Shih-wei Liao | e264f62 | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines a MachineCodeEmitter object that is used by the JIT to |
| 11 | // write machine code to memory and remember where relocatable values are. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "jit" |
| 16 | #include "JIT.h" |
| 17 | #include "JITDebugRegisterer.h" |
| 18 | #include "JITDwarfEmitter.h" |
| 19 | #include "llvm/ADT/OwningPtr.h" |
| 20 | #include "llvm/Constants.h" |
| 21 | #include "llvm/Module.h" |
| 22 | #include "llvm/DerivedTypes.h" |
| 23 | #include "llvm/Analysis/DebugInfo.h" |
| 24 | #include "llvm/CodeGen/JITCodeEmitter.h" |
| 25 | #include "llvm/CodeGen/MachineFunction.h" |
| 26 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 27 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 28 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 29 | #include "llvm/CodeGen/MachineRelocation.h" |
| 30 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 31 | #include "llvm/ExecutionEngine/JITEventListener.h" |
| 32 | #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| 33 | #include "llvm/CodeGen/MachineCodeInfo.h" |
| 34 | #include "llvm/Target/TargetData.h" |
| 35 | #include "llvm/Target/TargetJITInfo.h" |
| 36 | #include "llvm/Target/TargetMachine.h" |
| 37 | #include "llvm/Target/TargetOptions.h" |
| 38 | #include "llvm/Support/Debug.h" |
| 39 | #include "llvm/Support/ErrorHandling.h" |
| 40 | #include "llvm/Support/MutexGuard.h" |
| 41 | #include "llvm/Support/ValueHandle.h" |
| 42 | #include "llvm/Support/raw_ostream.h" |
| 43 | #include "llvm/System/Disassembler.h" |
| 44 | #include "llvm/System/Memory.h" |
| 45 | #include "llvm/Target/TargetInstrInfo.h" |
| 46 | #include "llvm/ADT/DenseMap.h" |
| 47 | #include "llvm/ADT/SmallPtrSet.h" |
| 48 | #include "llvm/ADT/SmallVector.h" |
| 49 | #include "llvm/ADT/Statistic.h" |
| 50 | #include "llvm/ADT/ValueMap.h" |
| 51 | #include <algorithm> |
| 52 | #ifndef NDEBUG |
| 53 | #include <iomanip> |
| 54 | #endif |
| 55 | using namespace llvm; |
| 56 | |
| 57 | STATISTIC(NumBytes, "Number of bytes of machine code compiled"); |
| 58 | STATISTIC(NumRelos, "Number of relocations applied"); |
| 59 | STATISTIC(NumRetries, "Number of retries with more memory"); |
| 60 | static JIT *TheJIT = 0; |
| 61 | |
| 62 | |
| 63 | // A declaration may stop being a declaration once it's fully read from bitcode. |
| 64 | // This function returns true if F is fully read and is still a declaration. |
| 65 | static bool isNonGhostDeclaration(const Function *F) { |
| 66 | return F->isDeclaration() && !F->isMaterializable(); |
| 67 | } |
| 68 | |
| 69 | //===----------------------------------------------------------------------===// |
| 70 | // JIT lazy compilation code. |
| 71 | // |
| 72 | namespace { |
| 73 | class JITEmitter; |
| 74 | class JITResolverState; |
| 75 | |
| 76 | template<typename ValueTy> |
| 77 | struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { |
| 78 | typedef JITResolverState *ExtraData; |
| 79 | static void onRAUW(JITResolverState *, Value *Old, Value *New) { |
| 80 | assert(false && "The JIT doesn't know how to handle a" |
| 81 | " RAUW on a value it has emitted."); |
| 82 | } |
| 83 | }; |
| 84 | |
| 85 | struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { |
| 86 | typedef JITResolverState *ExtraData; |
| 87 | static void onDelete(JITResolverState *JRS, Function *F); |
| 88 | }; |
| 89 | |
| 90 | class JITResolverState { |
| 91 | public: |
| 92 | typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > |
| 93 | FunctionToLazyStubMapTy; |
| 94 | typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; |
| 95 | typedef ValueMap<Function *, SmallPtrSet<void*, 1>, |
| 96 | CallSiteValueMapConfig> FunctionToCallSitesMapTy; |
| 97 | typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; |
| 98 | private: |
| 99 | /// FunctionToLazyStubMap - Keep track of the lazy stub created for a |
| 100 | /// particular function so that we can reuse them if necessary. |
| 101 | FunctionToLazyStubMapTy FunctionToLazyStubMap; |
| 102 | |
| 103 | /// CallSiteToFunctionMap - Keep track of the function that each lazy call |
| 104 | /// site corresponds to, and vice versa. |
| 105 | CallSiteToFunctionMapTy CallSiteToFunctionMap; |
| 106 | FunctionToCallSitesMapTy FunctionToCallSitesMap; |
| 107 | |
| 108 | /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a |
| 109 | /// particular GlobalVariable so that we can reuse them if necessary. |
| 110 | GlobalToIndirectSymMapTy GlobalToIndirectSymMap; |
| 111 | |
| 112 | public: |
| 113 | JITResolverState() : FunctionToLazyStubMap(this), |
| 114 | FunctionToCallSitesMap(this) {} |
| 115 | |
| 116 | FunctionToLazyStubMapTy& getFunctionToLazyStubMap( |
| 117 | const MutexGuard& locked) { |
| 118 | assert(locked.holds(TheJIT->lock)); |
| 119 | return FunctionToLazyStubMap; |
| 120 | } |
| 121 | |
| 122 | GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) { |
| 123 | assert(locked.holds(TheJIT->lock)); |
| 124 | return GlobalToIndirectSymMap; |
| 125 | } |
| 126 | |
| 127 | pair<void *, Function *> LookupFunctionFromCallSite( |
| 128 | const MutexGuard &locked, void *CallSite) const { |
| 129 | assert(locked.holds(TheJIT->lock)); |
| 130 | |
| 131 | // The address given to us for the stub may not be exactly right, it might be |
| 132 | // a little bit after the stub. As such, use upper_bound to find it. |
| 133 | CallSiteToFunctionMapTy::const_iterator I = |
| 134 | CallSiteToFunctionMap.upper_bound(CallSite); |
| 135 | assert(I != CallSiteToFunctionMap.begin() && |
| 136 | "This is not a known call site!"); |
| 137 | --I; |
| 138 | return *I; |
| 139 | } |
| 140 | |
| 141 | void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { |
| 142 | assert(locked.holds(TheJIT->lock)); |
| 143 | |
| 144 | bool Inserted = CallSiteToFunctionMap.insert( |
| 145 | std::make_pair(CallSite, F)).second; |
| 146 | (void)Inserted; |
| 147 | assert(Inserted && "Pair was already in CallSiteToFunctionMap"); |
| 148 | FunctionToCallSitesMap[F].insert(CallSite); |
| 149 | } |
| 150 | |
| 151 | // Returns the Function of the stub if a stub was erased, or NULL if there |
| 152 | // was no stub. This function uses the call-site->function map to find a |
| 153 | // relevant function, but asserts that only stubs and not other call sites |
| 154 | // will be passed in. |
| 155 | Function *EraseStub(const MutexGuard &locked, void *Stub) { |
| 156 | CallSiteToFunctionMapTy::iterator C2F_I = |
| 157 | CallSiteToFunctionMap.find(Stub); |
| 158 | if (C2F_I == CallSiteToFunctionMap.end()) { |
| 159 | // Not a stub. |
| 160 | return NULL; |
| 161 | } |
| 162 | |
| 163 | Function *const F = C2F_I->second; |
| 164 | #ifndef NDEBUG |
| 165 | void *RealStub = FunctionToLazyStubMap.lookup(F); |
| 166 | assert(RealStub == Stub && |
| 167 | "Call-site that wasn't a stub pass in to EraseStub"); |
| 168 | #endif |
| 169 | FunctionToLazyStubMap.erase(F); |
| 170 | CallSiteToFunctionMap.erase(C2F_I); |
| 171 | |
| 172 | // Remove the stub from the function->call-sites map, and remove the whole |
| 173 | // entry from the map if that was the last call site. |
| 174 | FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F); |
| 175 | assert(F2C_I != FunctionToCallSitesMap.end() && |
| 176 | "FunctionToCallSitesMap broken"); |
| 177 | bool Erased = F2C_I->second.erase(Stub); |
| 178 | (void)Erased; |
| 179 | assert(Erased && "FunctionToCallSitesMap broken"); |
| 180 | if (F2C_I->second.empty()) |
| 181 | FunctionToCallSitesMap.erase(F2C_I); |
| 182 | |
| 183 | return F; |
| 184 | } |
| 185 | |
| 186 | void EraseAllCallSites(const MutexGuard &locked, Function *F) { |
| 187 | assert(locked.holds(TheJIT->lock)); |
| 188 | EraseAllCallSitesPrelocked(F); |
| 189 | } |
| 190 | void EraseAllCallSitesPrelocked(Function *F) { |
| 191 | FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); |
| 192 | if (F2C == FunctionToCallSitesMap.end()) |
| 193 | return; |
| 194 | for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), |
| 195 | E = F2C->second.end(); I != E; ++I) { |
| 196 | bool Erased = CallSiteToFunctionMap.erase(*I); |
| 197 | (void)Erased; |
| 198 | assert(Erased && "Missing call site->function mapping"); |
| 199 | } |
| 200 | FunctionToCallSitesMap.erase(F2C); |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | /// JITResolver - Keep track of, and resolve, call sites for functions that |
| 205 | /// have not yet been compiled. |
| 206 | class JITResolver { |
