blob: bdc886bc67ac72be05cfdde1c06a7dda933ede9b [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "assembler"
11#include "llvm/MC/MCAssembler.h"
12#include "llvm/MC/MCExpr.h"
13#include "llvm/MC/MCSectionMachO.h"
14#include "llvm/MC/MCSymbol.h"
15#include "llvm/MC/MCValue.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/StringMap.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/MachO.h"
23#include "llvm/Support/raw_ostream.h"
24#include <vector>
25using namespace llvm;
26
27class MachObjectWriter;
28
29STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
30
31// FIXME FIXME FIXME: There are number of places in this file where we convert
32// what is a 64-bit assembler value used for computation into a value in the
33// object file, which may truncate it. We should detect that truncation where
34// invalid and report errors back.
35
36static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
37 MachObjectWriter &MOW);
38
39/// isVirtualSection - Check if this is a section which does not actually exist
40/// in the object file.
41static bool isVirtualSection(const MCSection &Section) {
42 // FIXME: Lame.
43 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
44 unsigned Type = SMO.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
45 return (Type == MCSectionMachO::S_ZEROFILL);
46}
47
48class MachObjectWriter {
49 // See <mach-o/loader.h>.
50 enum {
51 Header_Magic32 = 0xFEEDFACE,
52 Header_Magic64 = 0xFEEDFACF
53 };
54
55 static const unsigned Header32Size = 28;
56 static const unsigned Header64Size = 32;
57 static const unsigned SegmentLoadCommand32Size = 56;
58 static const unsigned Section32Size = 68;
59 static const unsigned SymtabLoadCommandSize = 24;
60 static const unsigned DysymtabLoadCommandSize = 80;
61 static const unsigned Nlist32Size = 12;
62 static const unsigned RelocationInfoSize = 8;
63
64 enum HeaderFileType {
65 HFT_Object = 0x1
66 };
67
68 enum HeaderFlags {
69 HF_SubsectionsViaSymbols = 0x2000
70 };
71
72 enum LoadCommandType {
73 LCT_Segment = 0x1,
74 LCT_Symtab = 0x2,
75 LCT_Dysymtab = 0xb
76 };
77
78 // See <mach-o/nlist.h>.
79 enum SymbolTypeType {
80 STT_Undefined = 0x00,
81 STT_Absolute = 0x02,
82 STT_Section = 0x0e
83 };
84
85 enum SymbolTypeFlags {
86 // If any of these bits are set, then the entry is a stab entry number (see
87 // <mach-o/stab.h>. Otherwise the other masks apply.
88 STF_StabsEntryMask = 0xe0,
89
90 STF_TypeMask = 0x0e,
91 STF_External = 0x01,
92 STF_PrivateExtern = 0x10
93 };
94
95 /// IndirectSymbolFlags - Flags for encoding special values in the indirect
96 /// symbol entry.
97 enum IndirectSymbolFlags {
98 ISF_Local = 0x80000000,
99 ISF_Absolute = 0x40000000
100 };
101
102 /// RelocationFlags - Special flags for addresses.
103 enum RelocationFlags {
104 RF_Scattered = 0x80000000
105 };
106
107 enum RelocationInfoType {
108 RIT_Vanilla = 0,
109 RIT_Pair = 1,
110 RIT_Difference = 2,
111 RIT_PreboundLazyPointer = 3,
112 RIT_LocalDifference = 4
113 };
114
115 /// MachSymbolData - Helper struct for containing some precomputed information
116 /// on symbols.
117 struct MachSymbolData {
118 MCSymbolData *SymbolData;
119 uint64_t StringIndex;
120 uint8_t SectionIndex;
121
122 // Support lexicographic sorting.
123 bool operator<(const MachSymbolData &RHS) const {
124 const std::string &Name = SymbolData->getSymbol().getName();
125 return Name < RHS.SymbolData->getSymbol().getName();
126 }
127 };
128
129 raw_ostream &OS;
130 bool IsLSB;
131
132public:
133 MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true)
134 : OS(_OS), IsLSB(_IsLSB) {
135 }
136
137 /// @name Helper Methods
138 /// @{
139
140 void Write8(uint8_t Value) {
141 OS << char(Value);
142 }
143
144 void Write16(uint16_t Value) {
145 if (IsLSB) {
146 Write8(uint8_t(Value >> 0));
147 Write8(uint8_t(Value >> 8));
148 } else {
149 Write8(uint8_t(Value >> 8));
150 Write8(uint8_t(Value >> 0));
151 }
152 }
153
154 void Write32(uint32_t Value) {
155 if (IsLSB) {
156 Write16(uint16_t(Value >> 0));
157 Write16(uint16_t(Value >> 16));
158 } else {
159 Write16(uint16_t(Value >> 16));
160 Write16(uint16_t(Value >> 0));
161 }
162 }
163
164 void Write64(uint64_t Value) {
165 if (IsLSB) {
166 Write32(uint32_t(Value >> 0));
167 Write32(uint32_t(Value >> 32));
168 } else {
169 Write32(uint32_t(Value >> 32));
170 Write32(uint32_t(Value >> 0));
171 }
172 }
173
174 void WriteZeros(unsigned N) {
175 const char Zeros[16] = { 0 };
176
177 for (unsigned i = 0, e = N / 16; i != e; ++i)
178 OS << StringRef(Zeros, 16);
179
180 OS << StringRef(Zeros, N % 16);
181 }
182
183 void WriteString(StringRef Str, unsigned ZeroFillSize = 0) {
184 OS << Str;
185 if (ZeroFillSize)
186 WriteZeros(ZeroFillSize - Str.size());
187 }
188
189 /// @}
190
191 void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize,
192 bool SubsectionsViaSymbols) {
193 uint32_t Flags = 0;
194
195 if (SubsectionsViaSymbols)
196 Flags |= HF_SubsectionsViaSymbols;
197
198 // struct mach_header (28 bytes)
199
200 uint64_t Start = OS.tell();
201 (void) Start;
202
203 Write32(Header_Magic32);
204
205 // FIXME: Support cputype.
