JIT cooperates with the unwinding
74// runtime of libgcc. When JITting with exception handling enable, LLVM
75// generates dwarf frames and registers it to libgcc with __register_frame.
76//
77// The __register_frame function works with Linux.
78//
79// Unfortunately, this functionality seems to be in libgcc after the unwinding
80// library of libgcc for darwin was written. The code for darwin overwrites the
81// value updated by __register_frame with a value fetched with "keymgr".
82// "keymgr" is an obsolete functionality, which should be rewritten some day.
83// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
84// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
85// values of an opaque key, used by libgcc to find dwarf tables.
86
87extern "C" void __register_frame(void*);
88
89#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
90# define USE_KEYMGR 1
91#else
92# define USE_KEYMGR 0
93#endif
94
95#if USE_KEYMGR
96
97namespace {
98
99// LibgccObject - This is the structure defined in libgcc. There is no #include
100// provided for this structure, so we also define it here. libgcc calls it
101// "struct object". The structure is undocumented in libgcc.
102struct LibgccObject {
103 void *unused1;
104 void *unused2;
105 void *unused3;
106
107 /// frame - Pointer to the exception table.
108 void *frame;
109
110 /// encoding - The encoding of the object?
111 union {
112 struct {
113 unsigned long sorted : 1;
114 unsigned long from_array : 1;
115 unsigned long mixed_encoding : 1;
116 unsigned long encoding : 8;
117 unsigned long count : 21;
118 } b;
119 size_t i;
120 } encoding;
121
122 /// fde_end - libgcc defines this field only if some macro is defined. We
123 /// include this field even if it may not there, to make libgcc happy.
124 char *fde_end;
125
126 /// next - At least we know it's a chained list!
127 struct LibgccObject *next;
128};
129
130// "kemgr" stuff. Apparently, all frame tables are stored there.
131extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
132extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
133#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
134
135/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
136/// probably contains all dwarf tables that are loaded.
137struct LibgccObjectInfo {
138
139 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
140 ///
141 struct LibgccObject* seenObjects;
142
143 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
144 ///
145 struct LibgccObject* unseenObjects;
146
147 unsigned unused[2];
148};
149
150/// darwin_register_frame - Since __register_frame does not work with darwin's
151/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
152/// "Dwarf2 object list" key.
153void DarwinRegisterFrame(void* FrameBegin) {
154 // Get the key.
155 LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
156 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
157 assert(LOI && "This should be preallocated by the runtime");
158
159 // Allocate a new LibgccObject to represent this frame. Deallocation of this
160 // object may be impossible: since darwin code in libgcc was written after
161 // the ability to dynamically register frames, things may crash if we
162 // deallocate it.
163 struct LibgccObject* ob = (struct LibgccObject*)
164 malloc(sizeof(struct LibgccObject));
165
166 // Do like libgcc for the values of the field.
167 ob->unused1 = (void *)-1;
168 ob->unused2 = 0;
169 ob->unused3 = 0;
170 ob->frame = FrameBegin;
171 ob->encoding.i = 0;
172 ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
173
174 // Put the info on both places, as libgcc uses the first or the second
175 // field. Note that we rely on having two pointers here. If fde_end was a
176 // char, things would get complicated.
177 ob->fde_end = (char*)LOI->unseenObjects;
178 ob->next = LOI->unseenObjects;
179
180 // Update the key's unseenObjects list.
181 LOI->unseenObjects = ob;
182
183 // Finally update the "key". Apparently, libgcc requires it.
184 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
185 LOI);
186
187}
188
189}
190#endif // __APPLE__
191#endif // __GNUC__
192
193/// createJIT - This is the factory method for creating a JIT for the current
194/// machine, it does not fall back to the interpreter. This takes ownership
195/// of the module.
196ExecutionEngine *ExecutionEngine::createJIT(Module *M,
197 std::string *ErrorStr,
198 JITMemoryManager *JMM,
199 CodeGenOpt::Level OptLevel,
200 bool GVsWithCode,
201 CodeModel::Model CMM) {
202 // Use the defaults for extra parameters. Users can use EngineBuilder to
203 // set them.