| 207 | typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; |
| 208 | typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; |
| 209 | typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; |
| 210 | |
| 211 | /// LazyResolverFn - The target lazy resolver function that we actually |
| 212 | /// rewrite instructions to use. |
| 213 | TargetJITInfo::LazyResolverFn LazyResolverFn; |
| 214 | |
| 215 | JITResolverState state; |
| 216 | |
| 217 | /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap |
| 218 | /// for external functions. TODO: Of course, external functions don't need |
| 219 | /// a lazy stub. It's actually here to make it more likely that far calls |
| 220 | /// succeed, but no single stub can guarantee that. I'll remove this in a |
| 221 | /// subsequent checkin when I actually fix far calls. |
| 222 | std::map<void*, void*> ExternalFnToStubMap; |
| 223 | |
| 224 | /// revGOTMap - map addresses to indexes in the GOT |
| 225 | std::map<void*, unsigned> revGOTMap; |
| 226 | unsigned nextGOTIndex; |
| 227 | |
| 228 | JITEmitter &JE; |
| 229 | |
| 230 | static JITResolver *TheJITResolver; |
| 231 | public: |
| 232 | explicit JITResolver(JIT &jit, JITEmitter &je) : nextGOTIndex(0), JE(je) { |
| 233 | TheJIT = &jit; |
| 234 | |
| 235 | LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| 236 | assert(TheJITResolver == 0 && "Multiple JIT resolvers?"); |
| 237 | TheJITResolver = this; |
| 238 | } |
| 239 | |
| 240 | ~JITResolver() { |
| 241 | TheJITResolver = 0; |
| 242 | } |
| 243 | |
| 244 | /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's |
| 245 | /// lazy-compilation stub if it has already been created. |
| 246 | void *getLazyFunctionStubIfAvailable(Function *F); |
| 247 | |
| 248 | /// getLazyFunctionStub - This returns a pointer to a function's |
| 249 | /// lazy-compilation stub, creating one on demand as needed. |
| 250 | void *getLazyFunctionStub(Function *F); |
| 251 | |
| 252 | /// getExternalFunctionStub - Return a stub for the function at the |
| 253 | /// specified address, created lazily on demand. |
| 254 | void *getExternalFunctionStub(void *FnAddr); |
| 255 | |
| 256 | /// getGlobalValueIndirectSym - Return an indirect symbol containing the |
| 257 | /// specified GV address. |
| 258 | void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); |
| 259 | |
| 260 | void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| 261 | SmallVectorImpl<void*> &Ptrs); |
| 262 | |
| 263 | GlobalValue *invalidateStub(void *Stub); |
| 264 | |
| 265 | /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| 266 | /// an address. This function only manages slots, it does not manage the |
| 267 | /// contents of the slots or the memory associated with the GOT. |
| 268 | unsigned getGOTIndexForAddr(void *addr); |
| 269 | |
| 270 | /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| 271 | /// address. If the LLVM Function corresponding to the stub has not yet |
| 272 | /// been compiled, this function compiles it first. |
| 273 | static void *JITCompilerFn(void *Stub); |
| 274 | }; |
| 275 | |
| 276 | /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| 277 | /// used to output functions to memory for execution. |
| 278 | class JITEmitter : public JITCodeEmitter { |
| 279 | JITMemoryManager *MemMgr; |
| 280 | |
| 281 | // When outputting a function stub in the context of some other function, we |
| 282 | // save BufferBegin/BufferEnd/CurBufferPtr here. |
| 283 | uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| 284 | |
| 285 | // When reattempting to JIT a function after running out of space, we store |
| 286 | // the estimated size of the function we're trying to JIT here, so we can |
| 287 | // ask the memory manager for at least this much space. When we |
| 288 | // successfully emit the function, we reset this back to zero. |
| 289 | uintptr_t SizeEstimate; |
| 290 | |
| 291 | /// Relocations - These are the relocations that the function needs, as |
| 292 | /// emitted. |
| 293 | std::vector<MachineRelocation> Relocations; |
| 294 | |
| 295 | /// MBBLocations - This vector is a mapping from MBB ID's to their address. |
| 296 | /// It is filled in by the StartMachineBasicBlock callback and queried by |
| 297 | /// the getMachineBasicBlockAddress callback. |
| 298 | std::vector<uintptr_t> MBBLocations; |
| 299 | |
| 300 | /// ConstantPool - The constant pool for the current function. |
| 301 | /// |
| 302 | MachineConstantPool *ConstantPool; |
| 303 | |
| 304 | /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| 305 | /// |
| 306 | void *ConstantPoolBase; |
| 307 | |
| 308 | /// ConstPoolAddresses - Addresses of individual constant pool entries. |
| 309 | /// |
| 310 | SmallVector<uintptr_t, 8> ConstPoolAddresses; |
| 311 | |
| 312 | /// JumpTable - The jump tables for the current function. |
| 313 | /// |
| 314 | MachineJumpTableInfo *JumpTable; |
| 315 | |
| 316 | /// JumpTableBase - A pointer to the first entry in the jump table. |
| 317 | /// |
| 318 | void *JumpTableBase; |
| 319 | |
| 320 | /// Resolver - This contains info about the currently resolved functions. |
| 321 | JITResolver Resolver; |
| 322 | |
| 323 | /// DE - The dwarf emitter for the jit. |
| 324 | OwningPtr<JITDwarfEmitter> DE; |
| 325 | |
| 326 | /// DR - The debug registerer for the jit. |
| 327 | OwningPtr<JITDebugRegisterer> DR; |
| 328 | |
| 329 | /// LabelLocations - This vector is a mapping from Label ID's to their |
| 330 | /// address. |
| 331 | std::vector<uintptr_t> LabelLocations; |
| 332 | |
| 333 | /// MMI - Machine module info for exception informations |
| 334 | MachineModuleInfo* MMI; |
| 335 | |
| 336 | // GVSet - a set to keep track of which globals have been seen |
| 337 | SmallPtrSet<const GlobalVariable*, 8> GVSet; |
| 338 | |
| 339 | // CurFn - The llvm function being emitted. Only valid during |
| 340 | // finishFunction(). |
| 341 | const Function *CurFn; |
| 342 | |
| 343 | /// Information about emitted code, which is passed to the |
| 344 | /// JITEventListeners. This is reset in startFunction and used in |
| 345 | /// finishFunction. |
| 346 | JITEvent_EmittedFunctionDetails EmissionDetails; |
| 347 | |
| 348 | struct EmittedCode { |
| 349 | void *FunctionBody; // Beginning of the function's allocation. |
| 350 | void *Code; // The address the function's code actually starts at. |
| 351 | void *ExceptionTable; |
| 352 | EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} |
| 353 | }; |
| 354 | struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { |
| 355 | typedef JITEmitter *ExtraData; |
| 356 | static void onDelete(JITEmitter *, const Function*); |
| 357 | static void onRAUW(JITEmitter *, const Function*, const Function*); |
| 358 | }; |
| 359 | ValueMap<const Function *, EmittedCode, |
| 360 | EmittedFunctionConfig> EmittedFunctions; |
| 361 | |
| 362 | // CurFnStubUses - For a given Function, a vector of stubs that it |
| 363 | // references. This facilitates the JIT detecting that a stub is no |
| 364 | // longer used, so that it may be deallocated. |
| 365 | DenseMap<AssertingVH<const Function>, SmallVector<void*, 1> > CurFnStubUses; |
| 366 | |
| 367 | // StubFnRefs - For a given pointer to a stub, a set of Functions which |
| 368 | // reference the stub. When the count of a stub's references drops to zero, |
| 369 | // the stub is unused. |
| 370 | DenseMap<void *, SmallPtrSet<const Function*, 1> > StubFnRefs; |
| 371 | |
| 372 | DILocation PrevDLT; |
| 373 | |
| 374 | public: |
| 375 | JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) |
| 376 | : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), |
| 377 | EmittedFunctions(this), PrevDLT(NULL) { |
| 378 | MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); |
| 379 | if (jit.getJITInfo().needsGOT()) { |
| 380 | MemMgr->AllocateGOT(); |
| 381 | DEBUG(dbgs() << "JIT is managing a GOT\n"); |
| 382 | } |
| 383 | |
| 384 | if (DwarfExceptionHandling || JITEmitDebugInfo) { |
| 385 | DE.reset(new JITDwarfEmitter(jit)); |
| 386 | } |
| 387 | if (JITEmitDebugInfo) { |
| 388 | DR.reset(new JITDebugRegisterer(TM)); |
| 389 | } |
| 390 | } |
| 391 | ~JITEmitter() { |
| 392 | delete MemMgr; |
| 393 | } |
| 394 | |
| 395 | /// classof - Methods for support type inquiry through isa, cast, and |
| 396 | /// dyn_cast: |
| 397 | /// |
| 398 | static inline bool classof(const JITEmitter*) { return true; } |
| 399 | static inline bool classof(const MachineCodeEmitter*) { return true; } |
