Shih-wei Liao | e264f62 | 2010-02-10 11:10:31 -0800 | [diff] [blame^] | 1 | //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a class to represent arbitrary precision integer |
| 11 | // constant values and provide a variety of arithmetic operations on them. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "apint" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/StringRef.h" |
| 18 | #include "llvm/ADT/FoldingSet.h" |
| 19 | #include "llvm/ADT/SmallString.h" |
| 20 | #include "llvm/Support/Debug.h" |
| 21 | #include "llvm/Support/ErrorHandling.h" |
| 22 | #include "llvm/Support/MathExtras.h" |
| 23 | #include "llvm/Support/raw_ostream.h" |
| 24 | #include <cmath> |
| 25 | #include <limits> |
| 26 | #include <cstring> |
| 27 | #include <cstdlib> |
| 28 | using namespace llvm; |
| 29 | |
| 30 | /// A utility function for allocating memory, checking for allocation failures, |
| 31 | /// and ensuring the contents are zeroed. |
| 32 | inline static uint64_t* getClearedMemory(unsigned numWords) { |
| 33 | uint64_t * result = new uint64_t[numWords]; |
| 34 | assert(result && "APInt memory allocation fails!"); |
| 35 | memset(result, 0, numWords * sizeof(uint64_t)); |
| 36 | return result; |
| 37 | } |
| 38 | |
| 39 | /// A utility function for allocating memory and checking for allocation |
| 40 | /// failure. The content is not zeroed. |
| 41 | inline static uint64_t* getMemory(unsigned numWords) { |
| 42 | uint64_t * result = new uint64_t[numWords]; |
| 43 | assert(result && "APInt memory allocation fails!"); |
| 44 | return result; |
| 45 | } |
| 46 | |
| 47 | /// A utility function that converts a character to a digit. |
| 48 | inline static unsigned getDigit(char cdigit, uint8_t radix) { |
| 49 | unsigned r; |
| 50 | |
| 51 | if (radix == 16) { |
| 52 | r = cdigit - '0'; |
| 53 | if (r <= 9) |
| 54 | return r; |
| 55 | |
| 56 | r = cdigit - 'A'; |
| 57 | if (r <= 5) |
| 58 | return r + 10; |
| 59 | |
| 60 | r = cdigit - 'a'; |
| 61 | if (r <= 5) |
| 62 | return r + 10; |
| 63 | } |
| 64 | |
| 65 | r = cdigit - '0'; |
| 66 | if (r < radix) |
| 67 | return r; |
| 68 | |
| 69 | return -1U; |
| 70 | } |
| 71 | |
| 72 | |
| 73 | void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { |
| 74 | pVal = getClearedMemory(getNumWords()); |
| 75 | pVal[0] = val; |
| 76 | if (isSigned && int64_t(val) < 0) |
| 77 | for (unsigned i = 1; i < getNumWords(); ++i) |
| 78 | pVal[i] = -1ULL; |
| 79 | } |
| 80 | |
| 81 | void APInt::initSlowCase(const APInt& that) { |
| 82 | pVal = getMemory(getNumWords()); |
| 83 | memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); |
| 84 | } |
| 85 | |
| 86 | |
| 87 | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) |
| 88 | : BitWidth(numBits), VAL(0) { |
| 89 | assert(BitWidth && "Bitwidth too small"); |
| 90 | assert(bigVal && "Null pointer detected!"); |
| 91 | if (isSingleWord()) |
| 92 | VAL = bigVal[0]; |
| 93 | else { |
| 94 | // Get memory, cleared to 0 |
| 95 | pVal = getClearedMemory(getNumWords()); |
| 96 | // Calculate the number of words to copy |
| 97 | unsigned words = std::min<unsigned>(numWords, getNumWords()); |
| 98 | // Copy the words from bigVal to pVal |
| 99 | memcpy(pVal, bigVal, words * APINT_WORD_SIZE); |
| 100 | } |
| 101 | // Make sure unused high bits are cleared |
| 102 | clearUnusedBits(); |
| 103 | } |
| 104 | |
| 105 | APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix) |
| 106 | : BitWidth(numbits), VAL(0) { |
| 107 | assert(BitWidth && "Bitwidth too small"); |
| 108 | fromString(numbits, Str, radix); |
| 109 | } |
| 110 | |
| 111 | APInt& APInt::AssignSlowCase(const APInt& RHS) { |
| 112 | // Don't do anything for X = X |
| 113 | if (this == &RHS) |
| 114 | return *this; |
| 115 | |
| 116 | if (BitWidth == RHS.getBitWidth()) { |
| 117 | // assume same bit-width single-word case is already handled |
| 118 | assert(!isSingleWord()); |
| 119 | memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); |
| 120 | return *this; |
| 121 | } |
| 122 | |
| 123 | if (isSingleWord()) { |
| 124 | // assume case where both are single words is already handled |
| 125 | assert(!RHS.isSingleWord()); |
| 126 | VAL = 0; |
| 127 | pVal = getMemory(RHS.getNumWords()); |
| 128 | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
| 129 | } else if (getNumWords() == RHS.getNumWords()) |
| 130 | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
| 131 | else if (RHS.isSingleWord()) { |
| 132 | delete [] pVal; |
| 133 | VAL = RHS.VAL; |
| 134 | } else { |
| 135 | delete [] pVal; |
| 136 | pVal = getMemory(RHS.getNumWords()); |
| 137 | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); |
| 138 | } |
| 139 | BitWidth = RHS.BitWidth; |
| 140 | return clearUnusedBits(); |
| 141 | } |
| 142 | |
| 143 | APInt& APInt::operator=(uint64_t RHS) { |
| 144 | if (isSingleWord()) |
| 145 | VAL = RHS; |
| 146 | else { |
| 147 | pVal[0] = RHS; |
| 148 | memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| 149 | } |
| 150 | return clearUnusedBits(); |
| 151 | } |
| 152 | |
| 153 | /// Profile - This method 'profiles' an APInt for use with FoldingSet. |
| 154 | void APInt::Profile(FoldingSetNodeID& ID) const { |
| 155 | ID.AddInteger(BitWidth); |
| 156 | |
| 157 | if (isSingleWord()) { |
| 158 | ID.AddInteger(VAL); |
| 159 | return; |
| 160 | } |
| 161 | |
| 162 | unsigned NumWords = getNumWords(); |
| 163 | for (unsigned i = 0; i < NumWords; ++i) |
| 164 | ID.AddInteger(pVal[i]); |
| 165 | } |
| 166 | |
| 167 | /// add_1 - This function adds a single "digit" integer, y, to the multiple |
| 168 | /// "digit" integer array, x[]. x[] is modified to reflect the addition and |
| 169 | /// 1 is returned if there is a carry out, otherwise 0 is returned. |
| 170 | /// @returns the carry of the addition. |
| 171 | static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { |
| 172 | for (unsigned i = 0; i < len; ++i) { |
| 173 | dest[i] = y + x[i]; |
| 174 | if (dest[i] < y) |
| 175 | y = 1; // Carry one to next digit. |
| 176 | else { |
| 177 | y = 0; // No need to carry so exit early |
| 178 | break; |
| 179 | } |
| 180 | } |
| 181 | return y; |
| 182 | } |
| 183 | |
| 184 | /// @brief Prefix increment operator. Increments the APInt by one. |
| 185 | APInt& APInt::operator++() { |
| 186 | if (isSingleWord()) |
| 187 | ++VAL; |
| 188 | else |
| 189 | add_1(pVal, pVal, getNumWords(), 1); |
| 190 | return clearUnusedBits(); |
| 191 | } |
| 192 | |
| 193 | /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from |
| 194 | /// the multi-digit integer array, x[], propagating the borrowed 1 value until |
| 195 | /// no further borrowing is neeeded or it runs out of "digits" in x. The result |
| 196 | /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. |
| 197 | /// In other words, if y > x then this function returns 1, otherwise 0. |
| 198 | /// @returns the borrow out of the subtraction |
| 199 | static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { |
| 200 | for (unsigned i = 0; i < len; ++i) { |
| 201 | uint64_t X = x[i]; |
| 202 | x[i] -= y; |
| 203 | if (y > X) |
| 204 | y = 1; // We have to "borrow 1" from next "digit" |
| 205 | else { |
| 206 | y = 0; // No need to borrow |
| 207 | break; // Remaining digits are unchanged so exit early |
| 208 | } |
| 209 | } |
| 210 | return bool(y); |
| 211 | } |
| 212 | |
| 213 | /// @brief Prefix decrement operator. Decrements the APInt by one. |
| 214 | APInt& APInt::operator--() { |
| 215 | if (isSingleWord()) |
| 216 | --VAL; |
| 217 | else |
| 218 | sub_1(pVal, getNumWords(), 1); |
| 219 | return clearUnusedBits(); |
| 220 | } |
| 221 | |
| 222 | /// add - This function adds the integer array x to the integer array Y and |
| 223 | /// places the result in dest. |
| 224 | /// @returns the carry out from the addition |
| 225 | /// @brief General addition of 64-bit integer arrays |
| 226 | static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, |
| 227 | unsigned len) { |
| 228 | bool carry = false; |
| 229 | for (unsigned i = 0; i< len; ++i) { |
| 230 | uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x |
| 231 | dest[i] = x[i] + y[i] + carry; |
| 232 | carry = dest[i] < limit || (carry && dest[i] == limit); |
| 233 | } |
| 234 | return carry; |
| 235 | } |
| 236 | |
| 237 | /// Adds the RHS APint to this APInt. |
| 238 | /// @returns this, after addition of RHS. |
| 239 | /// @brief Addition assignment operator. |
| 240 | APInt& APInt::operator+=(const APInt& RHS) { |
| 241 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 242 | if (isSingleWord()) |
| 243 | VAL += RHS.VAL; |
| 244 | else { |
| 245 | add(pVal, pVal, RHS.pVal, getNumWords()); |
| 246 | } |
| 247 | return clearUnusedBits(); |
| 248 | } |
| 249 | |
| 250 | /// Subtracts the integer array y from the integer array x |
| 251 | /// @returns returns the borrow out. |
| 252 | /// @brief Generalized subtraction of 64-bit integer arrays. |
| 253 | static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, |
| 254 | unsigned len) { |
| 255 | bool borrow = false; |
| 256 | for (unsigned i = 0; i < len; ++i) { |
| 257 | uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; |
| 258 | borrow = y[i] > x_tmp || (borrow && x[i] == 0); |
| 259 | dest[i] = x_tmp - y[i]; |
| 260 | } |
| 261 | return borrow; |
| 262 | } |
| 263 | |
| 264 | /// Subtracts the RHS APInt from this APInt |
| 265 | /// @returns this, after subtraction |
| 266 | /// @brief Subtraction assignment operator. |
| 267 | APInt& APInt::operator-=(const APInt& RHS) { |
| 268 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 269 | if (isSingleWord()) |
| 270 | VAL -= RHS.VAL; |
| 271 | else |
| 272 | sub(pVal, pVal, RHS.pVal, getNumWords()); |
| 273 | return clearUnusedBits(); |
| 274 | } |
| 275 | |
| 276 | /// Multiplies an integer array, x, by a uint64_t integer and places the result |
| 277 | /// into dest. |
| 278 | /// @returns the carry out of the multiplication. |
| 279 | /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. |
| 280 | static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { |
| 281 | // Split y into high 32-bit part (hy) and low 32-bit part (ly) |
| 282 | uint64_t ly = y & 0xffffffffULL, hy = y >> 32; |
| 283 | uint64_t carry = 0; |
| 284 | |
| 285 | // For each digit of x. |
| 286 | for (unsigned i = 0; i < len; ++i) { |
| 287 | // Split x into high and low words |
| 288 | uint64_t lx = x[i] & 0xffffffffULL; |
| 289 | uint64_t hx = x[i] >> 32; |
| 290 | // hasCarry - A flag to indicate if there is a carry to the next digit. |
| 291 | // hasCarry == 0, no carry |
| 292 | // hasCarry == 1, has carry |
| 293 | // hasCarry == 2, no carry and the calculation result == 0. |
| 294 | uint8_t hasCarry = 0; |
| 295 | dest[i] = carry + lx * ly; |
| 296 | // Determine if the add above introduces carry. |
| 297 | hasCarry = (dest[i] < carry) ? 1 : 0; |
| 298 | carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); |
| 299 | // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + |
| 300 | // (2^32 - 1) + 2^32 = 2^64. |
| 301 | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| 302 | |
| 303 | carry += (lx * hy) & 0xffffffffULL; |
| 304 | dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); |
| 305 | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + |
| 306 | (carry >> 32) + ((lx * hy) >> 32) + hx * hy; |
| 307 | } |
| 308 | return carry; |
| 309 | } |
| 310 | |
| 311 | /// Multiplies integer array x by integer array y and stores the result into |
| 312 | /// the integer array dest. Note that dest's size must be >= xlen + ylen. |
| 313 | /// @brief Generalized multiplicate of integer arrays. |
| 314 | static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], |
| 315 | unsigned ylen) { |
| 316 | dest[xlen] = mul_1(dest, x, xlen, y[0]); |
| 317 | for (unsigned i = 1; i < ylen; ++i) { |
| 318 | uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; |
| 319 | uint64_t carry = 0, lx = 0, hx = 0; |
| 320 | for (unsigned j = 0; j < xlen; ++j) { |
| 321 | lx = x[j] & 0xffffffffULL; |
| 322 | hx = x[j] >> 32; |
| 323 | // hasCarry - A flag to indicate if has carry. |
| 324 | // hasCarry == 0, no carry |
| 325 | // hasCarry == 1, has carry |
| 326 | // hasCarry == 2, no carry and the calculation result == 0. |
| 327 | uint8_t hasCarry = 0; |
| 328 | uint64_t resul = carry + lx * ly; |
| 329 | hasCarry = (resul < carry) ? 1 : 0; |
| 330 | carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); |
| 331 | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| 332 | |
| 333 | carry += (lx * hy) & 0xffffffffULL; |
| 334 | resul = (carry << 32) | (resul & 0xffffffffULL); |
| 335 | dest[i+j] += resul; |
| 336 | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ |
| 337 | (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + |
| 338 | ((lx * hy) >> 32) + hx * hy; |
| 339 | } |
| 340 | dest[i+xlen] = carry; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | APInt& APInt::operator*=(const APInt& RHS) { |