204 StringRef MArch = "";
205 StringRef MCPU = "";
206 SmallVector<std::string, 1> MAttrs;
207 return JIT::createJIT(M, ErrorStr, JMM, OptLevel, GVsWithCode, CMM,
208 MArch, MCPU, MAttrs);
209}
210
211ExecutionEngine *JIT::createJIT(Module *M,
212 std::string *ErrorStr,
213 JITMemoryManager *JMM,
214 CodeGenOpt::Level OptLevel,
215 bool GVsWithCode,
216 CodeModel::Model CMM,
217 StringRef MArch,
218 StringRef MCPU,
219 const SmallVectorImpl<std::string>& MAttrs) {
220 // Make sure we can resolve symbols in the program as well. The zero arg
221 // to the function tells DynamicLibrary to load the program, not a library.
222 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
223 return 0;
224
225 // Pick a target either via -march or by guessing the native arch.
226 TargetMachine *TM = JIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
227 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
228 TM->setCodeModel(CMM);
229
230 // If the target supports JIT code generation, create a the JIT.
231 if (TargetJITInfo *TJ = TM->getJITInfo()) {
232 return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
233 } else {
234 if (ErrorStr)
235 *ErrorStr = "target does not support JIT code generation";
236 return 0;
237 }
238}
239
240JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
241 JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
242 : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode) {
243 setTargetData(TM.getTargetData());
244
245 jitstate = new JITState(M);
246
247 // Initialize JCE
248 JCE = createEmitter(*this, JMM, TM);
249
250 // Add target data
251 MutexGuard locked(lock);
252 FunctionPassManager &PM = jitstate->getPM(locked);
253 PM.add(new TargetData(*TM.getTargetData()));
254
255 // Turn the machine code intermediate representation into bytes in memory that
256 // may be executed.
257 if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
258 llvm_report_error("Target does not support machine code emission!");
259 }
260
261 // Register routine for informing unwinding runtime about new EH frames
262#if defined(__GNUC__) && !defined(__ARM_EABI__)
263#if USE_KEYMGR
264 struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
265 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
266
267 // The key is created on demand, and libgcc creates it the first time an
268 // exception occurs. Since we need the key to register frames, we create
269 // it now.
270 if (!LOI)
271 LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
272 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
273 InstallExceptionTableRegister(DarwinRegisterFrame);
274#else
275 InstallExceptionTableRegister(__register_frame);
276#endif // __APPLE__
277#endif // __GNUC__
278
279 // Initialize passes.
280 PM.doInitialization();
281}
282
283JIT::~JIT() {
284 delete jitstate;
285 delete JCE;
286 delete &TM;
287}
288
289/// addModule - Add a new Module to the JIT. If we previously removed the last
290/// Module, we need re-initialize jitstate with a valid Module.
291void JIT::addModule(Module *M) {
292 MutexGuard locked(lock);
293
294 if (Modules.empty()) {
295 assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
296
297 jitstate = new JITState(M);
298
299 FunctionPassManager &PM = jitstate->getPM(locked);
300 PM.add(new TargetData(*TM.getTargetData()));
301
302 // Turn the machine code intermediate representation into bytes in memory
303 // that may be executed.
304 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
305 llvm_report_error("Target does not support machine code emission!");
306 }
307
308 // Initialize passes.
309 PM.doInitialization();
310 }
311
312 ExecutionEngine::addModule(M);
313}
314
315/// removeModule - If we are removing the last Module, invalidate the jitstate
316/// since the PassManager it contains references a released Module.
317bool JIT::removeModule(Module *M) {
318 bool result = ExecutionEngine::removeModule(M);
319
320 MutexGuard locked(lock);
321
322 if (jitstate->getModule() == M) {
323 delete jitstate;
324 jitstate = 0;
325 }
326
327 if (!jitstate && !Modules.empty()) {
328 jitstate = new JITState(Modules[0]);
329
330 FunctionPassManager &PM = jitstate->getPM(locked);
331 PM.add(new TargetData(*TM.getTargetData()));
332
333 // Turn the machine code intermediate representation into bytes in memory
334 // that may be executed.
335 if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
336 llvm_report_error("Target does not support machine code emission!");
337 }
338
339 // Initialize passes.
340 PM.doInitialization();
341 }
342 return result;
343}
344
345/// run - Start execution with the specified function and arguments.