| 400 | |
| 401 | JITResolver &getJITResolver() { return Resolver; } |
| 402 | |
| 403 | virtual void startFunction(MachineFunction &F); |
| 404 | virtual bool finishFunction(MachineFunction &F); |
| 405 | |
| 406 | void emitConstantPool(MachineConstantPool *MCP); |
| 407 | void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| 408 | void emitJumpTableInfo(MachineJumpTableInfo *MJTI); |
| 409 | |
| 410 | void startGVStub(const GlobalValue* GV, |
| 411 | unsigned StubSize, unsigned Alignment = 1); |
| 412 | void startGVStub(void *Buffer, unsigned StubSize); |
| 413 | void finishGVStub(); |
| 414 | virtual void *allocIndirectGV(const GlobalValue *GV, |
| 415 | const uint8_t *Buffer, size_t Size, |
| 416 | unsigned Alignment); |
| 417 | |
| 418 | /// allocateSpace - Reserves space in the current block if any, or |
| 419 | /// allocate a new one of the given size. |
| 420 | virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); |
| 421 | |
| 422 | /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, |
| 423 | /// this method does not allocate memory in the current output buffer, |
| 424 | /// because a global may live longer than the current function. |
| 425 | virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); |
| 426 | |
| 427 | virtual void addRelocation(const MachineRelocation &MR) { |
| 428 | Relocations.push_back(MR); |
| 429 | } |
| 430 | |
| 431 | virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { |
| 432 | if (MBBLocations.size() <= (unsigned)MBB->getNumber()) |
| 433 | MBBLocations.resize((MBB->getNumber()+1)*2); |
| 434 | MBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| 435 | DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" |
| 436 | << (void*) getCurrentPCValue() << "]\n"); |
| 437 | } |
| 438 | |
| 439 | virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; |
| 440 | virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; |
| 441 | |
| 442 | virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { |
| 443 | assert(MBBLocations.size() > (unsigned)MBB->getNumber() && |
| 444 | MBBLocations[MBB->getNumber()] && "MBB not emitted!"); |
| 445 | return MBBLocations[MBB->getNumber()]; |
| 446 | } |
| 447 | |
| 448 | /// retryWithMoreMemory - Log a retry and deallocate all memory for the |
| 449 | /// given function. Increase the minimum allocation size so that we get |
| 450 | /// more memory next time. |
| 451 | void retryWithMoreMemory(MachineFunction &F); |
| 452 | |
| 453 | /// deallocateMemForFunction - Deallocate all memory for the specified |
| 454 | /// function body. |
| 455 | void deallocateMemForFunction(const Function *F); |
| 456 | |
| 457 | /// AddStubToCurrentFunction - Mark the current function being JIT'd as |
| 458 | /// using the stub at the specified address. Allows |
| 459 | /// deallocateMemForFunction to also remove stubs no longer referenced. |
| 460 | void AddStubToCurrentFunction(void *Stub); |
| 461 | |
| 462 | virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); |
| 463 | |
| 464 | virtual void emitLabel(uint64_t LabelID) { |
| 465 | if (LabelLocations.size() <= LabelID) |
| 466 | LabelLocations.resize((LabelID+1)*2); |
| 467 | LabelLocations[LabelID] = getCurrentPCValue(); |
| 468 | } |
| 469 | |
| 470 | virtual uintptr_t getLabelAddress(uint64_t LabelID) const { |
| 471 | assert(LabelLocations.size() > (unsigned)LabelID && |
| 472 | LabelLocations[LabelID] && "Label not emitted!"); |
| 473 | return LabelLocations[LabelID]; |
| 474 | } |
| 475 | |
| 476 | virtual void setModuleInfo(MachineModuleInfo* Info) { |
| 477 | MMI = Info; |
| 478 | if (DE.get()) DE->setModuleInfo(Info); |
| 479 | } |
| 480 | |
| 481 | void setMemoryExecutable() { |
| 482 | MemMgr->setMemoryExecutable(); |
| 483 | } |
| 484 | |
| 485 | JITMemoryManager *getMemMgr() const { return MemMgr; } |
| 486 | |
| 487 | private: |
| 488 | void *getPointerToGlobal(GlobalValue *GV, void *Reference, |
| 489 | bool MayNeedFarStub); |
| 490 | void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); |
| 491 | unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size); |
| 492 | unsigned addSizeOfGlobalsInConstantVal(const Constant *C, unsigned Size); |
| 493 | unsigned addSizeOfGlobalsInInitializer(const Constant *Init, unsigned Size); |
| 494 | unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF); |
| 495 | }; |
| 496 | } |
| 497 | |
| 498 | JITResolver *JITResolver::TheJITResolver = 0; |
| 499 | |
| 500 | void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { |
| 501 | JRS->EraseAllCallSitesPrelocked(F); |
| 502 | } |
| 503 | |
| 504 | /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub |
| 505 | /// if it has already been created. |
| 506 | void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { |
| 507 | MutexGuard locked(TheJIT->lock); |
| 508 | |
| 509 | // If we already have a stub for this function, recycle it. |
| 510 | return state.getFunctionToLazyStubMap(locked).lookup(F); |
| 511 | } |
| 512 | |
| 513 | /// getFunctionStub - This returns a pointer to a function stub, creating |
| 514 | /// one on demand as needed. |
| 515 | void *JITResolver::getLazyFunctionStub(Function *F) { |
| 516 | MutexGuard locked(TheJIT->lock); |
| 517 | |
| 518 | // If we already have a lazy stub for this function, recycle it. |
| 519 | void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; |
| 520 | if (Stub) return Stub; |
| 521 | |
| 522 | // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we |
| 523 | // must resolve the symbol now. |
| 524 | void *Actual = TheJIT->isCompilingLazily() |
| 525 | ? (void *)(intptr_t)LazyResolverFn : (void *)0; |
| 526 | |
| 527 | // If this is an external declaration, attempt to resolve the address now |
| 528 | // to place in the stub. |
| 529 | if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { |
| 530 | Actual = TheJIT->getPointerToFunction(F); |
| 531 | |
| 532 | // If we resolved the symbol to a null address (eg. a weak external) |
| 533 | // don't emit a stub. Return a null pointer to the application. |
| 534 | if (!Actual) return 0; |
| 535 | } |
| 536 | |
| 537 | TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); |
| 538 | JE.startGVStub(F, SL.Size, SL.Alignment); |
| 539 | // Codegen a new stub, calling the lazy resolver or the actual address of the |
| 540 | // external function, if it was resolved. |
| 541 | Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); |
| 542 | JE.finishGVStub(); |
| 543 | |
| 544 | if (Actual != (void*)(intptr_t)LazyResolverFn) { |
| 545 | // If we are getting the stub for an external function, we really want the |
| 546 | // address of the stub in the GlobalAddressMap for the JIT, not the address |
| 547 | // of the external function. |
| 548 | TheJIT->updateGlobalMapping(F, Stub); |
| 549 | } |
| 550 | |
| 551 | DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" |
| 552 | << F->getName() << "'\n"); |
| 553 | |
| 554 | // Finally, keep track of the stub-to-Function mapping so that the |
| 555 | // JITCompilerFn knows which function to compile! |
| 556 | state.AddCallSite(locked, Stub, F); |
| 557 | |
| 558 | // If we are JIT'ing non-lazily but need to call a function that does not |
| 559 | // exist yet, add it to the JIT's work list so that we can fill in the stub |
| 560 | // address later. |
| 561 | if (!Actual && !TheJIT->isCompilingLazily()) |
| 562 | if (!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage()) |
| 563 | TheJIT->addPendingFunction(F); |
| 564 | |
| 565 | return Stub; |
| 566 | } |
| 567 | |
| 568 | /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified |
| 569 | /// GV address. |
| 570 | void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { |
| 571 | MutexGuard locked(TheJIT->lock); |
| 572 | |
| 573 | // If we already have a stub for this global variable, recycle it. |
| 574 | void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; |
| 575 | if (IndirectSym) return IndirectSym; |
| 576 | |
| 577 | // Otherwise, codegen a new indirect symbol. |
| 578 | IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, |
| 579 | JE); |
| 580 | |
| 581 | DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym |
| 582 | << "] for GV '" << GV->getName() << "'\n"); |
| 583 | |
| 584 | return IndirectSym; |
| 585 | } |
| 586 | |
| 587 | /// getExternalFunctionStub - Return a stub for the function at the |
| 588 | /// specified address, created lazily on demand. |
| 589 | void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| 590 | // If we already have a stub for this function, recycle it. |