| 345 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 346 | if (isSingleWord()) { |
| 347 | VAL *= RHS.VAL; |
| 348 | clearUnusedBits(); |
| 349 | return *this; |
| 350 | } |
| 351 | |
| 352 | // Get some bit facts about LHS and check for zero |
| 353 | unsigned lhsBits = getActiveBits(); |
| 354 | unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; |
| 355 | if (!lhsWords) |
| 356 | // 0 * X ===> 0 |
| 357 | return *this; |
| 358 | |
| 359 | // Get some bit facts about RHS and check for zero |
| 360 | unsigned rhsBits = RHS.getActiveBits(); |
| 361 | unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; |
| 362 | if (!rhsWords) { |
| 363 | // X * 0 ===> 0 |
| 364 | clear(); |
| 365 | return *this; |
| 366 | } |
| 367 | |
| 368 | // Allocate space for the result |
| 369 | unsigned destWords = rhsWords + lhsWords; |
| 370 | uint64_t *dest = getMemory(destWords); |
| 371 | |
| 372 | // Perform the long multiply |
| 373 | mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); |
| 374 | |
| 375 | // Copy result back into *this |
| 376 | clear(); |
| 377 | unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; |
| 378 | memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); |
| 379 | |
| 380 | // delete dest array and return |
| 381 | delete[] dest; |
| 382 | return *this; |
| 383 | } |
| 384 | |
| 385 | APInt& APInt::operator&=(const APInt& RHS) { |
| 386 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 387 | if (isSingleWord()) { |
| 388 | VAL &= RHS.VAL; |
| 389 | return *this; |
| 390 | } |
| 391 | unsigned numWords = getNumWords(); |
| 392 | for (unsigned i = 0; i < numWords; ++i) |
| 393 | pVal[i] &= RHS.pVal[i]; |
| 394 | return *this; |
| 395 | } |
| 396 | |
| 397 | APInt& APInt::operator|=(const APInt& RHS) { |
| 398 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 399 | if (isSingleWord()) { |
| 400 | VAL |= RHS.VAL; |
| 401 | return *this; |
| 402 | } |
| 403 | unsigned numWords = getNumWords(); |
| 404 | for (unsigned i = 0; i < numWords; ++i) |
| 405 | pVal[i] |= RHS.pVal[i]; |
| 406 | return *this; |
| 407 | } |
| 408 | |
| 409 | APInt& APInt::operator^=(const APInt& RHS) { |
| 410 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 411 | if (isSingleWord()) { |
| 412 | VAL ^= RHS.VAL; |
| 413 | this->clearUnusedBits(); |
| 414 | return *this; |
| 415 | } |
| 416 | unsigned numWords = getNumWords(); |
| 417 | for (unsigned i = 0; i < numWords; ++i) |
| 418 | pVal[i] ^= RHS.pVal[i]; |
| 419 | return clearUnusedBits(); |
| 420 | } |
| 421 | |
| 422 | APInt APInt::AndSlowCase(const APInt& RHS) const { |
| 423 | unsigned numWords = getNumWords(); |
| 424 | uint64_t* val = getMemory(numWords); |
| 425 | for (unsigned i = 0; i < numWords; ++i) |
| 426 | val[i] = pVal[i] & RHS.pVal[i]; |
| 427 | return APInt(val, getBitWidth()); |
| 428 | } |
| 429 | |
| 430 | APInt APInt::OrSlowCase(const APInt& RHS) const { |
| 431 | unsigned numWords = getNumWords(); |
| 432 | uint64_t *val = getMemory(numWords); |
| 433 | for (unsigned i = 0; i < numWords; ++i) |
| 434 | val[i] = pVal[i] | RHS.pVal[i]; |
| 435 | return APInt(val, getBitWidth()); |
| 436 | } |
| 437 | |
| 438 | APInt APInt::XorSlowCase(const APInt& RHS) const { |
| 439 | unsigned numWords = getNumWords(); |
| 440 | uint64_t *val = getMemory(numWords); |
| 441 | for (unsigned i = 0; i < numWords; ++i) |
| 442 | val[i] = pVal[i] ^ RHS.pVal[i]; |
| 443 | |
| 444 | // 0^0==1 so clear the high bits in case they got set. |
| 445 | return APInt(val, getBitWidth()).clearUnusedBits(); |
| 446 | } |
| 447 | |
| 448 | bool APInt::operator !() const { |
| 449 | if (isSingleWord()) |
| 450 | return !VAL; |
| 451 | |
| 452 | for (unsigned i = 0; i < getNumWords(); ++i) |
| 453 | if (pVal[i]) |
| 454 | return false; |
| 455 | return true; |
| 456 | } |
| 457 | |
| 458 | APInt APInt::operator*(const APInt& RHS) const { |
| 459 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 460 | if (isSingleWord()) |
| 461 | return APInt(BitWidth, VAL * RHS.VAL); |
| 462 | APInt Result(*this); |
| 463 | Result *= RHS; |
| 464 | return Result.clearUnusedBits(); |
| 465 | } |
| 466 | |
| 467 | APInt APInt::operator+(const APInt& RHS) const { |
| 468 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 469 | if (isSingleWord()) |
| 470 | return APInt(BitWidth, VAL + RHS.VAL); |
| 471 | APInt Result(BitWidth, 0); |
| 472 | add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
| 473 | return Result.clearUnusedBits(); |
| 474 | } |
| 475 | |
| 476 | APInt APInt::operator-(const APInt& RHS) const { |
| 477 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 478 | if (isSingleWord()) |
| 479 | return APInt(BitWidth, VAL - RHS.VAL); |
| 480 | APInt Result(BitWidth, 0); |
| 481 | sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
| 482 | return Result.clearUnusedBits(); |
| 483 | } |
| 484 | |
| 485 | bool APInt::operator[](unsigned bitPosition) const { |
| 486 | return (maskBit(bitPosition) & |
| 487 | (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; |
| 488 | } |
| 489 | |
| 490 | bool APInt::EqualSlowCase(const APInt& RHS) const { |
| 491 | // Get some facts about the number of bits used in the two operands. |
| 492 | unsigned n1 = getActiveBits(); |
| 493 | unsigned n2 = RHS.getActiveBits(); |
| 494 | |
| 495 | // If the number of bits isn't the same, they aren't equal |
| 496 | if (n1 != n2) |
| 497 | return false; |
| 498 | |
| 499 | // If the number of bits fits in a word, we only need to compare the low word. |
| 500 | if (n1 <= APINT_BITS_PER_WORD) |
| 501 | return pVal[0] == RHS.pVal[0]; |
| 502 | |
| 503 | // Otherwise, compare everything |
| 504 | for (int i = whichWord(n1 - 1); i >= 0; --i) |
| 505 | if (pVal[i] != RHS.pVal[i]) |
| 506 | return false; |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | bool APInt::EqualSlowCase(uint64_t Val) const { |
| 511 | unsigned n = getActiveBits(); |
| 512 | if (n <= APINT_BITS_PER_WORD) |
| 513 | return pVal[0] == Val; |
| 514 | else |
| 515 | return false; |
| 516 | } |
| 517 | |
| 518 | bool APInt::ult(const APInt& RHS) const { |
| 519 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| 520 | if (isSingleWord()) |
| 521 | return VAL < RHS.VAL; |
| 522 | |
| 523 | // Get active bit length of both operands |
| 524 | unsigned n1 = getActiveBits(); |
| 525 | unsigned n2 = RHS.getActiveBits(); |
| 526 | |
| 527 | // If magnitude of LHS is less than RHS, return true. |
| 528 | if (n1 < n2) |
| 529 | return true; |
| 530 | |
| 531 | // If magnitude of RHS is greather than LHS, return false. |
| 532 | if (n2 < n1) |
| 533 | return false; |
| 534 | |
| 535 | // If they bot fit in a word, just compare the low order word |
| 536 | if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) |
| 537 | return pVal[0] < RHS.pVal[0]; |
| 538 | |
| 539 | // Otherwise, compare all words |
| 540 | unsigned topWord = whichWord(std::max(n1,n2)-1); |
| 541 | for (int i = topWord; i >= 0; --i) { |
| 542 | if (pVal[i] > RHS.pVal[i]) |
| 543 | return false; |
| 544 | if (pVal[i] < RHS.pVal[i]) |
| 545 | return true; |
| 546 | } |
| 547 | return false; |
| 548 | } |
| 549 | |
| 550 | bool APInt::slt(const APInt& RHS) const { |
| 551 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| 552 | if (isSingleWord()) { |
| 553 | int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); |
| 554 | int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); |
| 555 | return lhsSext < rhsSext; |
| 556 | } |
| 557 | |
| 558 | APInt lhs(*this); |
| 559 | APInt rhs(RHS); |
| 560 | bool lhsNeg = isNegative(); |
| 561 | bool rhsNeg = rhs.isNegative(); |
| 562 | if (lhsNeg) { |
| 563 | // Sign bit is set so perform two's complement to make it positive |
| 564 | lhs.flip(); |
| 565 | lhs++; |
| 566 | } |
| 567 | if (rhsNeg) { |
| 568 | // Sign bit is set so perform two's complement to make it positive |
| 569 | rhs.flip(); |
| 570 | rhs++; |
| 571 | } |
| 572 | |
| 573 | // Now we have unsigned values to compare so do the comparison if necessary |
| 574 | // based on the negativeness of the values. |
| 575 | if (lhsNeg) |
| 576 | if (rhsNeg) |
| 577 | return lhs.ugt(rhs); |
| 578 | else |
| 579 | return true; |
| 580 | else if (rhsNeg) |
| 581 | return false; |
| 582 | else |
| 583 | return lhs.ult(rhs); |
| 584 | } |
| 585 | |
| 586 | APInt& APInt::set(unsigned bitPosition) { |
| 587 | if (isSingleWord()) |
| 588 | VAL |= maskBit(bitPosition); |
| 589 | else |
| 590 | pVal[whichWord(bitPosition)] |= maskBit(bitPosition); |
| 591 | return *this; |
| 592 | } |
| 593 | |
| 594 | /// Set the given bit to 0 whose position is given as "bitPosition". |
| 595 | /// @brief Set a given bit to 0. |
| 596 | APInt& APInt::clear(unsigned bitPosition) { |
| 597 | if (isSingleWord()) |
| 598 | VAL &= ~maskBit(bitPosition); |
| 599 | else |
| 600 | pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); |
| 601 | return *this; |
| 602 | } |
| 603 | |
| 604 | /// @brief Toggle every bit to its opposite value. |
| 605 | |
| 606 | /// Toggle a given bit to its opposite value whose position is given |
| 607 | /// as "bitPosition". |
| 608 | /// @brief Toggles a given bit to its opposite value. |
| 609 | APInt& APInt::flip(unsigned bitPosition) { |
| 610 | assert(bitPosition < BitWidth && "Out of the bit-width range!"); |
| 611 | if ((*this)[bitPosition]) clear(bitPosition); |
| 612 | else set(bitPosition); |
| 613 | return *this; |
| 614 | } |
| 615 | |
| 616 | unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) { |
| 617 | assert(!str.empty() && "Invalid string length"); |
| 618 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| 619 | "Radix should be 2, 8, 10, or 16!"); |
| 620 | |
| 621 | size_t slen = str.size(); |
| 622 | |
| 623 | // Each computation below needs to know if it's negative. |
| 624 | StringRef::iterator p = str.begin(); |
| 625 | unsigned isNegative = *p == '-'; |
| 626 | if (*p == '-' || *p == '+') { |
| 627 | p++; |
| 628 | slen--; |
| 629 | assert(slen && "String is only a sign, needs a value."); |
| 630 | } |
| 631 | |
| 632 | // For radixes of power-of-two values, the bits required is accurately and |
| 633 | // easily computed |
| 634 | if (radix == 2) |
| 635 | return slen + isNegative; |
| 636 | if (radix == 8) |
| 637 | return slen * 3 + isNegative; |
| 638 | if (radix == 16) |
| 639 | return slen * 4 + isNegative; |
| 640 | |
| 641 | // This is grossly inefficient but accurate. We could probably do something |
| 642 | // with a computation of roughly slen*64/20 and then adjust by the value of |
| 643 | // the first few digits. But, I'm not sure how accurate that could be. |
| 644 | |
| 645 | // Compute a sufficient number of bits that is always large enough but might |
| 646 | // be too large. This avoids the assertion in the constructor. This |
| 647 | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 |
| 648 | // bits in that case. |
| 649 | unsigned sufficient = slen == 1 ? 4 : slen * 64/18; |
| 650 | |
| 651 | // Convert to the actual binary value. |
| 652 | APInt tmp(sufficient, StringRef(p, slen), radix); |
| 653 | |
| 654 | // Compute how many bits are required. If the log is infinite, assume we need |
| 655 | // just bit. |
| 656 | unsigned log = tmp.logBase2(); |
| 657 | if (log == (unsigned)-1) { |
| 658 | return isNegative + 1; |
| 659 | } else { |
| 660 | return isNegative + log + 1; |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | // From http://www.burtleburtle.net, byBob Jenkins. |
| 665 | // When targeting x86, both GCC and LLVM seem to recognize this as a |
| 666 | // rotate instruction. |
| 667 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
| 668 | |
| 669 | // From http://www.burtleburtle.net, by Bob Jenkins. |
| 670 | #define mix(a,b,c) \ |
| 671 | { \ |
| 672 | a -= c; a ^= rot(c, 4); c += b; \ |
| 673 | b -= a; b ^= rot(a, 6); a += c; \ |
| 674 | c -= b; c ^= rot(b, 8); b += a; \ |
| 675 | a -= c; a ^= rot(c,16); c += b; \ |
| 676 | b -= a; b ^= rot(a,19); a += c; \ |
| 677 | c -= b; c ^= rot(b, 4); b += a; \ |
| 678 | } |
| 679 | |
| 680 | // From http://www.burtleburtle.net, by Bob Jenkins. |
| 681 | #define final(a,b,c) \ |
| 682 | { \ |
| 683 | c ^= b; c -= rot(b,14); \ |
| 684 | a ^= c; a -= rot(c,11); \ |
| 685 | b ^= a; b -= rot(a,25); \ |
| 686 | c ^= b; c -= rot(b,16); \ |
| 687 | a ^= c; a -= rot(c,4); \ |
| 688 | b ^= a; b -= rot(a,14); \ |
| 689 | c ^= b; c -= rot(b,24); \ |
| 690 | } |
| 691 | |
| 692 | // hashword() was adapted from http://www.burtleburtle.net, by Bob |
| 693 | // Jenkins. k is a pointer to an array of uint32_t values; length is |
| 694 | // the length of the key, in 32-bit chunks. This version only handles |
| 695 | // keys that are a multiple of 32 bits in size. |
| 696 | static inline uint32_t hashword(const uint64_t *k64, size_t length) |
| 697 | { |