346///
347GenericValue JIT::runFunction(Function *F,
348 const std::vector<GenericValue> &ArgValues) {
349 assert(F && "Function *F was null at entry to run()");
350
351 void *FPtr = getPointerToFunction(F);
352 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
353 const FunctionType *FTy = F->getFunctionType();
354 const Type *RetTy = FTy->getReturnType();
355
356 assert((FTy->getNumParams() == ArgValues.size() ||
357 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
358 "Wrong number of arguments passed into function!");
359 assert(FTy->getNumParams() == ArgValues.size() &&
360 "This doesn't support passing arguments through varargs (yet)!");
361
362 // Handle some common cases first. These cases correspond to common `main'
363 // prototypes.
364 if (RetTy->isInteger(32) || RetTy->isVoidTy()) {
365 switch (ArgValues.size()) {
366 case 3:
367 if (FTy->getParamType(0)->isInteger(32) &&
368 isa<PointerType>(FTy->getParamType(1)) &&
369 isa<PointerType>(FTy->getParamType(2))) {
370 int (*PF)(int, char **, const char **) =
371 (int(*)(int, char **, const char **))(intptr_t)FPtr;
372
373 // Call the function.
374 GenericValue rv;
375 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
376 (char **)GVTOP(ArgValues[1]),
377 (const char **)GVTOP(ArgValues[2])));
378 return rv;
379 }
380 break;
381 case 2:
382 if (FTy->getParamType(0)->isInteger(32) &&
383 isa<PointerType>(FTy->getParamType(1))) {
384 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
385
386 // Call the function.
387 GenericValue rv;
388 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
389 (char **)GVTOP(ArgValues[1])));
390 return rv;
391 }
392 break;
393 case 1:
394 if (FTy->getNumParams() == 1 &&
395 FTy->getParamType(0)->isInteger(32)) {
396 GenericValue rv;
397 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
398 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
399 return rv;
400 }
401 break;
402 }
403 }
404
405 // Handle cases where no arguments are passed first.
406 if (ArgValues.empty()) {
407 GenericValue rv;
408 switch (RetTy->getTypeID()) {
409 default: llvm_unreachable("Unknown return type for function call!");
410 case Type::IntegerTyID: {
411 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
412 if (BitWidth == 1)
413 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
414 else if (BitWidth <= 8)
415 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
416 else if (BitWidth <= 16)
417 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
418 else if (BitWidth <= 32)
419 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
420 else if (BitWidth <= 64)
421 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
422 else
423 llvm_unreachable("Integer types > 64 bits not supported");
424 return rv;
425 }
426 case Type::VoidTyID:
427 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
428 return rv;
429 case Type::FloatTyID:
430 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
431 return rv;
432 case Type::DoubleTyID:
433 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
434 return rv;
435 case Type::X86_FP80TyID:
436 case Type::FP128TyID:
437 case Type::PPC_FP128TyID:
438 llvm_unreachable("long double not supported yet");
439 return rv;
440 case Type::PointerTyID:
441 return PTOGV(((void*(*)())(intptr_t)FPtr)());
442 }
443 }
444
445 // Okay, this is not one of our quick and easy cases. Because we don't have a
446 // full FFI, we have to codegen a nullary stub function that just calls the
447 // function we are interested in, passing in constants for all of the
448 // arguments. Make this function and return.
449
450 // First, create the function.
451 FunctionType *STy=FunctionType::get(RetTy, false);
452 Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
453 F->getParent());
454
455 // Insert a basic block.
456 BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
457
458 // Convert all of the GenericValue arguments over to constants. Note that we
459 // currently don't support varargs.
460 SmallVector<Value*, 8> Args;
461 for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
462 Constant *C = 0;
463 const Type *ArgTy = FTy->getParamType(i);
464 const GenericValue &AV = ArgValues[i];
465 switch (ArgTy->getTypeID()) {
466 default: llvm_unreachable("Unknown argument type for function call!");
467 case Type::IntegerTyID:
468 C = ConstantInt::get(F->getContext(), AV.IntVal);
469 break;
470 case Type::FloatTyID:
471 C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
472 break;
473 case Type::DoubleTyID:
474 C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
475 break;
476 case Type::PPC_FP128TyID:
477 case Type::X86_FP80TyID:
478 case Type::FP128TyID:
479 C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
480 break;
481 case Type::PointerTyID:
482 void *ArgPtr = GVTOP(AV);
483 if (sizeof(void*) == 4)
484 C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
485 (int)(intptr_t)ArgPtr);
486 else
487 C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
488 (intptr_t)ArgPtr);
489 // Cast the integer to pointer
490 C = ConstantExpr::getIntToPtr(C, ArgTy);
491 break;
492 }
493 Args.push_back(C);
494 }
495
496 CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
497 "", StubBB);
498 TheCall->setCallingConv(F->getCallingConv());
499 TheCall->setTailCall();
500 if (!TheCall->getType()->isVoidTy())
501 // Return result of the call.