206 Write32(MachO::CPUTypeI386);
207 // FIXME: Support cpusubtype.
208 Write32(MachO::CPUSubType_I386_ALL);
209 Write32(HFT_Object);
210 Write32(NumLoadCommands); // Object files have a single load command, the
211 // segment.
212 Write32(LoadCommandsSize);
213 Write32(Flags);
214
215 assert(OS.tell() - Start == Header32Size);
216 }
217
218 /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command.
219 ///
220 /// \arg NumSections - The number of sections in this segment.
221 /// \arg SectionDataSize - The total size of the sections.
222 void WriteSegmentLoadCommand32(unsigned NumSections,
223 uint64_t VMSize,
224 uint64_t SectionDataStartOffset,
225 uint64_t SectionDataSize) {
226 // struct segment_command (56 bytes)
227
228 uint64_t Start = OS.tell();
229 (void) Start;
230
231 Write32(LCT_Segment);
232 Write32(SegmentLoadCommand32Size + NumSections * Section32Size);
233
234 WriteString("", 16);
235 Write32(0); // vmaddr
236 Write32(VMSize); // vmsize
237 Write32(SectionDataStartOffset); // file offset
238 Write32(SectionDataSize); // file size
239 Write32(0x7); // maxprot
240 Write32(0x7); // initprot
241 Write32(NumSections);
242 Write32(0); // flags
243
244 assert(OS.tell() - Start == SegmentLoadCommand32Size);
245 }
246
247 void WriteSection32(const MCSectionData &SD, uint64_t FileOffset,
248 uint64_t RelocationsStart, unsigned NumRelocations) {
249 // The offset is unused for virtual sections.
250 if (isVirtualSection(SD.getSection())) {
251 assert(SD.getFileSize() == 0 && "Invalid file size!");
252 FileOffset = 0;
253 }
254
255 // struct section (68 bytes)
256
257 uint64_t Start = OS.tell();
258 (void) Start;
259
260 // FIXME: cast<> support!
261 const MCSectionMachO &Section =
262 static_cast<const MCSectionMachO&>(SD.getSection());
263 WriteString(Section.getSectionName(), 16);
264 WriteString(Section.getSegmentName(), 16);
265 Write32(SD.getAddress()); // address
266 Write32(SD.getSize()); // size
267 Write32(FileOffset);
268
269 unsigned Flags = Section.getTypeAndAttributes();
270 if (SD.hasInstructions())
271 Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS;
272
273 assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
274 Write32(Log2_32(SD.getAlignment()));
275 Write32(NumRelocations ? RelocationsStart : 0);
276 Write32(NumRelocations);
277 Write32(Flags);
278 Write32(0); // reserved1
279 Write32(Section.getStubSize()); // reserved2
280
281 assert(OS.tell() - Start == Section32Size);
282 }
283
284 void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
285 uint32_t StringTableOffset,
286 uint32_t StringTableSize) {
287 // struct symtab_command (24 bytes)
288
289 uint64_t Start = OS.tell();
290 (void) Start;
291
292 Write32(LCT_Symtab);
293 Write32(SymtabLoadCommandSize);
294 Write32(SymbolOffset);
295 Write32(NumSymbols);
296 Write32(StringTableOffset);
297 Write32(StringTableSize);
298
299 assert(OS.tell() - Start == SymtabLoadCommandSize);
300 }
301
302 void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
303 uint32_t NumLocalSymbols,
304 uint32_t FirstExternalSymbol,
305 uint32_t NumExternalSymbols,
306 uint32_t FirstUndefinedSymbol,
307 uint32_t NumUndefinedSymbols,
308 uint32_t IndirectSymbolOffset,
309 uint32_t NumIndirectSymbols) {
310 // struct dysymtab_command (80 bytes)
311
312 uint64_t Start = OS.tell();
313 (void) Start;
314
315 Write32(LCT_Dysymtab);
316 Write32(DysymtabLoadCommandSize);
317 Write32(FirstLocalSymbol);
318 Write32(NumLocalSymbols);
319 Write32(FirstExternalSymbol);
320 Write32(NumExternalSymbols);
321 Write32(FirstUndefinedSymbol);
322 Write32(NumUndefinedSymbols);
323 Write32(0); // tocoff
324 Write32(0); // ntoc
325 Write32(0); // modtaboff
326 Write32(0); // nmodtab
327 Write32(0); // extrefsymoff
328 Write32(0); // nextrefsyms
329 Write32(IndirectSymbolOffset);
330 Write32(NumIndirectSymbols);
331 Write32(0); // extreloff
332 Write32(0); // nextrel
333 Write32(0); // locreloff
334 Write32(0); // nlocrel
335
336 assert(OS.tell() - Start == DysymtabLoadCommandSize);
337 }
338
339 void WriteNlist32(MachSymbolData &MSD) {
340 MCSymbolData &Data = *MSD.SymbolData;
341 const MCSymbol &Symbol = Data.getSymbol();
342 uint8_t Type = 0;
343 uint16_t Flags = Data.getFlags();
344 uint32_t Address = 0;
345
346 // Set the N_TYPE bits. See <mach-o/nlist.h>.