| 591 | void *&Stub = ExternalFnToStubMap[FnAddr]; |
| 592 | if (Stub) return Stub; |
| 593 | |
| 594 | TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); |
| 595 | JE.startGVStub(0, SL.Size, SL.Alignment); |
| 596 | Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); |
| 597 | JE.finishGVStub(); |
| 598 | |
| 599 | DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub |
| 600 | << "] for external function at '" << FnAddr << "'\n"); |
| 601 | return Stub; |
| 602 | } |
| 603 | |
| 604 | unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| 605 | unsigned idx = revGOTMap[addr]; |
| 606 | if (!idx) { |
| 607 | idx = ++nextGOTIndex; |
| 608 | revGOTMap[addr] = idx; |
| 609 | DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" |
| 610 | << addr << "]\n"); |
| 611 | } |
| 612 | return idx; |
| 613 | } |
| 614 | |
| 615 | void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs, |
| 616 | SmallVectorImpl<void*> &Ptrs) { |
| 617 | MutexGuard locked(TheJIT->lock); |
| 618 | |
| 619 | const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked); |
| 620 | GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| 621 | |
| 622 | for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end(); |
| 623 | i != e; ++i){ |
| 624 | Function *F = i->first; |
| 625 | if (F->isDeclaration() && F->hasExternalLinkage()) { |
| 626 | GVs.push_back(i->first); |
| 627 | Ptrs.push_back(i->second); |
| 628 | } |
| 629 | } |
| 630 | for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| 631 | i != e; ++i) { |
| 632 | GVs.push_back(i->first); |
| 633 | Ptrs.push_back(i->second); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | GlobalValue *JITResolver::invalidateStub(void *Stub) { |
| 638 | MutexGuard locked(TheJIT->lock); |
| 639 | |
| 640 | GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); |
| 641 | |
| 642 | // Look up the cheap way first, to see if it's a function stub we are |
| 643 | // invalidating. If so, remove it from both the forward and reverse maps. |
| 644 | if (Function *F = state.EraseStub(locked, Stub)) { |
| 645 | return F; |
| 646 | } |
| 647 | |
| 648 | // Otherwise, it might be an indirect symbol stub. Find it and remove it. |
| 649 | for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); |
| 650 | i != e; ++i) { |
| 651 | if (i->second != Stub) |
| 652 | continue; |
| 653 | GlobalValue *GV = i->first; |
| 654 | GM.erase(i); |
| 655 | return GV; |
| 656 | } |
| 657 | |
| 658 | // Lastly, check to see if it's in the ExternalFnToStubMap. |
| 659 | for (std::map<void *, void *>::iterator i = ExternalFnToStubMap.begin(), |
| 660 | e = ExternalFnToStubMap.end(); i != e; ++i) { |
| 661 | if (i->second != Stub) |
| 662 | continue; |
| 663 | ExternalFnToStubMap.erase(i); |
| 664 | break; |
| 665 | } |
| 666 | |
| 667 | return 0; |
| 668 | } |
| 669 | |
| 670 | /// JITCompilerFn - This function is called when a lazy compilation stub has |
| 671 | /// been entered. It looks up which function this stub corresponds to, compiles |
| 672 | /// it if necessary, then returns the resultant function pointer. |
| 673 | void *JITResolver::JITCompilerFn(void *Stub) { |
| 674 | JITResolver &JR = *TheJITResolver; |
| 675 | |
| 676 | Function* F = 0; |
| 677 | void* ActualPtr = 0; |
| 678 | |
| 679 | { |
| 680 | // Only lock for getting the Function. The call getPointerToFunction made |
| 681 | // in this function might trigger function materializing, which requires |
| 682 | // JIT lock to be unlocked. |
| 683 | MutexGuard locked(TheJIT->lock); |
| 684 | |
| 685 | // The address given to us for the stub may not be exactly right, it might |
| 686 | // be a little bit after the stub. As such, use upper_bound to find it. |
| 687 | pair<void*, Function*> I = |
| 688 | JR.state.LookupFunctionFromCallSite(locked, Stub); |
| 689 | F = I.second; |
| 690 | ActualPtr = I.first; |
| 691 | } |
| 692 | |
| 693 | // If we have already code generated the function, just return the address. |
| 694 | void *Result = TheJIT->getPointerToGlobalIfAvailable(F); |
| 695 | |
| 696 | if (!Result) { |
| 697 | // Otherwise we don't have it, do lazy compilation now. |
| 698 | |
| 699 | // If lazy compilation is disabled, emit a useful error message and abort. |
| 700 | if (!TheJIT->isCompilingLazily()) { |
| 701 | llvm_report_error("LLVM JIT requested to do lazy compilation of function '" |
| 702 | + F->getName() + "' when lazy compiles are disabled!"); |
| 703 | } |
| 704 | |
| 705 | DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() |
| 706 | << "' In stub ptr = " << Stub << " actual ptr = " |
| 707 | << ActualPtr << "\n"); |
| 708 | |
| 709 | Result = TheJIT->getPointerToFunction(F); |
| 710 | } |
| 711 | |
| 712 | // Reacquire the lock to update the GOT map. |
| 713 | MutexGuard locked(TheJIT->lock); |
| 714 | |
| 715 | // We might like to remove the call site from the CallSiteToFunction map, but |
| 716 | // we can't do that! Multiple threads could be stuck, waiting to acquire the |
| 717 | // lock above. As soon as the 1st function finishes compiling the function, |
| 718 | // the next one will be released, and needs to be able to find the function it |
| 719 | // needs to call. |
| 720 | |
| 721 | // FIXME: We could rewrite all references to this stub if we knew them. |
| 722 | |
| 723 | // What we will do is set the compiled function address to map to the |
| 724 | // same GOT entry as the stub so that later clients may update the GOT |
| 725 | // if they see it still using the stub address. |
| 726 | // Note: this is done so the Resolver doesn't have to manage GOT memory |
| 727 | // Do this without allocating map space if the target isn't using a GOT |
| 728 | if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| 729 | JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| 730 | |
| 731 | return Result; |
| 732 | } |
| 733 | |
| 734 | //===----------------------------------------------------------------------===// |
| 735 | // JITEmitter code. |
| 736 | // |
| 737 | void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| 738 | bool MayNeedFarStub) { |
| 739 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| 740 | return TheJIT->getOrEmitGlobalVariable(GV); |
| 741 | |
| 742 | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) |
| 743 | return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); |
| 744 | |
| 745 | // If we have already compiled the function, return a pointer to its body. |
| 746 | Function *F = cast<Function>(V); |
| 747 | |
| 748 | void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); |
| 749 | if (FnStub) { |
| 750 | // Return the function stub if it's already created. We do this first so |
| 751 | // that we're returning the same address for the function as any previous |
| 752 | // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be |
| 753 | // close enough to call. |
| 754 | AddStubToCurrentFunction(FnStub); |
| 755 | return FnStub; |
| 756 | } |
| 757 | |
| 758 | // If we know the target can handle arbitrary-distance calls, try to |
| 759 | // return a direct pointer. |
| 760 | if (!MayNeedFarStub) { |
| 761 | // If we have code, go ahead and return that. |
| 762 | void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| 763 | if (ResultPtr) return ResultPtr; |
| 764 | |
| 765 | // If this is an external function pointer, we can force the JIT to |
| 766 | // 'compile' it, which really just adds it to the map. |
| 767 | if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) |
| 768 | return TheJIT->getPointerToFunction(F); |
| 769 | } |
| 770 | |
| 771 | // Otherwise, we may need a to emit a stub, and, conservatively, we |
| 772 | // always do so. |
| 773 | void *StubAddr = Resolver.getLazyFunctionStub(F); |
| 774 | |
| 775 | // Add the stub to the current function's list of referenced stubs, so we can |
| 776 | // deallocate them if the current function is ever freed. It's possible to |
| 777 | // return null from getLazyFunctionStub in the case of a weak extern that |
| 778 | // fails to resolve. |
| 779 | if (StubAddr) |
| 780 | AddStubToCurrentFunction(StubAddr); |
| 781 | |
| 782 | return StubAddr; |
| 783 | } |
| 784 | |
| 785 | void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { |
| 786 | // Make sure GV is emitted first, and create a stub containing the fully |
| 787 | // resolved address. |
| 788 | void *GVAddress = getPointerToGlobal(V, Reference, false); |