502 ReturnInst::Create(F->getContext(), TheCall, StubBB);
503 else
504 ReturnInst::Create(F->getContext(), StubBB); // Just return void.
505
506 // Finally, return the value returned by our nullary stub function.
507 return runFunction(Stub, std::vector<GenericValue>());
508}
509
510void JIT::RegisterJITEventListener(JITEventListener *L) {
511 if (L == NULL)
512 return;
513 MutexGuard locked(lock);
514 EventListeners.push_back(L);
515}
516void JIT::UnregisterJITEventListener(JITEventListener *L) {
517 if (L == NULL)
518 return;
519 MutexGuard locked(lock);
520 std::vector<JITEventListener*>::reverse_iterator I=
521 std::find(EventListeners.rbegin(), EventListeners.rend(), L);
522 if (I != EventListeners.rend()) {
523 std::swap(*I, EventListeners.back());
524 EventListeners.pop_back();
525 }
526}
527void JIT::NotifyFunctionEmitted(
528 const Function &F,
529 void *Code, size_t Size,
530 const JITEvent_EmittedFunctionDetails &Details) {
531 MutexGuard locked(lock);
532 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
533 EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
534 }
535}
536
537void JIT::NotifyFreeingMachineCode(void *OldPtr) {
538 MutexGuard locked(lock);
539 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
540 EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
541 }
542}
543
544/// runJITOnFunction - Run the FunctionPassManager full of
545/// just-in-time compilation passes on F, hopefully filling in
546/// GlobalAddress[F] with the address of F's machine code.
547///
548void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
549 MutexGuard locked(lock);
550
551 class MCIListener : public JITEventListener {
552 MachineCodeInfo *const MCI;
553 public:
554 MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
555 virtual void NotifyFunctionEmitted(const Function &,
556 void *Code, size_t Size,
557 const EmittedFunctionDetails &) {
558 MCI->setAddress(Code);
559 MCI->setSize(Size);
560 }
561 };
562 MCIListener MCIL(MCI);
563 if (MCI)
564 RegisterJITEventListener(&MCIL);
565
566 runJITOnFunctionUnlocked(F, locked);
567
568 if (MCI)
569 UnregisterJITEventListener(&MCIL);
570}
571
572void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
573 static bool isAlreadyCodeGenerating = false;
574 assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
575
576 // JIT the function
577 isAlreadyCodeGenerating = true;
578 jitstate->getPM(locked).run(*F);
579 isAlreadyCodeGenerating = false;
580
581 // If the function referred to another function that had not yet been
582 // read from bitcode, and we are jitting non-lazily, emit it now.
583 while (!jitstate->getPendingFunctions(locked).empty()) {
584 Function *PF = jitstate->getPendingFunctions(locked).back();
585 jitstate->getPendingFunctions(locked).pop_back();
586
587 assert(!PF->hasAvailableExternallyLinkage() &&
588 "Externally-defined function should not be in pending list.");
589
590 // JIT the function
591 isAlreadyCodeGenerating = true;
592 jitstate->getPM(locked).run(*PF);
593 isAlreadyCodeGenerating = false;
594
595 // Now that the function has been jitted, ask the JITEmitter to rewrite
596 // the stub with real address of the function.
597 updateFunctionStub(PF);
598 }
599}
600
601/// getPointerToFunction - This method is used to get the address of the
602/// specified function, compiling it if neccesary.
603///
604void *JIT::getPointerToFunction(Function *F) {
605
606 if (void *Addr = getPointerToGlobalIfAvailable(F))
607 return Addr; // Check if function already code gen'd
608
609 MutexGuard locked(lock);
610
611 // Now that this thread owns the lock, make sure we read in the function if it
612 // exists in this Module.
613 std::string ErrorMsg;
614 if (F->Materialize(&ErrorMsg)) {
615 llvm_report_error("Error reading function '" + F->getName()+
616 "' from bitcode file: " + ErrorMsg);
617 }
618
619 // ... and check if another thread has already code gen'd the function.