347 //
348 // FIXME: Are the prebound or indirect fields possible here?
349 if (Symbol.isUndefined())
350 Type = STT_Undefined;
351 else if (Symbol.isAbsolute())
352 Type = STT_Absolute;
353 else
354 Type = STT_Section;
355
356 // FIXME: Set STAB bits.
357
358 if (Data.isPrivateExtern())
359 Type |= STF_PrivateExtern;
360
361 // Set external bit.
362 if (Data.isExternal() || Symbol.isUndefined())
363 Type |= STF_External;
364
365 // Compute the symbol address.
366 if (Symbol.isDefined()) {
367 if (Symbol.isAbsolute()) {
368 llvm_unreachable("FIXME: Not yet implemented!");
369 } else {
370 Address = Data.getFragment()->getAddress() + Data.getOffset();
371 }
372 } else if (Data.isCommon()) {
373 // Common symbols are encoded with the size in the address
374 // field, and their alignment in the flags.
375 Address = Data.getCommonSize();
376
377 // Common alignment is packed into the 'desc' bits.
378 if (unsigned Align = Data.getCommonAlignment()) {
379 unsigned Log2Size = Log2_32(Align);
380 assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
381 if (Log2Size > 15)
382 llvm_report_error("invalid 'common' alignment '" +
383 Twine(Align) + "'");
384 // FIXME: Keep this mask with the SymbolFlags enumeration.
385 Flags = (Flags & 0xF0FF) | (Log2Size << 8);
386 }
387 }
388
389 // struct nlist (12 bytes)
390
391 Write32(MSD.StringIndex);
392 Write8(Type);
393 Write8(MSD.SectionIndex);
394
395 // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
396 // value.
397 Write16(Flags);
398 Write32(Address);
399 }
400
401 struct MachRelocationEntry {
402 uint32_t Word0;
403 uint32_t Word1;
404 };
405 void ComputeScatteredRelocationInfo(MCAssembler &Asm,
406 MCSectionData::Fixup &Fixup,
407 const MCValue &Target,
408 DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
409 std::vector<MachRelocationEntry> &Relocs) {
410 uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
411 unsigned IsPCRel = 0;
412 unsigned Type = RIT_Vanilla;
413
414 // See <reloc.h>.
415 const MCSymbol *A = Target.getSymA();
416 MCSymbolData *SD = SymbolMap.lookup(A);
417 uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset();
418 uint32_t Value2 = 0;
419
420 if (const MCSymbol *B = Target.getSymB()) {
421 Type = RIT_LocalDifference;
422
423 MCSymbolData *SD = SymbolMap.lookup(B);
424 Value2 = SD->getFragment()->getAddress() + SD->getOffset();
425 }
426
427 unsigned Log2Size = Log2_32(Fixup.Size);
428 assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");
429
430 // The value which goes in the fixup is current value of the expression.
431 Fixup.FixedValue = Value - Value2 + Target.getConstant();
432
433 MachRelocationEntry MRE;
434 MRE.Word0 = ((Address << 0) |
435 (Type << 24) |
436 (Log2Size << 28) |
437 (IsPCRel << 30) |
438 RF_Scattered);
439 MRE.Word1 = Value;
440 Relocs.push_back(MRE);
441
442 if (Type == RIT_LocalDifference) {
443 Type = RIT_Pair;
444
445 MachRelocationEntry MRE;
446 MRE.Word0 = ((0 << 0) |
447 (Type << 24) |
448 (Log2Size << 28) |
449 (0 << 30) |
450 RF_Scattered);
451 MRE.Word1 = Value2;
452 Relocs.push_back(MRE);
453 }
454 }
455
456 void ComputeRelocationInfo(MCAssembler &Asm,
457 MCSectionData::Fixup &Fixup,
458 DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
459 std::vector<MachRelocationEntry> &Relocs) {
460 MCValue Target;
461 if (!Fixup.Value->EvaluateAsRelocatable(Target))
462 llvm_report_error("expected relocatable expression");
463
464 // If this is a difference or a local symbol plus an offset, then we need a
465 // scattered relocation entry.