| 789 | void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); |
| 790 | |
| 791 | // Add the stub to the current function's list of referenced stubs, so we can |
| 792 | // deallocate them if the current function is ever freed. |
| 793 | AddStubToCurrentFunction(StubAddr); |
| 794 | |
| 795 | return StubAddr; |
| 796 | } |
| 797 | |
| 798 | void JITEmitter::AddStubToCurrentFunction(void *StubAddr) { |
| 799 | assert(CurFn && "Stub added to current function, but current function is 0!"); |
| 800 | |
| 801 | SmallVectorImpl<void*> &StubsUsed = CurFnStubUses[CurFn]; |
| 802 | StubsUsed.push_back(StubAddr); |
| 803 | |
| 804 | SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[StubAddr]; |
| 805 | FnRefs.insert(CurFn); |
| 806 | } |
| 807 | |
| 808 | void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { |
| 809 | if (!DL.isUnknown()) { |
| 810 | DILocation CurDLT = EmissionDetails.MF->getDILocation(DL); |
| 811 | |
| 812 | if (BeforePrintingInsn) { |
| 813 | if (CurDLT.getScope().getNode() != 0 |
| 814 | && PrevDLT.getNode() != CurDLT.getNode()) { |
| 815 | JITEvent_EmittedFunctionDetails::LineStart NextLine; |
| 816 | NextLine.Address = getCurrentPCValue(); |
| 817 | NextLine.Loc = DL; |
| 818 | EmissionDetails.LineStarts.push_back(NextLine); |
| 819 | } |
| 820 | |
| 821 | PrevDLT = CurDLT; |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, |
| 827 | const TargetData *TD) { |
| 828 | const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| 829 | if (Constants.empty()) return 0; |
| 830 | |
| 831 | unsigned Size = 0; |
| 832 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| 833 | MachineConstantPoolEntry CPE = Constants[i]; |
| 834 | unsigned AlignMask = CPE.getAlignment() - 1; |
| 835 | Size = (Size + AlignMask) & ~AlignMask; |
| 836 | const Type *Ty = CPE.getType(); |
| 837 | Size += TD->getTypeAllocSize(Ty); |
| 838 | } |
| 839 | return Size; |
| 840 | } |
| 841 | |
| 842 | static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI) { |
| 843 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| 844 | if (JT.empty()) return 0; |
| 845 | |
| 846 | unsigned NumEntries = 0; |
| 847 | for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| 848 | NumEntries += JT[i].MBBs.size(); |
| 849 | |
| 850 | return NumEntries * MJTI->getEntrySize(*TheJIT->getTargetData()); |
| 851 | } |
| 852 | |
| 853 | static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) { |
| 854 | if (Alignment == 0) Alignment = 1; |
| 855 | // Since we do not know where the buffer will be allocated, be pessimistic. |
| 856 | return Size + Alignment; |
| 857 | } |
| 858 | |
| 859 | /// addSizeOfGlobal - add the size of the global (plus any alignment padding) |
| 860 | /// into the running total Size. |
| 861 | |
| 862 | unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) { |
| 863 | const Type *ElTy = GV->getType()->getElementType(); |
| 864 | size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy); |
| 865 | size_t GVAlign = |
| 866 | (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV); |
| 867 | DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign); |
| 868 | DEBUG(GV->dump()); |
| 869 | // Assume code section ends with worst possible alignment, so first |
| 870 | // variable needs maximal padding. |
| 871 | if (Size==0) |
| 872 | Size = 1; |
| 873 | Size = ((Size+GVAlign-1)/GVAlign)*GVAlign; |
| 874 | Size += GVSize; |
| 875 | return Size; |
| 876 | } |
| 877 | |
| 878 | /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet |
| 879 | /// but are referenced from the constant; put them in GVSet and add their |
| 880 | /// size into the running total Size. |
| 881 | |
| 882 | unsigned JITEmitter::addSizeOfGlobalsInConstantVal(const Constant *C, |
| 883 | unsigned Size) { |
| 884 | // If its undefined, return the garbage. |
| 885 | if (isa<UndefValue>(C)) |
| 886 | return Size; |
| 887 | |
| 888 | // If the value is a ConstantExpr |
| 889 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| 890 | Constant *Op0 = CE->getOperand(0); |
| 891 | switch (CE->getOpcode()) { |
| 892 | case Instruction::GetElementPtr: |
| 893 | case Instruction::Trunc: |
| 894 | case Instruction::ZExt: |
| 895 | case Instruction::SExt: |
| 896 | case Instruction::FPTrunc: |
| 897 | case Instruction::FPExt: |
| 898 | case Instruction::UIToFP: |
| 899 | case Instruction::SIToFP: |
| 900 | case Instruction::FPToUI: |
| 901 | case Instruction::FPToSI: |
| 902 | case Instruction::PtrToInt: |
| 903 | case Instruction::IntToPtr: |
| 904 | case Instruction::BitCast: { |
| 905 | Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| 906 | break; |
| 907 | } |
| 908 | case Instruction::Add: |
| 909 | case Instruction::FAdd: |
| 910 | case Instruction::Sub: |
| 911 | case Instruction::FSub: |
| 912 | case Instruction::Mul: |
| 913 | case Instruction::FMul: |
| 914 | case Instruction::UDiv: |
| 915 | case Instruction::SDiv: |
| 916 | case Instruction::URem: |
| 917 | case Instruction::SRem: |
| 918 | case Instruction::And: |
| 919 | case Instruction::Or: |
| 920 | case Instruction::Xor: { |
| 921 | Size = addSizeOfGlobalsInConstantVal(Op0, Size); |
| 922 | Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size); |
| 923 | break; |
| 924 | } |
| 925 | default: { |
| 926 | std::string msg; |
| 927 | raw_string_ostream Msg(msg); |
| 928 | Msg << "ConstantExpr not handled: " << *CE; |
| 929 | llvm_report_error(Msg.str()); |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | if (C->getType()->getTypeID() == Type::PointerTyID) |
| 935 | if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| 936 | if (GVSet.insert(GV)) |
| 937 | Size = addSizeOfGlobal(GV, Size); |
| 938 | |
| 939 | return Size; |
| 940 | } |
| 941 | |
| 942 | /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet |
| 943 | /// but are referenced from the given initializer. |
| 944 | |
| 945 | unsigned JITEmitter::addSizeOfGlobalsInInitializer(const Constant *Init, |
| 946 | unsigned Size) { |
| 947 | if (!isa<UndefValue>(Init) && |
| 948 | !isa<ConstantVector>(Init) && |
| 949 | !isa<ConstantAggregateZero>(Init) && |
| 950 | !isa<ConstantArray>(Init) && |
| 951 | !isa<ConstantStruct>(Init) && |
| 952 | Init->getType()->isFirstClassType()) |
| 953 | Size = addSizeOfGlobalsInConstantVal(Init, Size); |
| 954 | return Size; |
| 955 | } |
| 956 | |
| 957 | /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for |
| 958 | /// globals; then walk the initializers of those globals looking for more. |
| 959 | /// If their size has not been considered yet, add it into the running total |
| 960 | /// Size. |
| 961 | |
| 962 | unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) { |
| 963 | unsigned Size = 0; |
| 964 | GVSet.clear(); |
| 965 | |
| 966 | for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); |
| 967 | MBB != E; ++MBB) { |
| 968 | for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); |
| 969 | I != E; ++I) { |
| 970 | const TargetInstrDesc &Desc = I->getDesc(); |
| 971 | const MachineInstr &MI = *I; |
| 972 | unsigned NumOps = Desc.getNumOperands(); |
| 973 | for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) { |
| 974 | const MachineOperand &MO = MI.getOperand(CurOp); |
| 975 | if (MO.isGlobal()) { |
| 976 | GlobalValue* V = MO.getGlobal(); |
| 977 | const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V); |
| 978 | if (!GV) |
| 979 | continue; |
| 980 | // If seen in previous function, it will have an entry here. |
| 981 | if (TheJIT->getPointerToGlobalIfAvailable(GV)) |
| 982 | continue; |
| 983 | // If seen earlier in this function, it will have an entry here. |
| 984 | // FIXME: it should be possible to combine these tables, by |
| 985 | // assuming the addresses of the new globals in this module |
| 986 | // start at 0 (or something) and adjusting them after codegen |
| 987 | // complete. Another possibility is to grab a marker bit in GV. |
| 988 | if (GVSet.insert(GV)) |
| 989 | // A variable as yet unseen. Add in its size. |
| 990 | Size = addSizeOfGlobal(GV, Size); |
| 991 | } |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | DEBUG(dbgs() << "JIT: About to look through initializers\n"); |
| 996 | // Look for more globals that are referenced only from initializers. |
| 997 | // GVSet.end is computed each time because the set can grow as we go. |
| 998 | for (SmallPtrSet<const GlobalVariable *, 8>::iterator I = GVSet.begin(); |
| 999 | I != GVSet.end(); I++) { |
| 1000 | const GlobalVariable* GV = *I; |
| 1001 | if (GV->hasInitializer()) |