620 if (void *Addr = getPointerToGlobalIfAvailable(F))
621 return Addr;
622
623 if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
624 bool AbortOnFailure = !F->hasExternalWeakLinkage();
625 void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
626 addGlobalMapping(F, Addr);
627 return Addr;
628 }
629
630 runJITOnFunctionUnlocked(F, locked);
631
632 void *Addr = getPointerToGlobalIfAvailable(F);
633 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
634 return Addr;
635}
636
637/// getOrEmitGlobalVariable - Return the address of the specified global
638/// variable, possibly emitting it to memory if needed. This is used by the
639/// Emitter.
640void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
641 MutexGuard locked(lock);
642
643 void *Ptr = getPointerToGlobalIfAvailable(GV);
644 if (Ptr) return Ptr;
645
646 // If the global is external, just remember the address.
647 if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
648#if HAVE___DSO_HANDLE
649 if (GV->getName() == "__dso_handle")
650 return (void*)&__dso_handle;
651#endif
652 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
653 if (Ptr == 0) {
654 llvm_report_error("Could not resolve external global address: "
655 +GV->getName());
656 }
657 addGlobalMapping(GV, Ptr);
658 } else {
659 // If the global hasn't been emitted to memory yet, allocate space and
660 // emit it into memory.
661 Ptr = getMemoryForGV(GV);
662 addGlobalMapping(GV, Ptr);
663 EmitGlobalVariable(GV); // Initialize the variable.
664 }
665 return Ptr;
666}
667
668/// recompileAndRelinkFunction - This method is used to force a function
669/// which has already been compiled, to be compiled again, possibly
670/// after it has been modified. Then the entry to the old copy is overwritten
671/// with a branch to the new copy. If there was no old copy, this acts
672/// just like JIT::getPointerToFunction().
673///
674void *JIT::recompileAndRelinkFunction(Function *F) {
675 void *OldAddr = getPointerToGlobalIfAvailable(F);
676
677 // If it's not already compiled there is no reason to patch it up.
678 if (OldAddr == 0) { return getPointerToFunction(F); }
679
680 // Delete the old function mapping.
681 addGlobalMapping(F, 0);
682
683 // Recodegen the function
684 runJITOnFunction(F);
685
686 // Update state, forward the old function to the new function.
687 void *Addr = getPointerToGlobalIfAvailable(F);
688 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
689 TJI.replaceMachineCodeForFunction(OldAddr, Addr);
690 return Addr;
691}
692
693/// getMemoryForGV - This method abstracts memory allocation of global
694/// variable so that the JIT can allocate thread local variables depending
695/// on the target.
696///
697char* JIT::getMemoryForGV(const GlobalVariable* GV) {
698 char *Ptr;
699
700 // GlobalVariable's which are not "constant" will cause trouble in a server
701 // situation. It's returned in the same block of memory as code which may
702 // not be writable.
703 if (isGVCompilationDisabled() && !GV->isConstant()) {
704 llvm_report_error("Compilation of non-internal GlobalValue is disabled!");
705 }
706
707 // Some applications require globals and code to live together, so they may
708 // be allocated into the same buffer, but in general globals are allocated
709 // through the memory manager which puts them near the code but not in the
710 // same buffer.
711 const Type *GlobalType = GV->getType()->getElementType();
712 size_t S = getTargetData()->getTypeAllocSize(GlobalType);
713 size_t A = getTargetData()->getPreferredAlignment(GV);
714 if (GV->isThreadLocal()) {
715 MutexGuard locked(lock);
716 Ptr = TJI.allocateThreadLocalMemory(S);
717 } else if (TJI.allocateSeparateGVMemory()) {
718 if (A <= 8) {
719 Ptr = (char*)malloc(S);
720 } else {
721 // Allocate S+A bytes of memory, then use an aligned pointer within that
722 // space.
723 Ptr = (char*)malloc(S+A);
724 unsigned MisAligned = ((intptr_t)Ptr & (A-1));
725 Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
726 }
727 } else if (AllocateGVsWithCode) {
728 Ptr = (char*)JCE->allocateSpace(S, A);
729 } else {
730 Ptr = (char*)JCE->allocateGlobal(S, A);
731 }
732 return Ptr;
733}
734
735void JIT::addPendingFunction(Function *F) {
736 MutexGuard locked(lock);
737 jitstate->getPendingFunctions(locked).push_back(F);
738}
739
740
741JITEventListener::~JITEventListener() {}