466 if (Target.getSymB() ||
467 (Target.getSymA() && !Target.getSymA()->isUndefined() &&
468 Target.getConstant()))
469 return ComputeScatteredRelocationInfo(Asm, Fixup, Target,
470 SymbolMap, Relocs);
471
472 // See <reloc.h>.
473 uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
474 uint32_t Value = 0;
475 unsigned Index = 0;
476 unsigned IsPCRel = 0;
477 unsigned IsExtern = 0;
478 unsigned Type = 0;
479
480 if (Target.isAbsolute()) { // constant
481 // SymbolNum of 0 indicates the absolute section.
482 Type = RIT_Vanilla;
483 Value = 0;
484 llvm_unreachable("FIXME: Not yet implemented!");
485 } else {
486 const MCSymbol *Symbol = Target.getSymA();
487 MCSymbolData *SD = SymbolMap.lookup(Symbol);
488
489 if (Symbol->isUndefined()) {
490 IsExtern = 1;
491 Index = SD->getIndex();
492 Value = 0;
493 } else {
494 // The index is the section ordinal.
495 //
496 // FIXME: O(N)
497 Index = 1;
498 for (MCAssembler::iterator it = Asm.begin(),
499 ie = Asm.end(); it != ie; ++it, ++Index)
500 if (&*it == SD->getFragment()->getParent())
501 break;
502 Value = SD->getFragment()->getAddress() + SD->getOffset();
503 }
504
505 Type = RIT_Vanilla;
506 }
507
508 // The value which goes in the fixup is current value of the expression.
509 Fixup.FixedValue = Value + Target.getConstant();
510
511 unsigned Log2Size = Log2_32(Fixup.Size);
512 assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");
513
514 // struct relocation_info (8 bytes)
515 MachRelocationEntry MRE;
516 MRE.Word0 = Address;
517 MRE.Word1 = ((Index << 0) |
518 (IsPCRel << 24) |
519 (Log2Size << 25) |
520 (IsExtern << 27) |
521 (Type << 28));
522 Relocs.push_back(MRE);
523 }
524
525 void BindIndirectSymbols(MCAssembler &Asm,
526 DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap) {
527 // This is the point where 'as' creates actual symbols for indirect symbols
528 // (in the following two passes). It would be easier for us to do this
529 // sooner when we see the attribute, but that makes getting the order in the
530 // symbol table much more complicated than it is worth.
531 //
532 // FIXME: Revisit this when the dust settles.
533
534 // Bind non lazy symbol pointers first.
535 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
536 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
537 // FIXME: cast<> support!
538 const MCSectionMachO &Section =
539 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
540
541 unsigned Type =
542 Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
543 if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
544 continue;
545
546 MCSymbolData *&Entry = SymbolMap[it->Symbol];
547 if (!Entry)
548 Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);
549 }
550
551 // Then lazy symbol pointers and symbol stubs.
552 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
553 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
554 // FIXME: cast<> support!
555 const MCSectionMachO &Section =
556 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
557
558 unsigned Type =
559 Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
560 if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
561 Type != MCSectionMachO::S_SYMBOL_STUBS)
562 continue;
563
564 MCSymbolData *&Entry = SymbolMap[it->Symbol];
565 if (!Entry) {
566 Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);
567
568 // Set the symbol type to undefined lazy, but only on construction.
569 //
570 // FIXME: Do not hardcode.
571 Entry->setFlags(Entry->getFlags() | 0x0001);
572 }
573 }
574 }
575
576 /// ComputeSymbolTable - Compute the symbol table data
577 ///
578 /// \param StringTable [out] - The string table data.
579 /// \param StringIndexMap [out] - Map from symbol names to offsets in the
580 /// string table.
581 void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
582 std::vector<MachSymbolData> &LocalSymbolData,
583 std::vector<MachSymbolData> &ExternalSymbolData,
584 std::vector<MachSymbolData> &UndefinedSymbolData) {
585 // Build section lookup table.
586 DenseMap<const MCSection*, uint8_t> SectionIndexMap;
587 unsigned Index = 1;
588 for (MCAssembler::iterator it = Asm.begin(),
589 ie = Asm.end(); it != ie; ++it, ++Index)
590 SectionIndexMap[&it->getSection()] = Index;
591 assert(Index <= 256 && "Too many sections!");
592
593 // Index 0 is always the empty string.
594 StringMap<uint64_t> StringIndexMap;
595 StringTable += '\x00';
596
597 // Build the symbol arrays and the string table, but only for non-local
598 // symbols.
599 //
600 // The particular order that we collect the symbols and create the string
601 // table, then sort the symbols is chosen to match 'as'. Even though it
602 // doesn't matter for correctness, this is important for letting us diff .o
603 // files.
604 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
605 ie = Asm.symbol_end(); it != ie; ++it) {
606 const MCSymbol &Symbol = it->getSymbol();
607
608 // Ignore assembler temporaries.