| 698 | const uint32_t *k = reinterpret_cast<const uint32_t *>(k64); |
| 699 | uint32_t a,b,c; |
| 700 | |
| 701 | /* Set up the internal state */ |
| 702 | a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); |
| 703 | |
| 704 | /*------------------------------------------------- handle most of the key */ |
| 705 | while (length > 3) |
| 706 | { |
| 707 | a += k[0]; |
| 708 | b += k[1]; |
| 709 | c += k[2]; |
| 710 | mix(a,b,c); |
| 711 | length -= 3; |
| 712 | k += 3; |
| 713 | } |
| 714 | |
| 715 | /*------------------------------------------- handle the last 3 uint32_t's */ |
| 716 | switch (length) { /* all the case statements fall through */ |
| 717 | case 3 : c+=k[2]; |
| 718 | case 2 : b+=k[1]; |
| 719 | case 1 : a+=k[0]; |
| 720 | final(a,b,c); |
| 721 | case 0: /* case 0: nothing left to add */ |
| 722 | break; |
| 723 | } |
| 724 | /*------------------------------------------------------ report the result */ |
| 725 | return c; |
| 726 | } |
| 727 | |
| 728 | // hashword8() was adapted from http://www.burtleburtle.net, by Bob |
| 729 | // Jenkins. This computes a 32-bit hash from one 64-bit word. When |
| 730 | // targeting x86 (32 or 64 bit), both LLVM and GCC compile this |
| 731 | // function into about 35 instructions when inlined. |
| 732 | static inline uint32_t hashword8(const uint64_t k64) |
| 733 | { |
| 734 | uint32_t a,b,c; |
| 735 | a = b = c = 0xdeadbeef + 4; |
| 736 | b += k64 >> 32; |
| 737 | a += k64 & 0xffffffff; |
| 738 | final(a,b,c); |
| 739 | return c; |
| 740 | } |
| 741 | #undef final |
| 742 | #undef mix |
| 743 | #undef rot |
| 744 | |
| 745 | uint64_t APInt::getHashValue() const { |
| 746 | uint64_t hash; |
| 747 | if (isSingleWord()) |
| 748 | hash = hashword8(VAL); |
| 749 | else |
| 750 | hash = hashword(pVal, getNumWords()*2); |
| 751 | return hash; |
| 752 | } |
| 753 | |
| 754 | /// HiBits - This function returns the high "numBits" bits of this APInt. |
| 755 | APInt APInt::getHiBits(unsigned numBits) const { |
| 756 | return APIntOps::lshr(*this, BitWidth - numBits); |
| 757 | } |
| 758 | |
| 759 | /// LoBits - This function returns the low "numBits" bits of this APInt. |
| 760 | APInt APInt::getLoBits(unsigned numBits) const { |
| 761 | return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), |
| 762 | BitWidth - numBits); |
| 763 | } |
| 764 | |
| 765 | bool APInt::isPowerOf2() const { |
| 766 | return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); |
| 767 | } |
| 768 | |
| 769 | unsigned APInt::countLeadingZerosSlowCase() const { |
| 770 | // Treat the most significand word differently because it might have |
| 771 | // meaningless bits set beyond the precision. |
| 772 | unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; |
| 773 | integerPart MSWMask; |
| 774 | if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; |
| 775 | else { |
| 776 | MSWMask = ~integerPart(0); |
| 777 | BitsInMSW = APINT_BITS_PER_WORD; |
| 778 | } |
| 779 | |
| 780 | unsigned i = getNumWords(); |
| 781 | integerPart MSW = pVal[i-1] & MSWMask; |
| 782 | if (MSW) |
| 783 | return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); |
| 784 | |
| 785 | unsigned Count = BitsInMSW; |
| 786 | for (--i; i > 0u; --i) { |
| 787 | if (pVal[i-1] == 0) |
| 788 | Count += APINT_BITS_PER_WORD; |
| 789 | else { |
| 790 | Count += CountLeadingZeros_64(pVal[i-1]); |
| 791 | break; |
| 792 | } |
| 793 | } |
| 794 | return Count; |
| 795 | } |
| 796 | |
| 797 | static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { |
| 798 | unsigned Count = 0; |
| 799 | if (skip) |
| 800 | V <<= skip; |
| 801 | while (V && (V & (1ULL << 63))) { |
| 802 | Count++; |
| 803 | V <<= 1; |
| 804 | } |
| 805 | return Count; |
| 806 | } |
| 807 | |
| 808 | unsigned APInt::countLeadingOnes() const { |
| 809 | if (isSingleWord()) |
| 810 | return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); |
| 811 | |
| 812 | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; |
| 813 | unsigned shift; |
| 814 | if (!highWordBits) { |
| 815 | highWordBits = APINT_BITS_PER_WORD; |
| 816 | shift = 0; |
| 817 | } else { |
| 818 | shift = APINT_BITS_PER_WORD - highWordBits; |
| 819 | } |
| 820 | int i = getNumWords() - 1; |
| 821 | unsigned Count = countLeadingOnes_64(pVal[i], shift); |
| 822 | if (Count == highWordBits) { |
| 823 | for (i--; i >= 0; --i) { |
| 824 | if (pVal[i] == -1ULL) |
| 825 | Count += APINT_BITS_PER_WORD; |
| 826 | else { |
| 827 | Count += countLeadingOnes_64(pVal[i], 0); |
| 828 | break; |
| 829 | } |
| 830 | } |
| 831 | } |
| 832 | return Count; |
| 833 | } |
| 834 | |
| 835 | unsigned APInt::countTrailingZeros() const { |
| 836 | if (isSingleWord()) |
| 837 | return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); |
| 838 | unsigned Count = 0; |
| 839 | unsigned i = 0; |
| 840 | for (; i < getNumWords() && pVal[i] == 0; ++i) |
| 841 | Count += APINT_BITS_PER_WORD; |
| 842 | if (i < getNumWords()) |
| 843 | Count += CountTrailingZeros_64(pVal[i]); |
| 844 | return std::min(Count, BitWidth); |
| 845 | } |
| 846 | |
| 847 | unsigned APInt::countTrailingOnesSlowCase() const { |
| 848 | unsigned Count = 0; |
| 849 | unsigned i = 0; |
| 850 | for (; i < getNumWords() && pVal[i] == -1ULL; ++i) |
| 851 | Count += APINT_BITS_PER_WORD; |
| 852 | if (i < getNumWords()) |
| 853 | Count += CountTrailingOnes_64(pVal[i]); |
| 854 | return std::min(Count, BitWidth); |
| 855 | } |
| 856 | |
| 857 | unsigned APInt::countPopulationSlowCase() const { |
| 858 | unsigned Count = 0; |
| 859 | for (unsigned i = 0; i < getNumWords(); ++i) |
| 860 | Count += CountPopulation_64(pVal[i]); |
| 861 | return Count; |
| 862 | } |
| 863 | |
| 864 | APInt APInt::byteSwap() const { |
| 865 | assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); |
| 866 | if (BitWidth == 16) |
| 867 | return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); |
| 868 | else if (BitWidth == 32) |
| 869 | return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); |
| 870 | else if (BitWidth == 48) { |
| 871 | unsigned Tmp1 = unsigned(VAL >> 16); |
| 872 | Tmp1 = ByteSwap_32(Tmp1); |
| 873 | uint16_t Tmp2 = uint16_t(VAL); |
| 874 | Tmp2 = ByteSwap_16(Tmp2); |
| 875 | return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); |
| 876 | } else if (BitWidth == 64) |
| 877 | return APInt(BitWidth, ByteSwap_64(VAL)); |
| 878 | else { |
| 879 | APInt Result(BitWidth, 0); |
| 880 | char *pByte = (char*)Result.pVal; |
| 881 | for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { |
| 882 | char Tmp = pByte[i]; |
| 883 | pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; |
| 884 | pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; |
| 885 | } |
| 886 | return Result; |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, |
| 891 | const APInt& API2) { |
| 892 | APInt A = API1, B = API2; |
| 893 | while (!!B) { |
| 894 | APInt T = B; |
| 895 | B = APIntOps::urem(A, B); |
| 896 | A = T; |
| 897 | } |
| 898 | return A; |
| 899 | } |
| 900 | |
| 901 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { |
| 902 | union { |
| 903 | double D; |
| 904 | uint64_t I; |
| 905 | } T; |
| 906 | T.D = Double; |
| 907 | |
| 908 | // Get the sign bit from the highest order bit |
| 909 | bool isNeg = T.I >> 63; |
| 910 | |
| 911 | // Get the 11-bit exponent and adjust for the 1023 bit bias |
| 912 | int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; |
| 913 | |
| 914 | // If the exponent is negative, the value is < 0 so just return 0. |
| 915 | if (exp < 0) |
| 916 | return APInt(width, 0u); |
| 917 | |
| 918 | // Extract the mantissa by clearing the top 12 bits (sign + exponent). |
| 919 | uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; |
| 920 | |
| 921 | // If the exponent doesn't shift all bits out of the mantissa |
| 922 | if (exp < 52) |
| 923 | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : |
| 924 | APInt(width, mantissa >> (52 - exp)); |
| 925 | |
| 926 | // If the client didn't provide enough bits for us to shift the mantissa into |
| 927 | // then the result is undefined, just return 0 |
| 928 | if (width <= exp - 52) |
| 929 | return APInt(width, 0); |
| 930 | |
| 931 | // Otherwise, we have to shift the mantissa bits up to the right location |
| 932 | APInt Tmp(width, mantissa); |
| 933 | Tmp = Tmp.shl((unsigned)exp - 52); |
| 934 | return isNeg ? -Tmp : Tmp; |
| 935 | } |
| 936 | |
| 937 | /// RoundToDouble - This function converts this APInt to a double. |
| 938 | /// The layout for double is as following (IEEE Standard 754): |
| 939 | /// -------------------------------------- |
| 940 | /// | Sign Exponent Fraction Bias | |
| 941 | /// |-------------------------------------- | |
| 942 | /// | 1[63] 11[62-52] 52[51-00] 1023 | |
| 943 | /// -------------------------------------- |
| 944 | double APInt::roundToDouble(bool isSigned) const { |
| 945 | |
| 946 | // Handle the simple case where the value is contained in one uint64_t. |
| 947 | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. |
| 948 | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { |
| 949 | if (isSigned) { |
| 950 | int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); |
| 951 | return double(sext); |
| 952 | } else |
| 953 | return double(getWord(0)); |
| 954 | } |
| 955 | |
| 956 | // Determine if the value is negative. |
| 957 | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; |
| 958 | |
| 959 | // Construct the absolute value if we're negative. |
| 960 | APInt Tmp(isNeg ? -(*this) : (*this)); |
| 961 | |
| 962 | // Figure out how many bits we're using. |
| 963 | unsigned n = Tmp.getActiveBits(); |
| 964 | |
| 965 | // The exponent (without bias normalization) is just the number of bits |
| 966 | // we are using. Note that the sign bit is gone since we constructed the |
| 967 | // absolute value. |
| 968 | uint64_t exp = n; |
| 969 | |
| 970 | // Return infinity for exponent overflow |
| 971 | if (exp > 1023) { |
| 972 | if (!isSigned || !isNeg) |
| 973 | return std::numeric_limits<double>::infinity(); |
| 974 | else |
| 975 | return -std::numeric_limits<double>::infinity(); |
| 976 | } |
| 977 | exp += 1023; // Increment for 1023 bias |
| 978 | |
| 979 | // Number of bits in mantissa is 52. To obtain the mantissa value, we must |
| 980 | // extract the high 52 bits from the correct words in pVal. |
| 981 | uint64_t mantissa; |
| 982 | unsigned hiWord = whichWord(n-1); |
| 983 | if (hiWord == 0) { |
| 984 | mantissa = Tmp.pVal[0]; |
| 985 | if (n > 52) |
| 986 | mantissa >>= n - 52; // shift down, we want the top 52 bits. |
| 987 | } else { |
| 988 | assert(hiWord > 0 && "huh?"); |
| 989 | uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); |
| 990 | uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); |
| 991 | mantissa = hibits | lobits; |
| 992 | } |
| 993 | |
| 994 | // The leading bit of mantissa is implicit, so get rid of it. |
| 995 | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; |
| 996 | union { |
| 997 | double D; |
| 998 | uint64_t I; |
| 999 | } T; |
| 1000 | T.I = sign | (exp << 52) | mantissa; |
| 1001 | return T.D; |
| 1002 | } |
| 1003 | |
| 1004 | // Truncate to new width. |
| 1005 | APInt &APInt::trunc(unsigned width) { |
| 1006 | assert(width < BitWidth && "Invalid APInt Truncate request"); |
| 1007 | assert(width && "Can't truncate to 0 bits"); |
| 1008 | unsigned wordsBefore = getNumWords(); |
| 1009 | BitWidth = width; |
| 1010 | unsigned wordsAfter = getNumWords(); |
| 1011 | if (wordsBefore != wordsAfter) { |
| 1012 | if (wordsAfter == 1) { |
| 1013 | uint64_t *tmp = pVal; |
| 1014 | VAL = pVal[0]; |
| 1015 | delete [] tmp; |
| 1016 | } else { |
| 1017 | uint64_t *newVal = getClearedMemory(wordsAfter); |
| 1018 | for (unsigned i = 0; i < wordsAfter; ++i) |
| 1019 | newVal[i] = pVal[i]; |
| 1020 | delete [] pVal; |
| 1021 | pVal = newVal; |
| 1022 | } |
| 1023 | } |
| 1024 | return clearUnusedBits(); |
| 1025 | } |
| 1026 | |
| 1027 | // Sign extend to a new width. |
| 1028 | APInt &APInt::sext(unsigned width) { |
| 1029 | assert(width > BitWidth && "Invalid APInt SignExtend request"); |
| 1030 | // If the sign bit isn't set, this is the same as zext. |
| 1031 | if (!isNegative()) { |
| 1032 | zext(width); |
| 1033 | return *this; |
| 1034 | } |
| 1035 | |
| 1036 | // The sign bit is set. First, get some facts |
| 1037 | unsigned wordsBefore = getNumWords(); |
| 1038 | unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; |
| 1039 | BitWidth = width; |
| 1040 | unsigned wordsAfter = getNumWords(); |
| 1041 | |
| 1042 | // Mask the high order word appropriately |
| 1043 | if (wordsBefore == wordsAfter) { |
| 1044 | unsigned newWordBits = width % APINT_BITS_PER_WORD; |
| 1045 | // The extension is contained to the wordsBefore-1th word. |
| 1046 | uint64_t mask = ~0ULL; |
| 1047 | if (newWordBits) |
| 1048 | mask >>= APINT_BITS_PER_WORD - newWordBits; |
| 1049 | mask <<= wordBits; |