| 1002 | Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size); |
| 1003 | } |
| 1004 | |
| 1005 | return Size; |
| 1006 | } |
| 1007 | |
| 1008 | void JITEmitter::startFunction(MachineFunction &F) { |
| 1009 | DEBUG(dbgs() << "JIT: Starting CodeGen of Function " |
| 1010 | << F.getFunction()->getName() << "\n"); |
| 1011 | |
| 1012 | uintptr_t ActualSize = 0; |
| 1013 | // Set the memory writable, if it's not already |
| 1014 | MemMgr->setMemoryWritable(); |
| 1015 | if (MemMgr->NeedsExactSize()) { |
| 1016 | DEBUG(dbgs() << "JIT: ExactSize\n"); |
| 1017 | const TargetInstrInfo* TII = F.getTarget().getInstrInfo(); |
| 1018 | MachineConstantPool *MCP = F.getConstantPool(); |
| 1019 | |
| 1020 | // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| 1021 | ActualSize = RoundUpToAlign(ActualSize, 16); |
| 1022 | |
| 1023 | // Add the alignment of the constant pool |
| 1024 | ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment()); |
| 1025 | |
| 1026 | // Add the constant pool size |
| 1027 | ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| 1028 | |
| 1029 | if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) { |
| 1030 | // Add the aligment of the jump table info |
| 1031 | ActualSize = RoundUpToAlign(ActualSize, |
| 1032 | MJTI->getEntryAlignment(*TheJIT->getTargetData())); |
| 1033 | |
| 1034 | // Add the jump table size |
| 1035 | ActualSize += GetJumpTableSizeInBytes(MJTI); |
| 1036 | } |
| 1037 | |
| 1038 | // Add the alignment for the function |
| 1039 | ActualSize = RoundUpToAlign(ActualSize, |
| 1040 | std::max(F.getFunction()->getAlignment(), 8U)); |
| 1041 | |
| 1042 | // Add the function size |
| 1043 | ActualSize += TII->GetFunctionSizeInBytes(F); |
| 1044 | |
| 1045 | DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n"); |
| 1046 | // Add the size of the globals that will be allocated after this function. |
| 1047 | // These are all the ones referenced from this function that were not |
| 1048 | // previously allocated. |
| 1049 | ActualSize += GetSizeOfGlobalsInBytes(F); |
| 1050 | DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n"); |
| 1051 | } else if (SizeEstimate > 0) { |
| 1052 | // SizeEstimate will be non-zero on reallocation attempts. |
| 1053 | ActualSize = SizeEstimate; |
| 1054 | } |
| 1055 | |
| 1056 | BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), |
| 1057 | ActualSize); |
| 1058 | BufferEnd = BufferBegin+ActualSize; |
| 1059 | EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; |
| 1060 | |
| 1061 | // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| 1062 | emitAlignment(16); |
| 1063 | |
| 1064 | emitConstantPool(F.getConstantPool()); |
| 1065 | if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) |
| 1066 | initJumpTableInfo(MJTI); |
| 1067 | |
| 1068 | // About to start emitting the machine code for the function. |
| 1069 | emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| 1070 | TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); |
| 1071 | EmittedFunctions[F.getFunction()].Code = CurBufferPtr; |
| 1072 | |
| 1073 | MBBLocations.clear(); |
| 1074 | |
| 1075 | EmissionDetails.MF = &F; |
| 1076 | EmissionDetails.LineStarts.clear(); |
| 1077 | } |
| 1078 | |
| 1079 | bool JITEmitter::finishFunction(MachineFunction &F) { |
| 1080 | if (CurBufferPtr == BufferEnd) { |
| 1081 | // We must call endFunctionBody before retrying, because |
| 1082 | // deallocateMemForFunction requires it. |
| 1083 | MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| 1084 | retryWithMoreMemory(F); |
| 1085 | return true; |
| 1086 | } |
| 1087 | |
| 1088 | if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) |
| 1089 | emitJumpTableInfo(MJTI); |
| 1090 | |
| 1091 | // FnStart is the start of the text, not the start of the constant pool and |
| 1092 | // other per-function data. |
| 1093 | uint8_t *FnStart = |
| 1094 | (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); |
| 1095 | |
| 1096 | // FnEnd is the end of the function's machine code. |
| 1097 | uint8_t *FnEnd = CurBufferPtr; |
| 1098 | |
| 1099 | if (!Relocations.empty()) { |
| 1100 | CurFn = F.getFunction(); |
| 1101 | NumRelos += Relocations.size(); |
| 1102 | |
| 1103 | // Resolve the relocations to concrete pointers. |
| 1104 | for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| 1105 | MachineRelocation &MR = Relocations[i]; |
| 1106 | void *ResultPtr = 0; |
| 1107 | if (!MR.letTargetResolve()) { |
| 1108 | if (MR.isExternalSymbol()) { |
| 1109 | ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), |
| 1110 | false); |
| 1111 | DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" |
| 1112 | << ResultPtr << "]\n"); |
| 1113 | |
| 1114 | // If the target REALLY wants a stub for this function, emit it now. |
| 1115 | if (MR.mayNeedFarStub()) { |
| 1116 | ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); |
| 1117 | } |
| 1118 | } else if (MR.isGlobalValue()) { |
| 1119 | ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| 1120 | BufferBegin+MR.getMachineCodeOffset(), |
| 1121 | MR.mayNeedFarStub()); |
| 1122 | } else if (MR.isIndirectSymbol()) { |
| 1123 | ResultPtr = getPointerToGVIndirectSym( |
| 1124 | MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); |
| 1125 | } else if (MR.isBasicBlock()) { |
| 1126 | ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); |
| 1127 | } else if (MR.isConstantPoolIndex()) { |
| 1128 | ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| 1129 | } else { |
| 1130 | assert(MR.isJumpTableIndex()); |
| 1131 | ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| 1132 | } |
| 1133 | |
| 1134 | MR.setResultPointer(ResultPtr); |
| 1135 | } |
| 1136 | |
| 1137 | // if we are managing the GOT and the relocation wants an index, |
| 1138 | // give it one |
| 1139 | if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { |
| 1140 | unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); |
| 1141 | MR.setGOTIndex(idx); |
| 1142 | if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { |
| 1143 | DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr |
| 1144 | << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| 1145 | << "\n"); |
| 1146 | ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | CurFn = 0; |
| 1152 | TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| 1153 | Relocations.size(), MemMgr->getGOTBase()); |
| 1154 | } |
| 1155 | |
| 1156 | // Update the GOT entry for F to point to the new code. |
| 1157 | if (MemMgr->isManagingGOT()) { |
| 1158 | unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); |
| 1159 | if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { |
| 1160 | DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin |
| 1161 | << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] |
| 1162 | << "\n"); |
| 1163 | ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for |
| 1168 | // global variables that were referenced in the relocations. |
| 1169 | MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| 1170 | |
| 1171 | if (CurBufferPtr == BufferEnd) { |
| 1172 | retryWithMoreMemory(F); |
| 1173 | return true; |
| 1174 | } else { |
| 1175 | // Now that we've succeeded in emitting the function, reset the |
| 1176 | // SizeEstimate back down to zero. |
| 1177 | SizeEstimate = 0; |
| 1178 | } |
| 1179 | |
| 1180 | BufferBegin = CurBufferPtr = 0; |
| 1181 | NumBytes += FnEnd-FnStart; |
| 1182 | |
| 1183 | // Invalidate the icache if necessary. |
| 1184 | sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); |
| 1185 | |
| 1186 | TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, |
| 1187 | EmissionDetails); |
| 1188 | |
| 1189 | DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart |
| 1190 | << "] Function: " << F.getFunction()->getName() |
| 1191 | << ": " << (FnEnd-FnStart) << " bytes of text, " |
| 1192 | << Relocations.size() << " relocations\n"); |
| 1193 | |
| 1194 | Relocations.clear(); |
| 1195 | ConstPoolAddresses.clear(); |
| 1196 | |
| 1197 | // Mark code region readable and executable if it's not so already. |
| 1198 | MemMgr->setMemoryExecutable(); |
| 1199 | |
| 1200 | DEBUG( |
| 1201 | if (sys::hasDisassembler()) { |
| 1202 | dbgs() << "JIT: Disassembled code:\n"; |
| 1203 | dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, |
| 1204 | (uintptr_t)FnStart); |
| 1205 | } else { |
| 1206 | dbgs() << "JIT: Binary code:\n"; |
| 1207 | uint8_t* q = FnStart; |
| 1208 | for (int i = 0; q < FnEnd; q += 4, ++i) { |
| 1209 | if (i == 4) |