609 if (it->getSymbol().isTemporary())
610 continue;
611
612 if (!it->isExternal() && !Symbol.isUndefined())
613 continue;
614
615 uint64_t &Entry = StringIndexMap[Symbol.getName()];
616 if (!Entry) {
617 Entry = StringTable.size();
618 StringTable += Symbol.getName();
619 StringTable += '\x00';
620 }
621
622 MachSymbolData MSD;
623 MSD.SymbolData = it;
624 MSD.StringIndex = Entry;
625
626 if (Symbol.isUndefined()) {
627 MSD.SectionIndex = 0;
628 UndefinedSymbolData.push_back(MSD);
629 } else if (Symbol.isAbsolute()) {
630 MSD.SectionIndex = 0;
631 ExternalSymbolData.push_back(MSD);
632 } else {
633 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
634 assert(MSD.SectionIndex && "Invalid section index!");
635 ExternalSymbolData.push_back(MSD);
636 }
637 }
638
639 // Now add the data for local symbols.
640 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
641 ie = Asm.symbol_end(); it != ie; ++it) {
642 const MCSymbol &Symbol = it->getSymbol();
643
644 // Ignore assembler temporaries.
645 if (it->getSymbol().isTemporary())
646 continue;
647
648 if (it->isExternal() || Symbol.isUndefined())
649 continue;
650
651 uint64_t &Entry = StringIndexMap[Symbol.getName()];
652 if (!Entry) {
653 Entry = StringTable.size();
654 StringTable += Symbol.getName();
655 StringTable += '\x00';
656 }
657
658 MachSymbolData MSD;
659 MSD.SymbolData = it;
660 MSD.StringIndex = Entry;
661
662 if (Symbol.isAbsolute()) {
663 MSD.SectionIndex = 0;
664 LocalSymbolData.push_back(MSD);
665 } else {
666 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
667 assert(MSD.SectionIndex && "Invalid section index!");
668 LocalSymbolData.push_back(MSD);
669 }
670 }
671
672 // External and undefined symbols are required to be in lexicographic order.
673 std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
674 std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
675
676 // Set the symbol indices.
677 Index = 0;
678 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
679 LocalSymbolData[i].SymbolData->setIndex(Index++);
680 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
681 ExternalSymbolData[i].SymbolData->setIndex(Index++);
682 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
683 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
684
685 // The string table is padded to a multiple of 4.
686 while (StringTable.size() % 4)
687 StringTable += '\x00';
688 }
689
690 void WriteObject(MCAssembler &Asm) {
691 unsigned NumSections = Asm.size();
692
693 // Compute the symbol -> symbol data map.
694 //
695 // FIXME: This should not be here.
696 DenseMap<const MCSymbol*, MCSymbolData *> SymbolMap;
697 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
698 ie = Asm.symbol_end(); it != ie; ++it)
699 SymbolMap[&it->getSymbol()] = it;
700
701 // Create symbol data for any indirect symbols.
702 BindIndirectSymbols(Asm, SymbolMap);
703
704 // Compute symbol table information.
705 SmallString<256> StringTable;
706 std::vector<MachSymbolData> LocalSymbolData;
707 std::vector<MachSymbolData> ExternalSymbolData;
708 std::vector<MachSymbolData> UndefinedSymbolData;
709 unsigned NumSymbols = Asm.symbol_size();
710
711 // No symbol table command is written if there are no symbols.
712 if (NumSymbols)
713 ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
714 UndefinedSymbolData);
715
716 // The section data starts after the header, the segment load command (and
717 // section headers) and the symbol table.
718 unsigned NumLoadCommands = 1;
719 uint64_t LoadCommandsSize =
720 SegmentLoadCommand32Size + NumSections * Section32Size;
721
722 // Add the symbol table load command sizes, if used.
723 if (NumSymbols) {
724 NumLoadCommands += 2;
725 LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
726 }
727
728 // Compute the total size of the section data, as well as its file size and
729 // vm size.
730 uint64_t SectionDataStart = Header32Size + LoadCommandsSize;
731 uint64_t SectionDataSize = 0;
732 uint64_t SectionDataFileSize = 0;
733 uint64_t VMSize = 0;
734 for (MCAssembler::iterator it = Asm.begin(),
735 ie = Asm.end(); it != ie; ++it) {
736 MCSectionData &SD = *it;
737
738 VMSize = std::max(VMSize, SD.getAddress() + SD.getSize());
739
740 if (isVirtualSection(SD.getSection()))
741 continue;
742
743 SectionDataSize = std::max(SectionDataSize,
744 SD.getAddress() + SD.getSize());
745 SectionDataFileSize = std::max(SectionDataFileSize,
746 SD.getAddress() + SD.getFileSize());
747 }
748
749 // The section data is padded to 4 bytes.
750 //
751 // FIXME: Is this machine dependent?
752 unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
753 SectionDataFileSize += SectionDataPadding;
754
755 // Write the prolog, starting with the header and load command...