| 1050 | if (wordsBefore == 1) |
| 1051 | VAL |= mask; |
| 1052 | else |
| 1053 | pVal[wordsBefore-1] |= mask; |
| 1054 | return clearUnusedBits(); |
| 1055 | } |
| 1056 | |
| 1057 | uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits; |
| 1058 | uint64_t *newVal = getMemory(wordsAfter); |
| 1059 | if (wordsBefore == 1) |
| 1060 | newVal[0] = VAL | mask; |
| 1061 | else { |
| 1062 | for (unsigned i = 0; i < wordsBefore; ++i) |
| 1063 | newVal[i] = pVal[i]; |
| 1064 | newVal[wordsBefore-1] |= mask; |
| 1065 | } |
| 1066 | for (unsigned i = wordsBefore; i < wordsAfter; i++) |
| 1067 | newVal[i] = -1ULL; |
| 1068 | if (wordsBefore != 1) |
| 1069 | delete [] pVal; |
| 1070 | pVal = newVal; |
| 1071 | return clearUnusedBits(); |
| 1072 | } |
| 1073 | |
| 1074 | // Zero extend to a new width. |
| 1075 | APInt &APInt::zext(unsigned width) { |
| 1076 | assert(width > BitWidth && "Invalid APInt ZeroExtend request"); |
| 1077 | unsigned wordsBefore = getNumWords(); |
| 1078 | BitWidth = width; |
| 1079 | unsigned wordsAfter = getNumWords(); |
| 1080 | if (wordsBefore != wordsAfter) { |
| 1081 | uint64_t *newVal = getClearedMemory(wordsAfter); |
| 1082 | if (wordsBefore == 1) |
| 1083 | newVal[0] = VAL; |
| 1084 | else |
| 1085 | for (unsigned i = 0; i < wordsBefore; ++i) |
| 1086 | newVal[i] = pVal[i]; |
| 1087 | if (wordsBefore != 1) |
| 1088 | delete [] pVal; |
| 1089 | pVal = newVal; |
| 1090 | } |
| 1091 | return *this; |
| 1092 | } |
| 1093 | |
| 1094 | APInt &APInt::zextOrTrunc(unsigned width) { |
| 1095 | if (BitWidth < width) |
| 1096 | return zext(width); |
| 1097 | if (BitWidth > width) |
| 1098 | return trunc(width); |
| 1099 | return *this; |
| 1100 | } |
| 1101 | |
| 1102 | APInt &APInt::sextOrTrunc(unsigned width) { |
| 1103 | if (BitWidth < width) |
| 1104 | return sext(width); |
| 1105 | if (BitWidth > width) |
| 1106 | return trunc(width); |
| 1107 | return *this; |
| 1108 | } |
| 1109 | |
| 1110 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 1111 | /// @brief Arithmetic right-shift function. |
| 1112 | APInt APInt::ashr(const APInt &shiftAmt) const { |
| 1113 | return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
| 1114 | } |
| 1115 | |
| 1116 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 1117 | /// @brief Arithmetic right-shift function. |
| 1118 | APInt APInt::ashr(unsigned shiftAmt) const { |
| 1119 | assert(shiftAmt <= BitWidth && "Invalid shift amount"); |
| 1120 | // Handle a degenerate case |
| 1121 | if (shiftAmt == 0) |
| 1122 | return *this; |
| 1123 | |
| 1124 | // Handle single word shifts with built-in ashr |
| 1125 | if (isSingleWord()) { |
| 1126 | if (shiftAmt == BitWidth) |
| 1127 | return APInt(BitWidth, 0); // undefined |
| 1128 | else { |
| 1129 | unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; |
| 1130 | return APInt(BitWidth, |
| 1131 | (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | // If all the bits were shifted out, the result is, technically, undefined. |
| 1136 | // We return -1 if it was negative, 0 otherwise. We check this early to avoid |
| 1137 | // issues in the algorithm below. |
| 1138 | if (shiftAmt == BitWidth) { |
| 1139 | if (isNegative()) |
| 1140 | return APInt(BitWidth, -1ULL, true); |
| 1141 | else |
| 1142 | return APInt(BitWidth, 0); |
| 1143 | } |
| 1144 | |
| 1145 | // Create some space for the result. |
| 1146 | uint64_t * val = new uint64_t[getNumWords()]; |
| 1147 | |
| 1148 | // Compute some values needed by the following shift algorithms |
| 1149 | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word |
| 1150 | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift |
| 1151 | unsigned breakWord = getNumWords() - 1 - offset; // last word affected |
| 1152 | unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? |
| 1153 | if (bitsInWord == 0) |
| 1154 | bitsInWord = APINT_BITS_PER_WORD; |
| 1155 | |
| 1156 | // If we are shifting whole words, just move whole words |
| 1157 | if (wordShift == 0) { |
| 1158 | // Move the words containing significant bits |
| 1159 | for (unsigned i = 0; i <= breakWord; ++i) |
| 1160 | val[i] = pVal[i+offset]; // move whole word |
| 1161 | |
| 1162 | // Adjust the top significant word for sign bit fill, if negative |
| 1163 | if (isNegative()) |
| 1164 | if (bitsInWord < APINT_BITS_PER_WORD) |
| 1165 | val[breakWord] |= ~0ULL << bitsInWord; // set high bits |
| 1166 | } else { |
| 1167 | // Shift the low order words |
| 1168 | for (unsigned i = 0; i < breakWord; ++i) { |
| 1169 | // This combines the shifted corresponding word with the low bits from |
| 1170 | // the next word (shifted into this word's high bits). |
| 1171 | val[i] = (pVal[i+offset] >> wordShift) | |
| 1172 | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); |
| 1173 | } |
| 1174 | |
| 1175 | // Shift the break word. In this case there are no bits from the next word |
| 1176 | // to include in this word. |
| 1177 | val[breakWord] = pVal[breakWord+offset] >> wordShift; |
| 1178 | |
| 1179 | // Deal with sign extenstion in the break word, and possibly the word before |
| 1180 | // it. |
| 1181 | if (isNegative()) { |
| 1182 | if (wordShift > bitsInWord) { |
| 1183 | if (breakWord > 0) |
| 1184 | val[breakWord-1] |= |
| 1185 | ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); |
| 1186 | val[breakWord] |= ~0ULL; |
| 1187 | } else |
| 1188 | val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | // Remaining words are 0 or -1, just assign them. |
| 1193 | uint64_t fillValue = (isNegative() ? -1ULL : 0); |
| 1194 | for (unsigned i = breakWord+1; i < getNumWords(); ++i) |
| 1195 | val[i] = fillValue; |
| 1196 | return APInt(val, BitWidth).clearUnusedBits(); |
| 1197 | } |
| 1198 | |
| 1199 | /// Logical right-shift this APInt by shiftAmt. |
| 1200 | /// @brief Logical right-shift function. |
| 1201 | APInt APInt::lshr(const APInt &shiftAmt) const { |
| 1202 | return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
| 1203 | } |
| 1204 | |
| 1205 | /// Logical right-shift this APInt by shiftAmt. |
| 1206 | /// @brief Logical right-shift function. |
| 1207 | APInt APInt::lshr(unsigned shiftAmt) const { |
| 1208 | if (isSingleWord()) { |
| 1209 | if (shiftAmt == BitWidth) |
| 1210 | return APInt(BitWidth, 0); |
| 1211 | else |
| 1212 | return APInt(BitWidth, this->VAL >> shiftAmt); |
| 1213 | } |
| 1214 | |
| 1215 | // If all the bits were shifted out, the result is 0. This avoids issues |
| 1216 | // with shifting by the size of the integer type, which produces undefined |
| 1217 | // results. We define these "undefined results" to always be 0. |
| 1218 | if (shiftAmt == BitWidth) |
| 1219 | return APInt(BitWidth, 0); |
| 1220 | |
| 1221 | // If none of the bits are shifted out, the result is *this. This avoids |
| 1222 | // issues with shifting by the size of the integer type, which produces |
| 1223 | // undefined results in the code below. This is also an optimization. |
| 1224 | if (shiftAmt == 0) |
| 1225 | return *this; |
| 1226 | |
| 1227 | // Create some space for the result. |
| 1228 | uint64_t * val = new uint64_t[getNumWords()]; |
| 1229 | |
| 1230 | // If we are shifting less than a word, compute the shift with a simple carry |
| 1231 | if (shiftAmt < APINT_BITS_PER_WORD) { |
| 1232 | uint64_t carry = 0; |
| 1233 | for (int i = getNumWords()-1; i >= 0; --i) { |
| 1234 | val[i] = (pVal[i] >> shiftAmt) | carry; |
| 1235 | carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt); |
| 1236 | } |
| 1237 | return APInt(val, BitWidth).clearUnusedBits(); |
| 1238 | } |
| 1239 | |
| 1240 | // Compute some values needed by the remaining shift algorithms |
| 1241 | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; |
| 1242 | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; |
| 1243 | |
| 1244 | // If we are shifting whole words, just move whole words |
| 1245 | if (wordShift == 0) { |
| 1246 | for (unsigned i = 0; i < getNumWords() - offset; ++i) |
| 1247 | val[i] = pVal[i+offset]; |
| 1248 | for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) |
| 1249 | val[i] = 0; |
| 1250 | return APInt(val,BitWidth).clearUnusedBits(); |
| 1251 | } |
| 1252 | |
| 1253 | // Shift the low order words |
| 1254 | unsigned breakWord = getNumWords() - offset -1; |
| 1255 | for (unsigned i = 0; i < breakWord; ++i) |
| 1256 | val[i] = (pVal[i+offset] >> wordShift) | |
| 1257 | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); |
| 1258 | // Shift the break word. |
| 1259 | val[breakWord] = pVal[breakWord+offset] >> wordShift; |
| 1260 | |
| 1261 | // Remaining words are 0 |
| 1262 | for (unsigned i = breakWord+1; i < getNumWords(); ++i) |
| 1263 | val[i] = 0; |
| 1264 | return APInt(val, BitWidth).clearUnusedBits(); |
| 1265 | } |
| 1266 | |
| 1267 | /// Left-shift this APInt by shiftAmt. |
| 1268 | /// @brief Left-shift function. |
| 1269 | APInt APInt::shl(const APInt &shiftAmt) const { |
| 1270 | // It's undefined behavior in C to shift by BitWidth or greater. |
| 1271 | return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); |
| 1272 | } |
| 1273 | |
| 1274 | APInt APInt::shlSlowCase(unsigned shiftAmt) const { |
| 1275 | // If all the bits were shifted out, the result is 0. This avoids issues |
| 1276 | // with shifting by the size of the integer type, which produces undefined |
| 1277 | // results. We define these "undefined results" to always be 0. |
| 1278 | if (shiftAmt == BitWidth) |
| 1279 | return APInt(BitWidth, 0); |
| 1280 | |
| 1281 | // If none of the bits are shifted out, the result is *this. This avoids a |
| 1282 | // lshr by the words size in the loop below which can produce incorrect |
| 1283 | // results. It also avoids the expensive computation below for a common case. |
| 1284 | if (shiftAmt == 0) |
| 1285 | return *this; |
| 1286 | |
| 1287 | // Create some space for the result. |
| 1288 | uint64_t * val = new uint64_t[getNumWords()]; |
| 1289 | |
| 1290 | // If we are shifting less than a word, do it the easy way |
| 1291 | if (shiftAmt < APINT_BITS_PER_WORD) { |
| 1292 | uint64_t carry = 0; |
| 1293 | for (unsigned i = 0; i < getNumWords(); i++) { |
| 1294 | val[i] = pVal[i] << shiftAmt | carry; |
| 1295 | carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); |
| 1296 | } |
| 1297 | return APInt(val, BitWidth).clearUnusedBits(); |
| 1298 | } |
| 1299 | |
| 1300 | // Compute some values needed by the remaining shift algorithms |
| 1301 | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; |
| 1302 | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; |
| 1303 | |
| 1304 | // If we are shifting whole words, just move whole words |
| 1305 | if (wordShift == 0) { |
| 1306 | for (unsigned i = 0; i < offset; i++) |
| 1307 | val[i] = 0; |
| 1308 | for (unsigned i = offset; i < getNumWords(); i++) |
| 1309 | val[i] = pVal[i-offset]; |
| 1310 | return APInt(val,BitWidth).clearUnusedBits(); |
| 1311 | } |
| 1312 | |
| 1313 | // Copy whole words from this to Result. |
| 1314 | unsigned i = getNumWords() - 1; |
| 1315 | for (; i > offset; --i) |
| 1316 | val[i] = pVal[i-offset] << wordShift | |
| 1317 | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); |
| 1318 | val[offset] = pVal[0] << wordShift; |
| 1319 | for (i = 0; i < offset; ++i) |
| 1320 | val[i] = 0; |
| 1321 | return APInt(val, BitWidth).clearUnusedBits(); |
| 1322 | } |
| 1323 | |
| 1324 | APInt APInt::rotl(const APInt &rotateAmt) const { |
| 1325 | return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); |
| 1326 | } |
| 1327 | |
| 1328 | APInt APInt::rotl(unsigned rotateAmt) const { |
| 1329 | if (rotateAmt == 0) |
| 1330 | return *this; |
| 1331 | // Don't get too fancy, just use existing shift/or facilities |
| 1332 | APInt hi(*this); |
| 1333 | APInt lo(*this); |
| 1334 | hi.shl(rotateAmt); |
| 1335 | lo.lshr(BitWidth - rotateAmt); |
| 1336 | return hi | lo; |
| 1337 | } |
| 1338 | |
| 1339 | APInt APInt::rotr(const APInt &rotateAmt) const { |
| 1340 | return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); |
| 1341 | } |
| 1342 | |
| 1343 | APInt APInt::rotr(unsigned rotateAmt) const { |
| 1344 | if (rotateAmt == 0) |
| 1345 | return *this; |
| 1346 | // Don't get too fancy, just use existing shift/or facilities |
| 1347 | APInt hi(*this); |
| 1348 | APInt lo(*this); |
| 1349 | lo.lshr(rotateAmt); |
| 1350 | hi.shl(BitWidth - rotateAmt); |
| 1351 | return hi | lo; |
| 1352 | } |
| 1353 | |
| 1354 | // Square Root - this method computes and returns the square root of "this". |
| 1355 | // Three mechanisms are used for computation. For small values (<= 5 bits), |
| 1356 | // a table lookup is done. This gets some performance for common cases. For |
| 1357 | // values using less than 52 bits, the value is converted to double and then |
| 1358 | // the libc sqrt function is called. The result is rounded and then converted |
| 1359 | // back to a uint64_t which is then used to construct the result. Finally, |