| 1210 | i = 0; |
| 1211 | if (i == 0) |
| 1212 | dbgs() << "JIT: " << (long)(q - FnStart) << ": "; |
| 1213 | bool Done = false; |
| 1214 | for (int j = 3; j >= 0; --j) { |
| 1215 | if (q + j >= FnEnd) |
| 1216 | Done = true; |
| 1217 | else |
| 1218 | dbgs() << (unsigned short)q[j]; |
| 1219 | } |
| 1220 | if (Done) |
| 1221 | break; |
| 1222 | dbgs() << ' '; |
| 1223 | if (i == 3) |
| 1224 | dbgs() << '\n'; |
| 1225 | } |
| 1226 | dbgs()<< '\n'; |
| 1227 | } |
| 1228 | ); |
| 1229 | |
| 1230 | if (DwarfExceptionHandling || JITEmitDebugInfo) { |
| 1231 | uintptr_t ActualSize = 0; |
| 1232 | SavedBufferBegin = BufferBegin; |
| 1233 | SavedBufferEnd = BufferEnd; |
| 1234 | SavedCurBufferPtr = CurBufferPtr; |
| 1235 | |
| 1236 | if (MemMgr->NeedsExactSize()) { |
| 1237 | ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd); |
| 1238 | } |
| 1239 | |
| 1240 | BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), |
| 1241 | ActualSize); |
| 1242 | BufferEnd = BufferBegin+ActualSize; |
| 1243 | EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; |
| 1244 | uint8_t *EhStart; |
| 1245 | uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, |
| 1246 | EhStart); |
| 1247 | MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, |
| 1248 | FrameRegister); |
| 1249 | uint8_t *EhEnd = CurBufferPtr; |
| 1250 | BufferBegin = SavedBufferBegin; |
| 1251 | BufferEnd = SavedBufferEnd; |
| 1252 | CurBufferPtr = SavedCurBufferPtr; |
| 1253 | |
| 1254 | if (DwarfExceptionHandling) { |
| 1255 | TheJIT->RegisterTable(FrameRegister); |
| 1256 | } |
| 1257 | |
| 1258 | if (JITEmitDebugInfo) { |
| 1259 | DebugInfo I; |
| 1260 | I.FnStart = FnStart; |
| 1261 | I.FnEnd = FnEnd; |
| 1262 | I.EhStart = EhStart; |
| 1263 | I.EhEnd = EhEnd; |
| 1264 | DR->RegisterFunction(F.getFunction(), I); |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | if (MMI) |
| 1269 | MMI->EndFunction(); |
| 1270 | |
| 1271 | return false; |
| 1272 | } |
| 1273 | |
| 1274 | void JITEmitter::retryWithMoreMemory(MachineFunction &F) { |
| 1275 | DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); |
| 1276 | Relocations.clear(); // Clear the old relocations or we'll reapply them. |
| 1277 | ConstPoolAddresses.clear(); |
| 1278 | ++NumRetries; |
| 1279 | deallocateMemForFunction(F.getFunction()); |
| 1280 | // Try again with at least twice as much free space. |
| 1281 | SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); |
| 1282 | } |
| 1283 | |
| 1284 | /// deallocateMemForFunction - Deallocate all memory for the specified |
| 1285 | /// function body. Also drop any references the function has to stubs. |
| 1286 | /// May be called while the Function is being destroyed inside ~Value(). |
| 1287 | void JITEmitter::deallocateMemForFunction(const Function *F) { |
| 1288 | ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator |
| 1289 | Emitted = EmittedFunctions.find(F); |
| 1290 | if (Emitted != EmittedFunctions.end()) { |
| 1291 | MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); |
| 1292 | MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); |
| 1293 | TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); |
| 1294 | |
| 1295 | EmittedFunctions.erase(Emitted); |
| 1296 | } |
| 1297 | |
| 1298 | // TODO: Do we need to unregister exception handling information from libgcc |
| 1299 | // here? |
| 1300 | |
| 1301 | if (JITEmitDebugInfo) { |
| 1302 | DR->UnregisterFunction(F); |
| 1303 | } |
| 1304 | |
| 1305 | // If the function did not reference any stubs, return. |
| 1306 | if (CurFnStubUses.find(F) == CurFnStubUses.end()) |
| 1307 | return; |
| 1308 | |
| 1309 | // For each referenced stub, erase the reference to this function, and then |
| 1310 | // erase the list of referenced stubs. |
| 1311 | SmallVectorImpl<void *> &StubList = CurFnStubUses[F]; |
| 1312 | for (unsigned i = 0, e = StubList.size(); i != e; ++i) { |
| 1313 | void *Stub = StubList[i]; |
| 1314 | |
| 1315 | // If we already invalidated this stub for this function, continue. |
| 1316 | if (StubFnRefs.count(Stub) == 0) |
| 1317 | continue; |
| 1318 | |
| 1319 | SmallPtrSet<const Function *, 1> &FnRefs = StubFnRefs[Stub]; |
| 1320 | FnRefs.erase(F); |
| 1321 | |
| 1322 | // If this function was the last reference to the stub, invalidate the stub |
| 1323 | // in the JITResolver. Were there a memory manager deallocateStub routine, |
| 1324 | // we could call that at this point too. |
| 1325 | if (FnRefs.empty()) { |
| 1326 | DEBUG(dbgs() << "\nJIT: Invalidated Stub at [" << Stub << "]\n"); |
| 1327 | StubFnRefs.erase(Stub); |
| 1328 | |
| 1329 | // Invalidate the stub. If it is a GV stub, update the JIT's global |
| 1330 | // mapping for that GV to zero. |
| 1331 | GlobalValue *GV = Resolver.invalidateStub(Stub); |
| 1332 | if (GV) { |
| 1333 | TheJIT->updateGlobalMapping(GV, 0); |
| 1334 | } |
| 1335 | } |
| 1336 | } |
| 1337 | CurFnStubUses.erase(F); |
| 1338 | } |
| 1339 | |
| 1340 | |
| 1341 | void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { |
| 1342 | if (BufferBegin) |
| 1343 | return JITCodeEmitter::allocateSpace(Size, Alignment); |
| 1344 | |
| 1345 | // create a new memory block if there is no active one. |
| 1346 | // care must be taken so that BufferBegin is invalidated when a |
| 1347 | // block is trimmed |
| 1348 | BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); |
| 1349 | BufferEnd = BufferBegin+Size; |
| 1350 | return CurBufferPtr; |
| 1351 | } |
| 1352 | |
| 1353 | void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { |
| 1354 | // Delegate this call through the memory manager. |
| 1355 | return MemMgr->allocateGlobal(Size, Alignment); |
| 1356 | } |
| 1357 | |
| 1358 | void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| 1359 | if (TheJIT->getJITInfo().hasCustomConstantPool()) |
| 1360 | return; |
| 1361 | |
| 1362 | const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| 1363 | if (Constants.empty()) return; |
| 1364 | |
| 1365 | unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); |
| 1366 | unsigned Align = MCP->getConstantPoolAlignment(); |
| 1367 | ConstantPoolBase = allocateSpace(Size, Align); |
| 1368 | ConstantPool = MCP; |
| 1369 | |
| 1370 | if (ConstantPoolBase == 0) return; // Buffer overflow. |
| 1371 | |
| 1372 | DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase |
| 1373 | << "] (size: " << Size << ", alignment: " << Align << ")\n"); |
| 1374 | |
| 1375 | // Initialize the memory for all of the constant pool entries. |
| 1376 | unsigned Offset = 0; |
| 1377 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| 1378 | MachineConstantPoolEntry CPE = Constants[i]; |
| 1379 | unsigned AlignMask = CPE.getAlignment() - 1; |
| 1380 | Offset = (Offset + AlignMask) & ~AlignMask; |
| 1381 | |
| 1382 | uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; |
| 1383 | ConstPoolAddresses.push_back(CAddr); |
| 1384 | if (CPE.isMachineConstantPoolEntry()) { |
| 1385 | // FIXME: add support to lower machine constant pool values into bytes! |
| 1386 | llvm_report_error("Initialize memory with machine specific constant pool" |
| 1387 | "entry has not been implemented!"); |
| 1388 | } |
| 1389 | TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); |
| 1390 | DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; |
| 1391 | dbgs().write_hex(CAddr) << "]\n"); |
| 1392 | |
| 1393 | const Type *Ty = CPE.Val.ConstVal->getType(); |
| 1394 | Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| 1399 | if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| 1400 | return; |
| 1401 | |
| 1402 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| 1403 | if (JT.empty()) return; |
| 1404 | |
| 1405 | unsigned NumEntries = 0; |
| 1406 | for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| 1407 | NumEntries += JT[i].MBBs.size(); |
| 1408 | |
| 1409 | unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData()); |
| 1410 | |
| 1411 | // Just allocate space for all the jump tables now. We will fix up the actual |
| 1412 | // MBB entries in the tables after we emit the code for each block, since then |
| 1413 | // we will know the final locations of the MBBs in memory. |
| 1414 | JumpTable = MJTI; |
| 1415 | JumpTableBase = allocateSpace(NumEntries * EntrySize, |
| 1416 | MJTI->getEntryAlignment(*TheJIT->getTargetData())); |
| 1417 | } |
| 1418 | |
| 1419 | void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| 1420 | if (TheJIT->getJITInfo().hasCustomJumpTables()) |
| 1421 | return; |
| 1422 | |