756 WriteHeader32(NumLoadCommands, LoadCommandsSize,
757 Asm.getSubsectionsViaSymbols());
758 WriteSegmentLoadCommand32(NumSections, VMSize,
759 SectionDataStart, SectionDataSize);
760
761 // ... and then the section headers.
762 //
763 // We also compute the section relocations while we do this. Note that
764 // computing relocation info will also update the fixup to have the correct
765 // value; this will overwrite the appropriate data in the fragment when it
766 // is written.
767 std::vector<MachRelocationEntry> RelocInfos;
768 uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
769 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie;
770 ++it) {
771 MCSectionData &SD = *it;
772
773 // The assembler writes relocations in the reverse order they were seen.
774 //
775 // FIXME: It is probably more complicated than this.
776 unsigned NumRelocsStart = RelocInfos.size();
777 for (unsigned i = 0, e = SD.fixup_size(); i != e; ++i)
778 ComputeRelocationInfo(Asm, SD.getFixups()[e - i - 1], SymbolMap,
779 RelocInfos);
780
781 unsigned NumRelocs = RelocInfos.size() - NumRelocsStart;
782 uint64_t SectionStart = SectionDataStart + SD.getAddress();
783 WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs);
784 RelocTableEnd += NumRelocs * RelocationInfoSize;
785 }
786
787 // Write the symbol table load command, if used.
788 if (NumSymbols) {
789 unsigned FirstLocalSymbol = 0;
790 unsigned NumLocalSymbols = LocalSymbolData.size();
791 unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
792 unsigned NumExternalSymbols = ExternalSymbolData.size();
793 unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
794 unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
795 unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
796 unsigned NumSymTabSymbols =
797 NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
798 uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
799 uint64_t IndirectSymbolOffset = 0;
800
801 // If used, the indirect symbols are written after the section data.
802 if (NumIndirectSymbols)
803 IndirectSymbolOffset = RelocTableEnd;
804
805 // The symbol table is written after the indirect symbol data.
806 uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
807
808 // The string table is written after symbol table.
809 uint64_t StringTableOffset =
810 SymbolTableOffset + NumSymTabSymbols * Nlist32Size;
811 WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
812 StringTableOffset, StringTable.size());
813
814 WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
815 FirstExternalSymbol, NumExternalSymbols,
816 FirstUndefinedSymbol, NumUndefinedSymbols,
817 IndirectSymbolOffset, NumIndirectSymbols);
818 }
819
820 // Write the actual section data.
821 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
822 WriteFileData(OS, *it, *this);
823
824 // Write the extra padding.
825 WriteZeros(SectionDataPadding);
826
827 // Write the relocation entries.
828 for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) {
829 Write32(RelocInfos[i].Word0);
830 Write32(RelocInfos[i].Word1);
831 }
832
833 // Write the symbol table data, if used.
834 if (NumSymbols) {
835 // Write the indirect symbol entries.
836 for (MCAssembler::indirect_symbol_iterator
837 it = Asm.indirect_symbol_begin(),
838 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
839 // Indirect symbols in the non lazy symbol pointer section have some
840 // special handling.
841 const MCSectionMachO &Section =
842 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
843 unsigned Type =
844 Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
845 if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
846 // If this symbol is defined and internal, mark it as such.
847 if (it->Symbol->isDefined() &&
848 !SymbolMap.lookup(it->Symbol)->isExternal()) {
849 uint32_t Flags = ISF_Local;
850 if (it->Symbol->isAbsolute())
851 Flags |= ISF_Absolute;
852 Write32(Flags);
853 continue;
854 }
855 }
856
857 Write32(SymbolMap[it->Symbol]->getIndex());
858 }
859
860 // FIXME: Check that offsets match computed ones.
861
862 // Write the symbol table entries.
863 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
864 WriteNlist32(LocalSymbolData[i]);
865 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
866 WriteNlist32(ExternalSymbolData[i]);
867 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
868 WriteNlist32(UndefinedSymbolData[i]);
869
870 // Write the string table.
871 OS << StringTable.str();
872 }
873 }
874};
875
876/* *** */
877
878MCFragment::MCFragment() : Kind(FragmentType(~0)) {
879}
880
881MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
882 : Kind(_Kind),
883 Parent(_Parent),
884 FileSize(~UINT64_C(0))
885{
886 if (Parent)
887 Parent->getFragmentList().push_back(this);
888}
889
890MCFragment::~MCFragment() {
891}
892
893uint64_t MCFragment::getAddress() const {
894 assert(getParent() && "Missing Section!");
895 return getParent()->getAddress() + Offset;
896}
897
898/* *** */
899
900MCSectionData::MCSectionData() : Section(0) {}
901
902MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
903 : Section(&_Section),
904 Alignment(1),
905 Address(~UINT64_C(0)),
906 Size(~UINT64_C(0)),
907 FileSize(~UINT64_C(0)),
908 LastFixupLookup(~0),
909 HasInstructions(false)
910{
911 if (A)
912 A->getSectionList().push_back(this);
913}
914
915const MCSectionData::Fixup *
916MCSectionData::LookupFixup(const MCFragment *Fragment, uint64_t Offset) const {
917 // Use a one level cache to turn the common case of accessing the fixups in
918 // order into O(1) instead of O(N).