| 1360 | // the Babylonian method for computing square roots is used. |
| 1361 | APInt APInt::sqrt() const { |
| 1362 | |
| 1363 | // Determine the magnitude of the value. |
| 1364 | unsigned magnitude = getActiveBits(); |
| 1365 | |
| 1366 | // Use a fast table for some small values. This also gets rid of some |
| 1367 | // rounding errors in libc sqrt for small values. |
| 1368 | if (magnitude <= 5) { |
| 1369 | static const uint8_t results[32] = { |
| 1370 | /* 0 */ 0, |
| 1371 | /* 1- 2 */ 1, 1, |
| 1372 | /* 3- 6 */ 2, 2, 2, 2, |
| 1373 | /* 7-12 */ 3, 3, 3, 3, 3, 3, |
| 1374 | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, |
| 1375 | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 1376 | /* 31 */ 6 |
| 1377 | }; |
| 1378 | return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); |
| 1379 | } |
| 1380 | |
| 1381 | // If the magnitude of the value fits in less than 52 bits (the precision of |
| 1382 | // an IEEE double precision floating point value), then we can use the |
| 1383 | // libc sqrt function which will probably use a hardware sqrt computation. |
| 1384 | // This should be faster than the algorithm below. |
| 1385 | if (magnitude < 52) { |
| 1386 | #ifdef _MSC_VER |
| 1387 | // Amazingly, VC++ doesn't have round(). |
| 1388 | return APInt(BitWidth, |
| 1389 | uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5); |
| 1390 | #else |
| 1391 | return APInt(BitWidth, |
| 1392 | uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); |
| 1393 | #endif |
| 1394 | } |
| 1395 | |
| 1396 | // Okay, all the short cuts are exhausted. We must compute it. The following |
| 1397 | // is a classical Babylonian method for computing the square root. This code |
| 1398 | // was adapted to APINt from a wikipedia article on such computations. |
| 1399 | // See http://www.wikipedia.org/ and go to the page named |
| 1400 | // Calculate_an_integer_square_root. |
| 1401 | unsigned nbits = BitWidth, i = 4; |
| 1402 | APInt testy(BitWidth, 16); |
| 1403 | APInt x_old(BitWidth, 1); |
| 1404 | APInt x_new(BitWidth, 0); |
| 1405 | APInt two(BitWidth, 2); |
| 1406 | |
| 1407 | // Select a good starting value using binary logarithms. |
| 1408 | for (;; i += 2, testy = testy.shl(2)) |
| 1409 | if (i >= nbits || this->ule(testy)) { |
| 1410 | x_old = x_old.shl(i / 2); |
| 1411 | break; |
| 1412 | } |
| 1413 | |
| 1414 | // Use the Babylonian method to arrive at the integer square root: |
| 1415 | for (;;) { |
| 1416 | x_new = (this->udiv(x_old) + x_old).udiv(two); |
| 1417 | if (x_old.ule(x_new)) |
| 1418 | break; |
| 1419 | x_old = x_new; |
| 1420 | } |
| 1421 | |
| 1422 | // Make sure we return the closest approximation |
| 1423 | // NOTE: The rounding calculation below is correct. It will produce an |
| 1424 | // off-by-one discrepancy with results from pari/gp. That discrepancy has been |
| 1425 | // determined to be a rounding issue with pari/gp as it begins to use a |
| 1426 | // floating point representation after 192 bits. There are no discrepancies |
| 1427 | // between this algorithm and pari/gp for bit widths < 192 bits. |
| 1428 | APInt square(x_old * x_old); |
| 1429 | APInt nextSquare((x_old + 1) * (x_old +1)); |
| 1430 | if (this->ult(square)) |
| 1431 | return x_old; |
| 1432 | else if (this->ule(nextSquare)) { |
| 1433 | APInt midpoint((nextSquare - square).udiv(two)); |
| 1434 | APInt offset(*this - square); |
| 1435 | if (offset.ult(midpoint)) |
| 1436 | return x_old; |
| 1437 | else |
| 1438 | return x_old + 1; |
| 1439 | } else |
| 1440 | llvm_unreachable("Error in APInt::sqrt computation"); |
| 1441 | return x_old + 1; |
| 1442 | } |
| 1443 | |
| 1444 | /// Computes the multiplicative inverse of this APInt for a given modulo. The |
| 1445 | /// iterative extended Euclidean algorithm is used to solve for this value, |
| 1446 | /// however we simplify it to speed up calculating only the inverse, and take |
| 1447 | /// advantage of div+rem calculations. We also use some tricks to avoid copying |
| 1448 | /// (potentially large) APInts around. |
| 1449 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { |
| 1450 | assert(ult(modulo) && "This APInt must be smaller than the modulo"); |
| 1451 | |
| 1452 | // Using the properties listed at the following web page (accessed 06/21/08): |
| 1453 | // http://www.numbertheory.org/php/euclid.html |
| 1454 | // (especially the properties numbered 3, 4 and 9) it can be proved that |
| 1455 | // BitWidth bits suffice for all the computations in the algorithm implemented |
| 1456 | // below. More precisely, this number of bits suffice if the multiplicative |
| 1457 | // inverse exists, but may not suffice for the general extended Euclidean |
| 1458 | // algorithm. |
| 1459 | |
| 1460 | APInt r[2] = { modulo, *this }; |
| 1461 | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; |
| 1462 | APInt q(BitWidth, 0); |
| 1463 | |
| 1464 | unsigned i; |
| 1465 | for (i = 0; r[i^1] != 0; i ^= 1) { |
| 1466 | // An overview of the math without the confusing bit-flipping: |
| 1467 | // q = r[i-2] / r[i-1] |
| 1468 | // r[i] = r[i-2] % r[i-1] |
| 1469 | // t[i] = t[i-2] - t[i-1] * q |
| 1470 | udivrem(r[i], r[i^1], q, r[i]); |
| 1471 | t[i] -= t[i^1] * q; |
| 1472 | } |
| 1473 | |
| 1474 | // If this APInt and the modulo are not coprime, there is no multiplicative |
| 1475 | // inverse, so return 0. We check this by looking at the next-to-last |
| 1476 | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean |
| 1477 | // algorithm. |
| 1478 | if (r[i] != 1) |
| 1479 | return APInt(BitWidth, 0); |
| 1480 | |
| 1481 | // The next-to-last t is the multiplicative inverse. However, we are |
| 1482 | // interested in a positive inverse. Calcuate a positive one from a negative |
| 1483 | // one if necessary. A simple addition of the modulo suffices because |
| 1484 | // abs(t[i]) is known to be less than *this/2 (see the link above). |
| 1485 | return t[i].isNegative() ? t[i] + modulo : t[i]; |
| 1486 | } |
| 1487 | |
| 1488 | /// Calculate the magic numbers required to implement a signed integer division |
| 1489 | /// by a constant as a sequence of multiplies, adds and shifts. Requires that |
| 1490 | /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. |
| 1491 | /// Warren, Jr., chapter 10. |
| 1492 | APInt::ms APInt::magic() const { |
| 1493 | const APInt& d = *this; |
| 1494 | unsigned p; |
| 1495 | APInt ad, anc, delta, q1, r1, q2, r2, t; |
| 1496 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); |
| 1497 | struct ms mag; |
| 1498 | |
| 1499 | ad = d.abs(); |
| 1500 | t = signedMin + (d.lshr(d.getBitWidth() - 1)); |
| 1501 | anc = t - 1 - t.urem(ad); // absolute value of nc |
| 1502 | p = d.getBitWidth() - 1; // initialize p |
| 1503 | q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) |
| 1504 | r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1505 | q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) |
| 1506 | r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1507 | do { |
| 1508 | p = p + 1; |
| 1509 | q1 = q1<<1; // update q1 = 2p/abs(nc) |
| 1510 | r1 = r1<<1; // update r1 = rem(2p/abs(nc)) |
| 1511 | if (r1.uge(anc)) { // must be unsigned comparison |
| 1512 | q1 = q1 + 1; |
| 1513 | r1 = r1 - anc; |
| 1514 | } |
| 1515 | q2 = q2<<1; // update q2 = 2p/abs(d) |
| 1516 | r2 = r2<<1; // update r2 = rem(2p/abs(d)) |
| 1517 | if (r2.uge(ad)) { // must be unsigned comparison |
| 1518 | q2 = q2 + 1; |
| 1519 | r2 = r2 - ad; |
| 1520 | } |
| 1521 | delta = ad - r2; |
| 1522 | } while (q1.ule(delta) || (q1 == delta && r1 == 0)); |
| 1523 | |
| 1524 | mag.m = q2 + 1; |
| 1525 | if (d.isNegative()) mag.m = -mag.m; // resulting magic number |
| 1526 | mag.s = p - d.getBitWidth(); // resulting shift |
| 1527 | return mag; |
| 1528 | } |
| 1529 | |
| 1530 | /// Calculate the magic numbers required to implement an unsigned integer |
| 1531 | /// division by a constant as a sequence of multiplies, adds and shifts. |
| 1532 | /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry |
| 1533 | /// S. Warren, Jr., chapter 10. |
| 1534 | APInt::mu APInt::magicu() const { |
| 1535 | const APInt& d = *this; |
| 1536 | unsigned p; |
| 1537 | APInt nc, delta, q1, r1, q2, r2; |
| 1538 | struct mu magu; |
| 1539 | magu.a = 0; // initialize "add" indicator |
| 1540 | APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()); |
| 1541 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); |
| 1542 | APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); |
| 1543 | |
| 1544 | nc = allOnes - (-d).urem(d); |
| 1545 | p = d.getBitWidth() - 1; // initialize p |
| 1546 | q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc |
| 1547 | r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) |
| 1548 | q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d |
| 1549 | r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) |
| 1550 | do { |
| 1551 | p = p + 1; |
| 1552 | if (r1.uge(nc - r1)) { |
| 1553 | q1 = q1 + q1 + 1; // update q1 |
| 1554 | r1 = r1 + r1 - nc; // update r1 |
| 1555 | } |
| 1556 | else { |
| 1557 | q1 = q1+q1; // update q1 |
| 1558 | r1 = r1+r1; // update r1 |
| 1559 | } |
| 1560 | if ((r2 + 1).uge(d - r2)) { |
| 1561 | if (q2.uge(signedMax)) magu.a = 1; |
| 1562 | q2 = q2+q2 + 1; // update q2 |
| 1563 | r2 = r2+r2 + 1 - d; // update r2 |
| 1564 | } |
| 1565 | else { |
| 1566 | if (q2.uge(signedMin)) magu.a = 1; |
| 1567 | q2 = q2+q2; // update q2 |
| 1568 | r2 = r2+r2 + 1; // update r2 |
| 1569 | } |
| 1570 | delta = d - 1 - r2; |
| 1571 | } while (p < d.getBitWidth()*2 && |
| 1572 | (q1.ult(delta) || (q1 == delta && r1 == 0))); |
| 1573 | magu.m = q2 + 1; // resulting magic number |
| 1574 | magu.s = p - d.getBitWidth(); // resulting shift |
| 1575 | return magu; |
| 1576 | } |
| 1577 | |
| 1578 | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) |
| 1579 | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The |
| 1580 | /// variables here have the same names as in the algorithm. Comments explain |
| 1581 | /// the algorithm and any deviation from it. |
| 1582 | static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, |
| 1583 | unsigned m, unsigned n) { |
| 1584 | assert(u && "Must provide dividend"); |
| 1585 | assert(v && "Must provide divisor"); |
| 1586 | assert(q && "Must provide quotient"); |
| 1587 | assert(u != v && u != q && v != q && "Must us different memory"); |
| 1588 | assert(n>1 && "n must be > 1"); |
| 1589 | |
| 1590 | // Knuth uses the value b as the base of the number system. In our case b |
| 1591 | // is 2^31 so we just set it to -1u. |
| 1592 | uint64_t b = uint64_t(1) << 32; |
| 1593 | |
| 1594 | #if 0 |
| 1595 | DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); |
| 1596 | DEBUG(dbgs() << "KnuthDiv: original:"); |
| 1597 | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); |
| 1598 | DEBUG(dbgs() << " by"); |
| 1599 | DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); |
| 1600 | DEBUG(dbgs() << '\n'); |
| 1601 | #endif |
| 1602 | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of |
| 1603 | // u and v by d. Note that we have taken Knuth's advice here to use a power |
| 1604 | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of |
| 1605 | // 2 allows us to shift instead of multiply and it is easy to determine the |
| 1606 | // shift amount from the leading zeros. We are basically normalizing the u |
| 1607 | // and v so that its high bits are shifted to the top of v's range without |
| 1608 | // overflow. Note that this can require an extra word in u so that u must |
| 1609 | // be of length m+n+1. |
| 1610 | unsigned shift = CountLeadingZeros_32(v[n-1]); |
| 1611 | unsigned v_carry = 0; |
| 1612 | unsigned u_carry = 0; |
| 1613 | if (shift) { |
| 1614 | for (unsigned i = 0; i < m+n; ++i) { |
| 1615 | unsigned u_tmp = u[i] >> (32 - shift); |
| 1616 | u[i] = (u[i] << shift) | u_carry; |
| 1617 | u_carry = u_tmp; |
| 1618 | } |
| 1619 | for (unsigned i = 0; i < n; ++i) { |
| 1620 | unsigned v_tmp = v[i] >> (32 - shift); |
| 1621 | v[i] = (v[i] << shift) | v_carry; |
| 1622 | v_carry = v_tmp; |
| 1623 | } |
| 1624 | } |
| 1625 | u[m+n] = u_carry; |
| 1626 | #if 0 |
| 1627 | DEBUG(dbgs() << "KnuthDiv: normal:"); |
| 1628 | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); |
| 1629 | DEBUG(dbgs() << " by"); |
| 1630 | DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); |
| 1631 | DEBUG(dbgs() << '\n'); |
| 1632 | #endif |
| 1633 | |
| 1634 | // D2. [Initialize j.] Set j to m. This is the loop counter over the places. |
| 1635 | int j = m; |
| 1636 | do { |
| 1637 | DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); |
| 1638 | // D3. [Calculate q'.]. |
| 1639 | // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') |
| 1640 | // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') |
| 1641 | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease |
| 1642 | // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test |
| 1643 | // on v[n-2] determines at high speed most of the cases in which the trial |
| 1644 | // value qp is one too large, and it eliminates all cases where qp is two |
| 1645 | // too large. |
| 1646 | uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); |
| 1647 | DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); |
| 1648 | uint64_t qp = dividend / v[n-1]; |
| 1649 | uint64_t rp = dividend % v[n-1]; |
| 1650 | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { |
| 1651 | qp--; |
| 1652 | rp += v[n-1]; |
| 1653 | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) |
| 1654 | qp--; |
| 1655 | } |
| 1656 | DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); |
| 1657 | |
| 1658 | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with |
| 1659 | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation |
| 1660 | // consists of a simple multiplication by a one-place number, combined with |
| 1661 | // a subtraction. |
| 1662 | bool isNeg = false; |
| 1663 | for (unsigned i = 0; i < n; ++i) { |
| 1664 | uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); |
| 1665 | uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); |
| 1666 | bool borrow = subtrahend > u_tmp; |
| 1667 | DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp |
| 1668 | << ", subtrahend == " << subtrahend |
| 1669 | << ", borrow = " << borrow << '\n'); |
| 1670 | |
| 1671 | uint64_t result = u_tmp - subtrahend; |
| 1672 | unsigned k = j + i; |
| 1673 | u[k++] = (unsigned)(result & (b-1)); // subtract low word |
| 1674 | u[k++] = (unsigned)(result >> 32); // subtract high word |
| 1675 | while (borrow && k <= m+n) { // deal with borrow to the left |
| 1676 | borrow = u[k] == 0; |
| 1677 | u[k]--; |
| 1678 | k++; |
| 1679 | } |
| 1680 | isNeg |= borrow; |
| 1681 | DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << |
| 1682 | u[j+i+1] << '\n'); |
| 1683 | } |
| 1684 | DEBUG(dbgs() << "KnuthDiv: after subtraction:"); |
| 1685 | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); |
| 1686 | DEBUG(dbgs() << '\n'); |
| 1687 | // The digits (u[j+n]...u[j]) should be kept positive; if the result of |
| 1688 | // this step is actually negative, (u[j+n]...u[j]) should be left as the |
| 1689 | // true value plus b**(n+1), namely as the b's complement of |
| 1690 | // the true value, and a "borrow" to the left should be remembered. |
| 1691 | // |
| 1692 | if (isNeg) { |
| 1693 | bool carry = true; // true because b's complement is "complement + 1" |
| 1694 | for (unsigned i = 0; i <= m+n; ++i) { |
| 1695 | u[i] = ~u[i] + carry; // b's complement |
| 1696 | carry = carry && u[i] == 0; |
| 1697 | } |
| 1698 | } |
| 1699 | DEBUG(dbgs() << "KnuthDiv: after complement:"); |
| 1700 | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); |
| 1701 | DEBUG(dbgs() << '\n'); |
| 1702 | |
| 1703 | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was |
| 1704 | // negative, go to step D6; otherwise go on to step D7. |
| 1705 | q[j] = (unsigned)qp; |
| 1706 | if (isNeg) { |
| 1707 | // D6. [Add back]. The probability that this step is necessary is very |
| 1708 | // small, on the order of only 2/b. Make sure that test data accounts for |
| 1709 | // this possibility. Decrease q[j] by 1 |
| 1710 | q[j]--; |
| 1711 | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). |
| 1712 | // A carry will occur to the left of u[j+n], and it should be ignored |
| 1713 | // since it cancels with the borrow that occurred in D4. |
| 1714 | bool carry = false; |
| 1715 | for (unsigned i = 0; i < n; i++) { |
| 1716 | unsigned limit = std::min(u[j+i],v[i]); |
| 1717 | u[j+i] += v[i] + carry; |
| 1718 | carry = u[j+i] < limit || (carry && u[j+i] == limit); |
| 1719 | } |
| 1720 | u[j+n] += carry; |
| 1721 | } |
| 1722 | DEBUG(dbgs() << "KnuthDiv: after correction:"); |
| 1723 | DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); |
| 1724 | DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); |
| 1725 | |
| 1726 | // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. |
| 1727 | } while (--j >= 0); |
| 1728 | |
| 1729 | DEBUG(dbgs() << "KnuthDiv: quotient:"); |
| 1730 | DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); |
| 1731 | DEBUG(dbgs() << '\n'); |
| 1732 | |
| 1733 | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired |
| 1734 | // remainder may be obtained by dividing u[...] by d. If r is non-null we |
| 1735 | // compute the remainder (urem uses this). |
| 1736 | if (r) { |
| 1737 | // The value d is expressed by the "shift" value above since we avoided |
| 1738 | // multiplication by d by using a shift left. So, all we have to do is |
| 1739 | // shift right here. In order to mak |
| 1740 | if (shift) { |
| 1741 | unsigned carry = 0; |
| 1742 | DEBUG(dbgs() << "KnuthDiv: remainder:"); |
| 1743 | for (int i = n-1; i >= 0; i--) { |
| 1744 | r[i] = (u[i] >> shift) | carry; |
| 1745 | carry = u[i] << (32 - shift); |
| 1746 | DEBUG(dbgs() << " " << r[i]); |
| 1747 | } |
| 1748 | } else { |
| 1749 | for (int i = n-1; i >= 0; i--) { |
| 1750 | r[i] = u[i]; |
| 1751 | DEBUG(dbgs() << " " << r[i]); |
| 1752 | } |
| 1753 | } |
| 1754 | DEBUG(dbgs() << '\n'); |
| 1755 | } |
| 1756 | #if 0 |
| 1757 | DEBUG(dbgs() << '\n'); |
| 1758 | #endif |
| 1759 | } |
| 1760 | |
| 1761 | void APInt::divide(const APInt LHS, unsigned lhsWords, |
| 1762 | const APInt &RHS, unsigned rhsWords, |
| 1763 | APInt *Quotient, APInt *Remainder) |
| 1764 | { |
| 1765 | assert(lhsWords >= rhsWords && "Fractional result"); |
| 1766 | |
| 1767 | // First, compose the values into an array of 32-bit words instead of |
| 1768 | // 64-bit words. This is a necessity of both the "short division" algorithm |
| 1769 | // and the Knuth "classical algorithm" which requires there to be native |
| 1770 | // operations for +, -, and * on an m bit value with an m*2 bit result. We |
| 1771 | // can't use 64-bit operands here because we don't have native results of |
| 1772 | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't |
| 1773 | // work on large-endian machines. |
| 1774 | uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); |
| 1775 | unsigned n = rhsWords * 2; |
| 1776 | unsigned m = (lhsWords * 2) - n; |
| 1777 | |
| 1778 | // Allocate space for the temporary values we need either on the stack, if |
| 1779 | // it will fit, or on the heap if it won't. |
| 1780 | unsigned SPACE[128]; |
| 1781 | unsigned *U = 0; |
| 1782 | unsigned *V = 0; |
| 1783 | unsigned *Q = 0; |
| 1784 | unsigned *R = 0; |
| 1785 | if ((Remainder?4:3)*n+2*m+1 <= 128) { |
| 1786 | U = &SPACE[0]; |
| 1787 | V = &SPACE[m+n+1]; |
| 1788 | Q = &SPACE[(m+n+1) + n]; |
| 1789 | if (Remainder) |
| 1790 | R = &SPACE[(m+n+1) + n + (m+n)]; |
| 1791 | } else { |
| 1792 | U = new unsigned[m + n + 1]; |
| 1793 | V = new unsigned[n]; |
| 1794 | Q = new unsigned[m+n]; |
| 1795 | if (Remainder) |
| 1796 | R = new unsigned[n]; |
| 1797 | } |
| 1798 | |
| 1799 | // Initialize the dividend |
| 1800 | memset(U, 0, (m+n+1)*sizeof(unsigned)); |
| 1801 | for (unsigned i = 0; i < lhsWords; ++i) { |
| 1802 | uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); |
| 1803 | U[i * 2] = (unsigned)(tmp & mask); |
| 1804 | U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); |
| 1805 | } |
| 1806 | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. |
| 1807 | |
| 1808 | // Initialize the divisor |
| 1809 | memset(V, 0, (n)*sizeof(unsigned)); |
| 1810 | for (unsigned i = 0; i < rhsWords; ++i) { |
| 1811 | uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); |
| 1812 | V[i * 2] = (unsigned)(tmp & mask); |
| 1813 | V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); |
| 1814 | } |
| 1815 | |
| 1816 | // initialize the quotient and remainder |
| 1817 | memset(Q, 0, (m+n) * sizeof(unsigned)); |
| 1818 | if (Remainder) |
| 1819 | memset(R, 0, n * sizeof(unsigned)); |
| 1820 | |
| 1821 | // Now, adjust m and n for the Knuth division. n is the number of words in |
| 1822 | // the divisor. m is the number of words by which the dividend exceeds the |
| 1823 | // divisor (i.e. m+n is the length of the dividend). These sizes must not |
| 1824 | // contain any zero words or the Knuth algorithm fails. |
| 1825 | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { |
| 1826 | n--; |
| 1827 | m++; |
| 1828 | } |
| 1829 | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) |
| 1830 | m--; |
| 1831 | |
| 1832 | // If we're left with only a single word for the divisor, Knuth doesn't work |
| 1833 | // so we implement the short division algorithm here. This is much simpler |
| 1834 | // and faster because we are certain that we can divide a 64-bit quantity |
| 1835 | // by a 32-bit quantity at hardware speed and short division is simply a |
| 1836 | // series of such operations. This is just like doing short division but we |
| 1837 | // are using base 2^32 instead of base 10. |
| 1838 | assert(n != 0 && "Divide by zero?"); |
| 1839 | if (n == 1) { |
| 1840 | unsigned divisor = V[0]; |
| 1841 | unsigned remainder = 0; |
| 1842 | for (int i = m+n-1; i >= 0; i--) { |
| 1843 | uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; |
| 1844 | if (partial_dividend == 0) { |
| 1845 | Q[i] = 0; |
| 1846 | remainder = 0; |
| 1847 | } else if (partial_dividend < divisor) { |
| 1848 | Q[i] = 0; |
| 1849 | remainder = (unsigned)partial_dividend; |
| 1850 | } else if (partial_dividend == divisor) { |
| 1851 | Q[i] = 1; |
| 1852 | remainder = 0; |
| 1853 | } else { |
| 1854 | Q[i] = (unsigned)(partial_dividend / divisor); |
| 1855 | remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); |
| 1856 | } |
| 1857 | } |
| 1858 | if (R) |
| 1859 | R[0] = remainder; |
| 1860 | } else { |
| 1861 | // Now we're ready to invoke the Knuth classical divide algorithm. In this |
| 1862 | // case n > 1. |
| 1863 | KnuthDiv(U, V, Q, R, m, n); |
| 1864 | } |
| 1865 | |
| 1866 | // If the caller wants the quotient |
| 1867 | if (Quotient) { |
| 1868 | // Set up the Quotient value's memory. |
| 1869 | if (Quotient->BitWidth != LHS.BitWidth) { |
| 1870 | if (Quotient->isSingleWord()) |
| 1871 | Quotient->VAL = 0; |
| 1872 | else |
| 1873 | delete [] Quotient->pVal; |
| 1874 | Quotient->BitWidth = LHS.BitWidth; |
| 1875 | if (!Quotient->isSingleWord()) |
| 1876 | Quotient->pVal = getClearedMemory(Quotient->getNumWords()); |
| 1877 | } else |
| 1878 | Quotient->clear(); |
| 1879 | |
| 1880 | // The quotient is in Q. Reconstitute the quotient into Quotient's low |
| 1881 | // order words. |
| 1882 | if (lhsWords == 1) { |
| 1883 | uint64_t tmp = |
| 1884 | uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); |
| 1885 | if (Quotient->isSingleWord()) |
| 1886 | Quotient->VAL = tmp; |
| 1887 | else |
| 1888 | Quotient->pVal[0] = tmp; |
| 1889 | } else { |
| 1890 | assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); |
| 1891 | for (unsigned i = 0; i < lhsWords; ++i) |
| 1892 | Quotient->pVal[i] = |
| 1893 | uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | // If the caller wants the remainder |
| 1898 | if (Remainder) { |
| 1899 | // Set up the Remainder value's memory. |
| 1900 | if (Remainder->BitWidth != RHS.BitWidth) { |
| 1901 | if (Remainder->isSingleWord()) |
| 1902 | Remainder->VAL = 0; |
| 1903 | else |
| 1904 | delete [] Remainder->pVal; |
| 1905 | Remainder->BitWidth = RHS.BitWidth; |
| 1906 | if (!Remainder->isSingleWord()) |
| 1907 | Remainder->pVal = getClearedMemory(Remainder->getNumWords()); |
| 1908 | } else |
| 1909 | Remainder->clear(); |
| 1910 | |
| 1911 | // The remainder is in R. Reconstitute the remainder into Remainder's low |
| 1912 | // order words. |
| 1913 | if (rhsWords == 1) { |
| 1914 | uint64_t tmp = |
| 1915 | uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); |
| 1916 | if (Remainder->isSingleWord()) |
| 1917 | Remainder->VAL = tmp; |
| 1918 | else |
| 1919 | Remainder->pVal[0] = tmp; |
| 1920 | } else { |
| 1921 | assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); |
| 1922 | for (unsigned i = 0; i < rhsWords; ++i) |
| 1923 | Remainder->pVal[i] = |
| 1924 | uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | // Clean up the memory we allocated. |
| 1929 | if (U != &SPACE[0]) { |
| 1930 | delete [] U; |
| 1931 | delete [] V; |
| 1932 | delete [] Q; |
| 1933 | delete [] R; |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | APInt APInt::udiv(const APInt& RHS) const { |
| 1938 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 1939 | |
| 1940 | // First, deal with the easy case |
| 1941 | if (isSingleWord()) { |
| 1942 | assert(RHS.VAL != 0 && "Divide by zero?"); |
| 1943 | return APInt(BitWidth, VAL / RHS.VAL); |
| 1944 | } |
| 1945 | |
| 1946 | // Get some facts about the LHS and RHS number of bits and words |
| 1947 | unsigned rhsBits = RHS.getActiveBits(); |