| 1423 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| 1424 | if (JT.empty() || JumpTableBase == 0) return; |
| 1425 | |
| 1426 | |
| 1427 | switch (MJTI->getEntryKind()) { |
| 1428 | case MachineJumpTableInfo::EK_BlockAddress: { |
| 1429 | // EK_BlockAddress - Each entry is a plain address of block, e.g.: |
| 1430 | // .word LBB123 |
| 1431 | assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) && |
| 1432 | "Cross JIT'ing?"); |
| 1433 | |
| 1434 | // For each jump table, map each target in the jump table to the address of |
| 1435 | // an emitted MachineBasicBlock. |
| 1436 | intptr_t *SlotPtr = (intptr_t*)JumpTableBase; |
| 1437 | |
| 1438 | for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| 1439 | const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| 1440 | // Store the address of the basic block for this jump table slot in the |
| 1441 | // memory we allocated for the jump table in 'initJumpTableInfo' |
| 1442 | for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) |
| 1443 | *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); |
| 1444 | } |
| 1445 | break; |
| 1446 | } |
| 1447 | |
| 1448 | case MachineJumpTableInfo::EK_Custom32: |
| 1449 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| 1450 | case MachineJumpTableInfo::EK_LabelDifference32: { |
| 1451 | assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?"); |
| 1452 | // For each jump table, place the offset from the beginning of the table |
| 1453 | // to the target address. |
| 1454 | int *SlotPtr = (int*)JumpTableBase; |
| 1455 | |
| 1456 | for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| 1457 | const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| 1458 | // Store the offset of the basic block for this jump table slot in the |
| 1459 | // memory we allocated for the jump table in 'initJumpTableInfo' |
| 1460 | uintptr_t Base = (uintptr_t)SlotPtr; |
| 1461 | for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { |
| 1462 | uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); |
| 1463 | /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. |
| 1464 | *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); |
| 1465 | } |
| 1466 | } |
| 1467 | break; |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | void JITEmitter::startGVStub(const GlobalValue* GV, |
| 1473 | unsigned StubSize, unsigned Alignment) { |
| 1474 | SavedBufferBegin = BufferBegin; |
| 1475 | SavedBufferEnd = BufferEnd; |
| 1476 | SavedCurBufferPtr = CurBufferPtr; |
| 1477 | |
| 1478 | BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); |
| 1479 | BufferEnd = BufferBegin+StubSize+1; |
| 1480 | } |
| 1481 | |
| 1482 | void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { |
| 1483 | SavedBufferBegin = BufferBegin; |
| 1484 | SavedBufferEnd = BufferEnd; |
| 1485 | SavedCurBufferPtr = CurBufferPtr; |
| 1486 | |
| 1487 | BufferBegin = CurBufferPtr = (uint8_t *)Buffer; |
| 1488 | BufferEnd = BufferBegin+StubSize+1; |
| 1489 | } |
| 1490 | |
| 1491 | void JITEmitter::finishGVStub() { |
| 1492 | assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); |
| 1493 | NumBytes += getCurrentPCOffset(); |
| 1494 | BufferBegin = SavedBufferBegin; |
| 1495 | BufferEnd = SavedBufferEnd; |
| 1496 | CurBufferPtr = SavedCurBufferPtr; |
| 1497 | } |
| 1498 | |
| 1499 | void *JITEmitter::allocIndirectGV(const GlobalValue *GV, |
| 1500 | const uint8_t *Buffer, size_t Size, |
| 1501 | unsigned Alignment) { |
| 1502 | uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); |
| 1503 | memcpy(IndGV, Buffer, Size); |
| 1504 | return IndGV; |
| 1505 | } |
| 1506 | |
| 1507 | // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| 1508 | // in the constant pool that was last emitted with the 'emitConstantPool' |
| 1509 | // method. |
| 1510 | // |
| 1511 | uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { |
| 1512 | assert(ConstantNum < ConstantPool->getConstants().size() && |
| 1513 | "Invalid ConstantPoolIndex!"); |
| 1514 | return ConstPoolAddresses[ConstantNum]; |
| 1515 | } |
| 1516 | |
| 1517 | // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| 1518 | // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| 1519 | // |
| 1520 | uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| 1521 | const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| 1522 | assert(Index < JT.size() && "Invalid jump table index!"); |
| 1523 | |
| 1524 | unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData()); |
| 1525 | |
| 1526 | unsigned Offset = 0; |
| 1527 | for (unsigned i = 0; i < Index; ++i) |
| 1528 | Offset += JT[i].MBBs.size(); |
| 1529 | |
| 1530 | Offset *= EntrySize; |
| 1531 | |
| 1532 | return (uintptr_t)((char *)JumpTableBase + Offset); |
| 1533 | } |
| 1534 | |
| 1535 | void JITEmitter::EmittedFunctionConfig::onDelete( |
| 1536 | JITEmitter *Emitter, const Function *F) { |
| 1537 | Emitter->deallocateMemForFunction(F); |
| 1538 | } |
| 1539 | void JITEmitter::EmittedFunctionConfig::onRAUW( |
| 1540 | JITEmitter *, const Function*, const Function*) { |
| 1541 | llvm_unreachable("The JIT doesn't know how to handle a" |
| 1542 | " RAUW on a value it has emitted."); |
| 1543 | } |
| 1544 | |
| 1545 | |
| 1546 | //===----------------------------------------------------------------------===// |
| 1547 | // Public interface to this file |
| 1548 | //===----------------------------------------------------------------------===// |
| 1549 | |
| 1550 | JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, |
| 1551 | TargetMachine &tm) { |
| 1552 | return new JITEmitter(jit, JMM, tm); |
| 1553 | } |
| 1554 | |
| 1555 | // getPointerToNamedFunction - This function is used as a global wrapper to |
| 1556 | // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| 1557 | // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| 1558 | // need to resolve function(s) that are being mis-codegenerated, so we need to |
| 1559 | // resolve their addresses at runtime, and this is the way to do it. |
| 1560 | extern "C" { |
| 1561 | void *getPointerToNamedFunction(const char *Name) { |
| 1562 | if (Function *F = TheJIT->FindFunctionNamed(Name)) |
| 1563 | return TheJIT->getPointerToFunction(F); |
| 1564 | return TheJIT->getPointerToNamedFunction(Name); |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | // getPointerToFunctionOrStub - If the specified function has been |
| 1569 | // code-gen'd, return a pointer to the function. If not, compile it, or use |
| 1570 | // a stub to implement lazy compilation if available. |
| 1571 | // |
| 1572 | void *JIT::getPointerToFunctionOrStub(Function *F) { |
| 1573 | // If we have already code generated the function, just return the address. |
| 1574 | if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| 1575 | return Addr; |
| 1576 | |
| 1577 | // Get a stub if the target supports it. |
| 1578 | assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| 1579 | JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| 1580 | return JE->getJITResolver().getLazyFunctionStub(F); |
| 1581 | } |
| 1582 | |
| 1583 | void JIT::updateFunctionStub(Function *F) { |
| 1584 | // Get the empty stub we generated earlier. |
| 1585 | assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| 1586 | JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); |
| 1587 | void *Stub = JE->getJITResolver().getLazyFunctionStub(F); |
| 1588 | void *Addr = getPointerToGlobalIfAvailable(F); |
| 1589 | assert(Addr != Stub && "Function must have non-stub address to be updated."); |
| 1590 | |
| 1591 | // Tell the target jit info to rewrite the stub at the specified address, |
| 1592 | // rather than creating a new one. |
| 1593 | TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); |
| 1594 | JE->startGVStub(Stub, layout.Size); |
| 1595 | getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); |
| 1596 | JE->finishGVStub(); |
| 1597 | } |
| 1598 | |
| 1599 | /// freeMachineCodeForFunction - release machine code memory for given Function. |
| 1600 | /// |
| 1601 | void JIT::freeMachineCodeForFunction(Function *F) { |
| 1602 | // Delete translation for this from the ExecutionEngine, so it will get |
| 1603 | // retranslated next time it is used. |
| 1604 | updateGlobalMapping(F, 0); |
| 1605 | |
| 1606 | // Free the actual memory for the function body and related stuff. |
| 1607 | assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); |
| 1608 | cast<JITEmitter>(JCE)->deallocateMemForFunction(F); |
| 1609 | } |