919 unsigned i = LastFixupLookup, Count = Fixups.size(), End = Fixups.size();
920 if (i >= End)
921 i = 0;
922 while (Count--) {
923 const Fixup &F = Fixups[i];
924 if (F.Fragment == Fragment && F.Offset == Offset) {
925 LastFixupLookup = i;
926 return &F;
927 }
928
929 ++i;
930 if (i == End)
931 i = 0;
932 }
933
934 return 0;
935}
936
937/* *** */
938
939MCSymbolData::MCSymbolData() : Symbol(0) {}
940
941MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
942 uint64_t _Offset, MCAssembler *A)
943 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
944 IsExternal(false), IsPrivateExtern(false),
945 CommonSize(0), CommonAlign(0), Flags(0), Index(0)
946{
947 if (A)
948 A->getSymbolList().push_back(this);
949}
950
951/* *** */
952
953MCAssembler::MCAssembler(MCContext &_Context, raw_ostream &_OS)
954 : Context(_Context), OS(_OS), SubsectionsViaSymbols(false)
955{
956}
957
958MCAssembler::~MCAssembler() {
959}
960
961void MCAssembler::LayoutSection(MCSectionData &SD) {
962 uint64_t Address = SD.getAddress();
963
964 for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
965 MCFragment &F = *it;
966
967 F.setOffset(Address - SD.getAddress());
968
969 // Evaluate fragment size.
970 switch (F.getKind()) {
971 case MCFragment::FT_Align: {
972 MCAlignFragment &AF = cast<MCAlignFragment>(F);
973
974 uint64_t Size = OffsetToAlignment(Address, AF.getAlignment());
975 if (Size > AF.getMaxBytesToEmit())
976 AF.setFileSize(0);
977 else
978 AF.setFileSize(Size);
979 break;
980 }
981
982 case MCFragment::FT_Data:
983 F.setFileSize(F.getMaxFileSize());
984 break;
985
986 case MCFragment::FT_Fill: {
987 MCFillFragment &FF = cast<MCFillFragment>(F);
988
989 F.setFileSize(F.getMaxFileSize());
990
991 MCValue Target;
992 if (!FF.getValue().EvaluateAsRelocatable(Target))
993 llvm_report_error("expected relocatable expression");
994
995 // If the fill value is constant, thats it.
996 if (Target.isAbsolute())
997 break;
998
999 // Otherwise, add fixups for the values.
1000 for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
1001 MCSectionData::Fixup Fix(F, i * FF.getValueSize(),
1002 FF.getValue(),FF.getValueSize());
1003 SD.getFixups().push_back(Fix);
1004 }
1005 break;
1006 }
1007
1008 case MCFragment::FT_Org: {
1009 MCOrgFragment &OF = cast<MCOrgFragment>(F);
1010
1011 MCValue Target;
1012 if (!OF.getOffset().EvaluateAsRelocatable(Target))
1013 llvm_report_error("expected relocatable expression");
1014
1015 if (!Target.isAbsolute())
1016 llvm_unreachable("FIXME: Not yet implemented!");
1017 uint64_t OrgOffset = Target.getConstant();
1018 uint64_t Offset = Address - SD.getAddress();
1019
1020 // FIXME: We need a way to communicate this error.
1021 if (OrgOffset < Offset)
1022 llvm_report_error("invalid .org offset '" + Twine(OrgOffset) +
1023 "' (at offset '" + Twine(Offset) + "'");
1024
1025 F.setFileSize(OrgOffset - Offset);
1026 break;
1027 }
1028
1029 case MCFragment::FT_ZeroFill: {
1030 MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);
1031
1032 // Align the fragment offset; it is safe to adjust the offset freely since
1033 // this is only in virtual sections.
1034 uint64_t Aligned = RoundUpToAlignment(Address, ZFF.getAlignment());
1035 F.setOffset(Aligned - SD.getAddress());
1036
1037 // FIXME: This is misnamed.
1038 F.setFileSize(ZFF.getSize());
1039 break;
1040 }
1041 }
1042
1043 Address += F.getFileSize();
1044 }
1045
1046 // Set the section sizes.
1047 SD.setSize(Address - SD.getAddress());
1048 if (isVirtualSection(SD.getSection()))
1049 SD.setFileSize(0);
1050 else
1051 SD.setFileSize(Address - SD.getAddress());
1052}
1053
1054/// WriteFileData - Write the \arg F data to the output file.
1055static void WriteFileData(raw_ostream &OS, const MCFragment &F,
1056 MachObjectWriter &MOW) {
1057 uint64_t Start = OS.tell();
1058 (void) Start;
1059
1060 ++EmittedFragments;
1061
1062 // FIXME: Embed in fragments instead?
1063 switch (F.getKind()) {
1064 case MCFragment::FT_Align: {
1065 MCAlignFragment &AF = cast<MCAlignFragment>(F);
1066 uint64_t Count = AF.getFileSize() / AF.getValueSize();
1067
1068 // FIXME: This error shouldn't actually occur (the front end should emit
1069 // multiple .align directives to enforce the semantics it wants), but is
1070 // severe enough that we want to report it. How to handle this?