| 1948 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| 1949 | assert(rhsWords && "Divided by zero???"); |
| 1950 | unsigned lhsBits = this->getActiveBits(); |
| 1951 | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
| 1952 | |
| 1953 | // Deal with some degenerate cases |
| 1954 | if (!lhsWords) |
| 1955 | // 0 / X ===> 0 |
| 1956 | return APInt(BitWidth, 0); |
| 1957 | else if (lhsWords < rhsWords || this->ult(RHS)) { |
| 1958 | // X / Y ===> 0, iff X < Y |
| 1959 | return APInt(BitWidth, 0); |
| 1960 | } else if (*this == RHS) { |
| 1961 | // X / X ===> 1 |
| 1962 | return APInt(BitWidth, 1); |
| 1963 | } else if (lhsWords == 1 && rhsWords == 1) { |
| 1964 | // All high words are zero, just use native divide |
| 1965 | return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); |
| 1966 | } |
| 1967 | |
| 1968 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
| 1969 | APInt Quotient(1,0); // to hold result. |
| 1970 | divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); |
| 1971 | return Quotient; |
| 1972 | } |
| 1973 | |
| 1974 | APInt APInt::urem(const APInt& RHS) const { |
| 1975 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 1976 | if (isSingleWord()) { |
| 1977 | assert(RHS.VAL != 0 && "Remainder by zero?"); |
| 1978 | return APInt(BitWidth, VAL % RHS.VAL); |
| 1979 | } |
| 1980 | |
| 1981 | // Get some facts about the LHS |
| 1982 | unsigned lhsBits = getActiveBits(); |
| 1983 | unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); |
| 1984 | |
| 1985 | // Get some facts about the RHS |
| 1986 | unsigned rhsBits = RHS.getActiveBits(); |
| 1987 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| 1988 | assert(rhsWords && "Performing remainder operation by zero ???"); |
| 1989 | |
| 1990 | // Check the degenerate cases |
| 1991 | if (lhsWords == 0) { |
| 1992 | // 0 % Y ===> 0 |
| 1993 | return APInt(BitWidth, 0); |
| 1994 | } else if (lhsWords < rhsWords || this->ult(RHS)) { |
| 1995 | // X % Y ===> X, iff X < Y |
| 1996 | return *this; |
| 1997 | } else if (*this == RHS) { |
| 1998 | // X % X == 0; |
| 1999 | return APInt(BitWidth, 0); |
| 2000 | } else if (lhsWords == 1) { |
| 2001 | // All high words are zero, just use native remainder |
| 2002 | return APInt(BitWidth, pVal[0] % RHS.pVal[0]); |
| 2003 | } |
| 2004 | |
| 2005 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
| 2006 | APInt Remainder(1,0); |
| 2007 | divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); |
| 2008 | return Remainder; |
| 2009 | } |
| 2010 | |
| 2011 | void APInt::udivrem(const APInt &LHS, const APInt &RHS, |
| 2012 | APInt &Quotient, APInt &Remainder) { |
| 2013 | // Get some size facts about the dividend and divisor |
| 2014 | unsigned lhsBits = LHS.getActiveBits(); |
| 2015 | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
| 2016 | unsigned rhsBits = RHS.getActiveBits(); |
| 2017 | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| 2018 | |
| 2019 | // Check the degenerate cases |
| 2020 | if (lhsWords == 0) { |
| 2021 | Quotient = 0; // 0 / Y ===> 0 |
| 2022 | Remainder = 0; // 0 % Y ===> 0 |
| 2023 | return; |
| 2024 | } |
| 2025 | |
| 2026 | if (lhsWords < rhsWords || LHS.ult(RHS)) { |
| 2027 | Remainder = LHS; // X % Y ===> X, iff X < Y |
| 2028 | Quotient = 0; // X / Y ===> 0, iff X < Y |
| 2029 | return; |
| 2030 | } |
| 2031 | |
| 2032 | if (LHS == RHS) { |
| 2033 | Quotient = 1; // X / X ===> 1 |
| 2034 | Remainder = 0; // X % X ===> 0; |
| 2035 | return; |
| 2036 | } |
| 2037 | |
| 2038 | if (lhsWords == 1 && rhsWords == 1) { |
| 2039 | // There is only one word to consider so use the native versions. |
| 2040 | uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; |
| 2041 | uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| 2042 | Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); |
| 2043 | Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); |
| 2044 | return; |
| 2045 | } |
| 2046 | |
| 2047 | // Okay, lets do it the long way |
| 2048 | divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); |
| 2049 | } |
| 2050 | |
| 2051 | void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) { |
| 2052 | // Check our assumptions here |
| 2053 | assert(!str.empty() && "Invalid string length"); |
| 2054 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| 2055 | "Radix should be 2, 8, 10, or 16!"); |
| 2056 | |
| 2057 | StringRef::iterator p = str.begin(); |
| 2058 | size_t slen = str.size(); |
| 2059 | bool isNeg = *p == '-'; |
| 2060 | if (*p == '-' || *p == '+') { |
| 2061 | p++; |
| 2062 | slen--; |
| 2063 | assert(slen && "String is only a sign, needs a value."); |
| 2064 | } |
| 2065 | assert((slen <= numbits || radix != 2) && "Insufficient bit width"); |
| 2066 | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); |
| 2067 | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); |
| 2068 | assert((((slen-1)*64)/22 <= numbits || radix != 10) |
| 2069 | && "Insufficient bit width"); |
| 2070 | |
| 2071 | // Allocate memory |
| 2072 | if (!isSingleWord()) |
| 2073 | pVal = getClearedMemory(getNumWords()); |
| 2074 | |
| 2075 | // Figure out if we can shift instead of multiply |
| 2076 | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); |
| 2077 | |
| 2078 | // Set up an APInt for the digit to add outside the loop so we don't |
| 2079 | // constantly construct/destruct it. |
| 2080 | APInt apdigit(getBitWidth(), 0); |
| 2081 | APInt apradix(getBitWidth(), radix); |
| 2082 | |
| 2083 | // Enter digit traversal loop |
| 2084 | for (StringRef::iterator e = str.end(); p != e; ++p) { |
| 2085 | unsigned digit = getDigit(*p, radix); |
| 2086 | assert(digit < radix && "Invalid character in digit string"); |
| 2087 | |
| 2088 | // Shift or multiply the value by the radix |
| 2089 | if (slen > 1) { |
| 2090 | if (shift) |
| 2091 | *this <<= shift; |
| 2092 | else |
| 2093 | *this *= apradix; |
| 2094 | } |
| 2095 | |
| 2096 | // Add in the digit we just interpreted |
| 2097 | if (apdigit.isSingleWord()) |
| 2098 | apdigit.VAL = digit; |
| 2099 | else |
| 2100 | apdigit.pVal[0] = digit; |
| 2101 | *this += apdigit; |
| 2102 | } |
| 2103 | // If its negative, put it in two's complement form |
| 2104 | if (isNeg) { |
| 2105 | (*this)--; |
| 2106 | this->flip(); |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, |
| 2111 | bool Signed) const { |
| 2112 | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) && |
| 2113 | "Radix should be 2, 8, 10, or 16!"); |
| 2114 | |
| 2115 | // First, check for a zero value and just short circuit the logic below. |
| 2116 | if (*this == 0) { |
| 2117 | Str.push_back('0'); |
| 2118 | return; |
| 2119 | } |
| 2120 | |
| 2121 | static const char Digits[] = "0123456789ABCDEF"; |
| 2122 | |
| 2123 | if (isSingleWord()) { |
| 2124 | char Buffer[65]; |
| 2125 | char *BufPtr = Buffer+65; |
| 2126 | |
| 2127 | uint64_t N; |
| 2128 | if (Signed) { |
| 2129 | int64_t I = getSExtValue(); |
| 2130 | if (I < 0) { |
| 2131 | Str.push_back('-'); |
| 2132 | I = -I; |
| 2133 | } |
| 2134 | N = I; |
| 2135 | } else { |
| 2136 | N = getZExtValue(); |
| 2137 | } |
| 2138 | |
| 2139 | while (N) { |
| 2140 | *--BufPtr = Digits[N % Radix]; |
| 2141 | N /= Radix; |
| 2142 | } |
| 2143 | Str.append(BufPtr, Buffer+65); |
| 2144 | return; |
| 2145 | } |
| 2146 | |
| 2147 | APInt Tmp(*this); |
| 2148 | |
| 2149 | if (Signed && isNegative()) { |
| 2150 | // They want to print the signed version and it is a negative value |
| 2151 | // Flip the bits and add one to turn it into the equivalent positive |
| 2152 | // value and put a '-' in the result. |
| 2153 | Tmp.flip(); |
| 2154 | Tmp++; |
| 2155 | Str.push_back('-'); |
| 2156 | } |
| 2157 | |
| 2158 | // We insert the digits backward, then reverse them to get the right order. |
| 2159 | unsigned StartDig = Str.size(); |
| 2160 | |
| 2161 | // For the 2, 8 and 16 bit cases, we can just shift instead of divide |
| 2162 | // because the number of bits per digit (1, 3 and 4 respectively) divides |
| 2163 | // equaly. We just shift until the value is zero. |
| 2164 | if (Radix != 10) { |
| 2165 | // Just shift tmp right for each digit width until it becomes zero |
| 2166 | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); |
| 2167 | unsigned MaskAmt = Radix - 1; |
| 2168 | |
| 2169 | while (Tmp != 0) { |
| 2170 | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; |
| 2171 | Str.push_back(Digits[Digit]); |
| 2172 | Tmp = Tmp.lshr(ShiftAmt); |
| 2173 | } |
| 2174 | } else { |
| 2175 | APInt divisor(4, 10); |
| 2176 | while (Tmp != 0) { |
| 2177 | APInt APdigit(1, 0); |
| 2178 | APInt tmp2(Tmp.getBitWidth(), 0); |
| 2179 | divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, |
| 2180 | &APdigit); |
| 2181 | unsigned Digit = (unsigned)APdigit.getZExtValue(); |
| 2182 | assert(Digit < Radix && "divide failed"); |
| 2183 | Str.push_back(Digits[Digit]); |
| 2184 | Tmp = tmp2; |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | // Reverse the digits before returning. |
| 2189 | std::reverse(Str.begin()+StartDig, Str.end()); |
| 2190 | } |
| 2191 | |
| 2192 | /// toString - This returns the APInt as a std::string. Note that this is an |
| 2193 | /// inefficient method. It is better to pass in a SmallVector/SmallString |
| 2194 | /// to the methods above. |
| 2195 | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { |
| 2196 | SmallString<40> S; |
| 2197 | toString(S, Radix, Signed); |
| 2198 | return S.str(); |
| 2199 | } |
| 2200 | |
| 2201 | |
| 2202 | void APInt::dump() const { |
| 2203 | SmallString<40> S, U; |
| 2204 | this->toStringUnsigned(U); |
| 2205 | this->toStringSigned(S); |
| 2206 | dbgs() << "APInt(" << BitWidth << "b, " |
| 2207 | << U.str() << "u " << S.str() << "s)"; |
| 2208 | } |
| 2209 | |
| 2210 | void APInt::print(raw_ostream &OS, bool isSigned) const { |
| 2211 | SmallString<40> S; |
| 2212 | this->toString(S, 10, isSigned); |
| 2213 | OS << S.str(); |
| 2214 | } |
| 2215 | |
| 2216 | // This implements a variety of operations on a representation of |
| 2217 | // arbitrary precision, two's-complement, bignum integer values. |
| 2218 | |
| 2219 | // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe |
| 2220 | // and unrestricting assumption. |
| 2221 | #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] |
| 2222 | COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); |
| 2223 | |
| 2224 | /* Some handy functions local to this file. */ |
| 2225 | namespace { |
| 2226 | |
| 2227 | /* Returns the integer part with the least significant BITS set. |
| 2228 | BITS cannot be zero. */ |
| 2229 | static inline integerPart |
| 2230 | lowBitMask(unsigned int bits) |
| 2231 | { |
| 2232 | assert (bits != 0 && bits <= integerPartWidth); |
| 2233 | |
| 2234 | return ~(integerPart) 0 >> (integerPartWidth - bits); |
| 2235 | } |
| 2236 | |
| 2237 | /* Returns the value of the lower half of PART. */ |
| 2238 | static inline integerPart |
| 2239 | lowHalf(integerPart part) |
| 2240 | { |
| 2241 | return part & lowBitMask(integerPartWidth / 2); |
| 2242 | } |
| 2243 | |
| 2244 | /* Returns the value of the upper half of PART. */ |
| 2245 | static inline integerPart |
| 2246 | highHalf(integerPart part) |
| 2247 | { |
| 2248 | return part >> (integerPartWidth / 2); |
| 2249 | } |
| 2250 | |
| 2251 | /* Returns the bit number of the most significant set bit of a part. |
| 2252 | If the input number has no bits set -1U is returned. */ |
| 2253 | static unsigned int |
| 2254 | partMSB(integerPart value) |
| 2255 | { |
| 2256 | unsigned int n, msb; |
| 2257 | |
| 2258 | if (value == 0) |
| 2259 | return -1U; |
| 2260 | |
| 2261 | n = integerPartWidth / 2; |
| 2262 | |
| 2263 | msb = 0; |
| 2264 | do { |
| 2265 | if (value >> n) { |
| 2266 | value >>= n; |
| 2267 | msb += n; |
| 2268 | } |
| 2269 | |
| 2270 | n >>= 1; |
| 2271 | } while (n); |
| 2272 | |
| 2273 | return msb; |
| 2274 | } |
| 2275 | |
| 2276 | /* Returns the bit number of the least significant set bit of a |
| 2277 | part. If the input number has no bits set -1U is returned. */ |
| 2278 | static unsigned int |
| 2279 | partLSB(integerPart value) |
| 2280 | { |
| 2281 | unsigned int n, lsb; |
| 2282 | |
| 2283 | if (value == 0) |
| 2284 | return -1U; |
| 2285 | |
| 2286 | lsb = integerPartWidth - 1; |
| 2287 | n = integerPartWidth / 2; |
| 2288 | |
| 2289 | do { |
| 2290 | if (value << n) { |
| 2291 | value <<= n; |
| 2292 | lsb -= n; |
| 2293 | } |
| 2294 | |
| 2295 | n >>= 1; |
| 2296 | } while (n); |
| 2297 | |
| 2298 | return lsb; |
| 2299 | } |
| 2300 | } |
| 2301 | |
| 2302 | /* Sets the least significant part of a bignum to the input value, and |
| 2303 | zeroes out higher parts. */ |
| 2304 | void |
| 2305 | APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) |
| 2306 | { |
| 2307 | unsigned int i; |
| 2308 | |
| 2309 | assert (parts > 0); |
| 2310 | |
| 2311 | dst[0] = part; |
| 2312 | for(i = 1; i < parts; i++) |