1071 if (Count * AF.getValueSize() != AF.getFileSize())
1072 llvm_report_error("undefined .align directive, value size '" +
1073 Twine(AF.getValueSize()) +
1074 "' is not a divisor of padding size '" +
1075 Twine(AF.getFileSize()) + "'");
1076
1077 for (uint64_t i = 0; i != Count; ++i) {
1078 switch (AF.getValueSize()) {
1079 default:
1080 assert(0 && "Invalid size!");
1081 case 1: MOW.Write8 (uint8_t (AF.getValue())); break;
1082 case 2: MOW.Write16(uint16_t(AF.getValue())); break;
1083 case 4: MOW.Write32(uint32_t(AF.getValue())); break;
1084 case 8: MOW.Write64(uint64_t(AF.getValue())); break;
1085 }
1086 }
1087 break;
1088 }
1089
1090 case MCFragment::FT_Data:
1091 OS << cast<MCDataFragment>(F).getContents().str();
1092 break;
1093
1094 case MCFragment::FT_Fill: {
1095 MCFillFragment &FF = cast<MCFillFragment>(F);
1096
1097 int64_t Value = 0;
1098
1099 MCValue Target;
1100 if (!FF.getValue().EvaluateAsRelocatable(Target))
1101 llvm_report_error("expected relocatable expression");
1102
1103 if (Target.isAbsolute())
1104 Value = Target.getConstant();
1105 for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
1106 if (!Target.isAbsolute()) {
1107 // Find the fixup.
1108 //
1109 // FIXME: Find a better way to write in the fixes.
1110 const MCSectionData::Fixup *Fixup =
1111 F.getParent()->LookupFixup(&F, i * FF.getValueSize());
1112 assert(Fixup && "Missing fixup for fill value!");
1113 Value = Fixup->FixedValue;
1114 }
1115
1116 switch (FF.getValueSize()) {
1117 default:
1118 assert(0 && "Invalid size!");
1119 case 1: MOW.Write8 (uint8_t (Value)); break;
1120 case 2: MOW.Write16(uint16_t(Value)); break;
1121 case 4: MOW.Write32(uint32_t(Value)); break;
1122 case 8: MOW.Write64(uint64_t(Value)); break;
1123 }
1124 }
1125 break;
1126 }
1127
1128 case MCFragment::FT_Org: {
1129 MCOrgFragment &OF = cast<MCOrgFragment>(F);
1130
1131 for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i)
1132 MOW.Write8(uint8_t(OF.getValue()));
1133
1134 break;
1135 }
1136
1137 case MCFragment::FT_ZeroFill: {
1138 assert(0 && "Invalid zero fill fragment in concrete section!");
1139 break;
1140 }
1141 }
1142
1143 assert(OS.tell() - Start == F.getFileSize());
1144}
1145
1146/// WriteFileData - Write the \arg SD data to the output file.
1147static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
1148 MachObjectWriter &MOW) {
1149 // Ignore virtual sections.
1150 if (isVirtualSection(SD.getSection())) {
1151 assert(SD.getFileSize() == 0);
1152 return;
1153 }
1154
1155 uint64_t Start = OS.tell();
1156 (void) Start;
1157
1158 for (MCSectionData::const_iterator it = SD.begin(),
1159 ie = SD.end(); it != ie; ++it)
1160 WriteFileData(OS, *it, MOW);
1161
1162 // Add section padding.
1163 assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!");
1164 MOW.WriteZeros(SD.getFileSize() - SD.getSize());
1165
1166 assert(OS.tell() - Start == SD.getFileSize());
1167}
1168
1169void MCAssembler::Finish() {
1170 // Layout the concrete sections and fragments.
1171 uint64_t Address = 0;
1172 MCSectionData *Prev = 0;
1173 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1174 MCSectionData &SD = *it;
1175
1176 // Skip virtual sections.
1177 if (isVirtualSection(SD.getSection()))
1178 continue;
1179
1180 // Align this section if necessary by adding padding bytes to the previous
1181 // section.
1182 if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) {
1183 assert(Prev && "Missing prev section!");
1184 Prev->setFileSize(Prev->getFileSize() + Pad);
1185 Address += Pad;
1186 }
1187
1188 // Layout the section fragments and its size.
1189 SD.setAddress(Address);
1190 LayoutSection(SD);
1191 Address += SD.getFileSize();
1192
1193 Prev = &SD;
1194 }
1195
1196 // Layout the virtual sections.
1197 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1198 MCSectionData &SD = *it;
1199
1200 if (!isVirtualSection(SD.getSection()))
1201 continue;
1202
1203 SD.setAddress(Address);
1204 LayoutSection(SD);
1205 Address += SD.getSize();
1206 }
1207
1208 // Write the object file.
1209 MachObjectWriter MOW(OS);
1210 MOW.WriteObject(*this);
1211
1212 OS.flush();
1213}