| 2313 | dst[i] = 0; |
| 2314 | } |
| 2315 | |
| 2316 | /* Assign one bignum to another. */ |
| 2317 | void |
| 2318 | APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) |
| 2319 | { |
| 2320 | unsigned int i; |
| 2321 | |
| 2322 | for(i = 0; i < parts; i++) |
| 2323 | dst[i] = src[i]; |
| 2324 | } |
| 2325 | |
| 2326 | /* Returns true if a bignum is zero, false otherwise. */ |
| 2327 | bool |
| 2328 | APInt::tcIsZero(const integerPart *src, unsigned int parts) |
| 2329 | { |
| 2330 | unsigned int i; |
| 2331 | |
| 2332 | for(i = 0; i < parts; i++) |
| 2333 | if (src[i]) |
| 2334 | return false; |
| 2335 | |
| 2336 | return true; |
| 2337 | } |
| 2338 | |
| 2339 | /* Extract the given bit of a bignum; returns 0 or 1. */ |
| 2340 | int |
| 2341 | APInt::tcExtractBit(const integerPart *parts, unsigned int bit) |
| 2342 | { |
| 2343 | return(parts[bit / integerPartWidth] |
| 2344 | & ((integerPart) 1 << bit % integerPartWidth)) != 0; |
| 2345 | } |
| 2346 | |
| 2347 | /* Set the given bit of a bignum. */ |
| 2348 | void |
| 2349 | APInt::tcSetBit(integerPart *parts, unsigned int bit) |
| 2350 | { |
| 2351 | parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); |
| 2352 | } |
| 2353 | |
| 2354 | /* Returns the bit number of the least significant set bit of a |
| 2355 | number. If the input number has no bits set -1U is returned. */ |
| 2356 | unsigned int |
| 2357 | APInt::tcLSB(const integerPart *parts, unsigned int n) |
| 2358 | { |
| 2359 | unsigned int i, lsb; |
| 2360 | |
| 2361 | for(i = 0; i < n; i++) { |
| 2362 | if (parts[i] != 0) { |
| 2363 | lsb = partLSB(parts[i]); |
| 2364 | |
| 2365 | return lsb + i * integerPartWidth; |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | return -1U; |
| 2370 | } |
| 2371 | |
| 2372 | /* Returns the bit number of the most significant set bit of a number. |
| 2373 | If the input number has no bits set -1U is returned. */ |
| 2374 | unsigned int |
| 2375 | APInt::tcMSB(const integerPart *parts, unsigned int n) |
| 2376 | { |
| 2377 | unsigned int msb; |
| 2378 | |
| 2379 | do { |
| 2380 | --n; |
| 2381 | |
| 2382 | if (parts[n] != 0) { |
| 2383 | msb = partMSB(parts[n]); |
| 2384 | |
| 2385 | return msb + n * integerPartWidth; |
| 2386 | } |
| 2387 | } while (n); |
| 2388 | |
| 2389 | return -1U; |
| 2390 | } |
| 2391 | |
| 2392 | /* Copy the bit vector of width srcBITS from SRC, starting at bit |
| 2393 | srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes |
| 2394 | the least significant bit of DST. All high bits above srcBITS in |
| 2395 | DST are zero-filled. */ |
| 2396 | void |
| 2397 | APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, |
| 2398 | unsigned int srcBits, unsigned int srcLSB) |
| 2399 | { |
| 2400 | unsigned int firstSrcPart, dstParts, shift, n; |
| 2401 | |
| 2402 | dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; |
| 2403 | assert (dstParts <= dstCount); |
| 2404 | |
| 2405 | firstSrcPart = srcLSB / integerPartWidth; |
| 2406 | tcAssign (dst, src + firstSrcPart, dstParts); |
| 2407 | |
| 2408 | shift = srcLSB % integerPartWidth; |
| 2409 | tcShiftRight (dst, dstParts, shift); |
| 2410 | |
| 2411 | /* We now have (dstParts * integerPartWidth - shift) bits from SRC |
| 2412 | in DST. If this is less that srcBits, append the rest, else |
| 2413 | clear the high bits. */ |
| 2414 | n = dstParts * integerPartWidth - shift; |
| 2415 | if (n < srcBits) { |
| 2416 | integerPart mask = lowBitMask (srcBits - n); |
| 2417 | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) |
| 2418 | << n % integerPartWidth); |
| 2419 | } else if (n > srcBits) { |
| 2420 | if (srcBits % integerPartWidth) |
| 2421 | dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); |
| 2422 | } |
| 2423 | |
| 2424 | /* Clear high parts. */ |
| 2425 | while (dstParts < dstCount) |
| 2426 | dst[dstParts++] = 0; |
| 2427 | } |
| 2428 | |
| 2429 | /* DST += RHS + C where C is zero or one. Returns the carry flag. */ |
| 2430 | integerPart |
| 2431 | APInt::tcAdd(integerPart *dst, const integerPart *rhs, |
| 2432 | integerPart c, unsigned int parts) |
| 2433 | { |
| 2434 | unsigned int i; |
| 2435 | |
| 2436 | assert(c <= 1); |
| 2437 | |
| 2438 | for(i = 0; i < parts; i++) { |
| 2439 | integerPart l; |
| 2440 | |
| 2441 | l = dst[i]; |
| 2442 | if (c) { |
| 2443 | dst[i] += rhs[i] + 1; |
| 2444 | c = (dst[i] <= l); |
| 2445 | } else { |
| 2446 | dst[i] += rhs[i]; |
| 2447 | c = (dst[i] < l); |
| 2448 | } |
| 2449 | } |
| 2450 | |
| 2451 | return c; |
| 2452 | } |
| 2453 | |
| 2454 | /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ |
| 2455 | integerPart |
| 2456 | APInt::tcSubtract(integerPart *dst, const integerPart *rhs, |
| 2457 | integerPart c, unsigned int parts) |
| 2458 | { |
| 2459 | unsigned int i; |
| 2460 | |
| 2461 | assert(c <= 1); |
| 2462 | |
| 2463 | for(i = 0; i < parts; i++) { |
| 2464 | integerPart l; |
| 2465 | |
| 2466 | l = dst[i]; |
| 2467 | if (c) { |
| 2468 | dst[i] -= rhs[i] + 1; |
| 2469 | c = (dst[i] >= l); |
| 2470 | } else { |
| 2471 | dst[i] -= rhs[i]; |
| 2472 | c = (dst[i] > l); |
| 2473 | } |
| 2474 | } |
| 2475 | |
| 2476 | return c; |
| 2477 | } |
| 2478 | |
| 2479 | /* Negate a bignum in-place. */ |
| 2480 | void |
| 2481 | APInt::tcNegate(integerPart *dst, unsigned int parts) |
| 2482 | { |
| 2483 | tcComplement(dst, parts); |
| 2484 | tcIncrement(dst, parts); |
| 2485 | } |
| 2486 | |
| 2487 | /* DST += SRC * MULTIPLIER + CARRY if add is true |
| 2488 | DST = SRC * MULTIPLIER + CARRY if add is false |
| 2489 | |
| 2490 | Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC |
| 2491 | they must start at the same point, i.e. DST == SRC. |
| 2492 | |
| 2493 | If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is |
| 2494 | returned. Otherwise DST is filled with the least significant |
| 2495 | DSTPARTS parts of the result, and if all of the omitted higher |
| 2496 | parts were zero return zero, otherwise overflow occurred and |
| 2497 | return one. */ |
| 2498 | int |
| 2499 | APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, |
| 2500 | integerPart multiplier, integerPart carry, |
| 2501 | unsigned int srcParts, unsigned int dstParts, |
| 2502 | bool add) |
| 2503 | { |
| 2504 | unsigned int i, n; |
| 2505 | |
| 2506 | /* Otherwise our writes of DST kill our later reads of SRC. */ |
| 2507 | assert(dst <= src || dst >= src + srcParts); |
| 2508 | assert(dstParts <= srcParts + 1); |
| 2509 | |
| 2510 | /* N loops; minimum of dstParts and srcParts. */ |
| 2511 | n = dstParts < srcParts ? dstParts: srcParts; |
| 2512 | |
| 2513 | for(i = 0; i < n; i++) { |
| 2514 | integerPart low, mid, high, srcPart; |
| 2515 | |
| 2516 | /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. |
| 2517 | |
| 2518 | This cannot overflow, because |
| 2519 | |
| 2520 | (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) |
| 2521 | |
| 2522 | which is less than n^2. */ |
| 2523 | |
| 2524 | srcPart = src[i]; |
| 2525 | |
| 2526 | if (multiplier == 0 || srcPart == 0) { |
| 2527 | low = carry; |
| 2528 | high = 0; |
| 2529 | } else { |
| 2530 | low = lowHalf(srcPart) * lowHalf(multiplier); |
| 2531 | high = highHalf(srcPart) * highHalf(multiplier); |
| 2532 | |
| 2533 | mid = lowHalf(srcPart) * highHalf(multiplier); |
| 2534 | high += highHalf(mid); |
| 2535 | mid <<= integerPartWidth / 2; |
| 2536 | if (low + mid < low) |
| 2537 | high++; |
| 2538 | low += mid; |
| 2539 | |
| 2540 | mid = highHalf(srcPart) * lowHalf(multiplier); |
| 2541 | high += highHalf(mid); |
| 2542 | mid <<= integerPartWidth / 2; |
| 2543 | if (low + mid < low) |
| 2544 | high++; |
| 2545 | low += mid; |
| 2546 | |
| 2547 | /* Now add carry. */ |
| 2548 | if (low + carry < low) |
| 2549 | high++; |
| 2550 | low += carry; |
| 2551 | } |
| 2552 | |
| 2553 | if (add) { |
| 2554 | /* And now DST[i], and store the new low part there. */ |
| 2555 | if (low + dst[i] < low) |
| 2556 | high++; |
| 2557 | dst[i] += low; |
| 2558 | } else |
| 2559 | dst[i] = low; |
| 2560 | |
| 2561 | carry = high; |
| 2562 | } |
| 2563 | |
| 2564 | if (i < dstParts) { |
| 2565 | /* Full multiplication, there is no overflow. */ |
| 2566 | assert(i + 1 == dstParts); |
| 2567 | dst[i] = carry; |
| 2568 | return 0; |
| 2569 | } else { |
| 2570 | /* We overflowed if there is carry. */ |
| 2571 | if (carry) |
| 2572 | return 1; |
| 2573 | |
| 2574 | /* We would overflow if any significant unwritten parts would be |
| 2575 | non-zero. This is true if any remaining src parts are non-zero |
| 2576 | and the multiplier is non-zero. */ |
| 2577 | if (multiplier) |
| 2578 | for(; i < srcParts; i++) |
| 2579 | if (src[i]) |
| 2580 | return 1; |
| 2581 | |
| 2582 | /* We fitted in the narrow destination. */ |
| 2583 | return 0; |
| 2584 | } |
| 2585 | } |
| 2586 | |
| 2587 | /* DST = LHS * RHS, where DST has the same width as the operands and |
| 2588 | is filled with the least significant parts of the result. Returns |
| 2589 | one if overflow occurred, otherwise zero. DST must be disjoint |
| 2590 | from both operands. */ |
| 2591 | int |
| 2592 | APInt::tcMultiply(integerPart *dst, const integerPart *lhs, |
| 2593 | const integerPart *rhs, unsigned int parts) |
| 2594 | { |
| 2595 | unsigned int i; |
| 2596 | int overflow; |
| 2597 | |
| 2598 | assert(dst != lhs && dst != rhs); |
| 2599 | |
| 2600 | overflow = 0; |
| 2601 | tcSet(dst, 0, parts); |
| 2602 | |
| 2603 | for(i = 0; i < parts; i++) |
| 2604 | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, |
| 2605 | parts - i, true); |
| 2606 | |
| 2607 | return overflow; |
| 2608 | } |
| 2609 | |
| 2610 | /* DST = LHS * RHS, where DST has width the sum of the widths of the |
| 2611 | operands. No overflow occurs. DST must be disjoint from both |
| 2612 | operands. Returns the number of parts required to hold the |
| 2613 | result. */ |
| 2614 | unsigned int |
| 2615 | APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, |
| 2616 | const integerPart *rhs, unsigned int lhsParts, |
| 2617 | unsigned int rhsParts) |
| 2618 | { |
| 2619 | /* Put the narrower number on the LHS for less loops below. */ |
| 2620 | if (lhsParts > rhsParts) { |
| 2621 | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); |
| 2622 | } else { |
| 2623 | unsigned int n; |
| 2624 | |
| 2625 | assert(dst != lhs && dst != rhs); |
| 2626 | |
| 2627 | tcSet(dst, 0, rhsParts); |
| 2628 | |
| 2629 | for(n = 0; n < lhsParts; n++) |
| 2630 | tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); |
| 2631 | |
| 2632 | n = lhsParts + rhsParts; |
| 2633 | |
| 2634 | return n - (dst[n - 1] == 0); |
| 2635 | } |
| 2636 | } |
| 2637 | |
| 2638 | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. |
| 2639 | Otherwise set LHS to LHS / RHS with the fractional part discarded, |
| 2640 | set REMAINDER to the remainder, return zero. i.e. |
| 2641 | |
| 2642 | OLD_LHS = RHS * LHS + REMAINDER |
| 2643 | |
| 2644 | SCRATCH is a bignum of the same size as the operands and result for |
| 2645 | use by the routine; its contents need not be initialized and are |
| 2646 | destroyed. LHS, REMAINDER and SCRATCH must be distinct. |
| 2647 | */ |
| 2648 | int |
| 2649 | APInt::tcDivide(integerPart *lhs, const integerPart *rhs, |
| 2650 | integerPart *remainder, integerPart *srhs, |
| 2651 | unsigned int parts) |
| 2652 | { |
| 2653 | unsigned int n, shiftCount; |
| 2654 | integerPart mask; |
| 2655 | |
| 2656 | assert(lhs != remainder && lhs != srhs && remainder != srhs); |
| 2657 | |
| 2658 | shiftCount = tcMSB(rhs, parts) + 1; |
| 2659 | if (shiftCount == 0) |
| 2660 | return true; |
| 2661 | |
| 2662 | shiftCount = parts * integerPartWidth - shiftCount; |
| 2663 | n = shiftCount / integerPartWidth; |
| 2664 | mask = (integerPart) 1 << (shiftCount % integerPartWidth); |
| 2665 | |
| 2666 | tcAssign(srhs, rhs, parts); |
| 2667 | tcShiftLeft(srhs, parts, shiftCount); |
| 2668 | tcAssign(remainder, lhs, parts); |
| 2669 | tcSet(lhs, 0, parts); |
| 2670 | |
| 2671 | /* Loop, subtracting SRHS if REMAINDER is greater and adding that to |
| 2672 | the total. */ |
| 2673 | for(;;) { |
| 2674 | int compare; |
| 2675 | |
| 2676 | compare = tcCompare(remainder, srhs, parts); |
| 2677 | if (compare >= 0) { |
| 2678 | tcSubtract(remainder, srhs, 0, parts); |
| 2679 | lhs[n] |= mask; |
| 2680 | } |
| 2681 | |
| 2682 | if (shiftCount == 0) |
| 2683 | break; |
| 2684 | shiftCount--; |
| 2685 | tcShiftRight(srhs, parts, 1); |
| 2686 | if ((mask >>= 1) == 0) |
| 2687 | mask = (integerPart) 1 << (integerPartWidth - 1), n--; |
| 2688 | } |
| 2689 | |
| 2690 | return false; |
| 2691 | } |
| 2692 | |
| 2693 | /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. |
| 2694 | There are no restrictions on COUNT. */ |
| 2695 | void |
| 2696 | APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) |
| 2697 | { |
| 2698 | if (count) { |
| 2699 | unsigned int jump, shift; |
| 2700 | |
| 2701 | /* Jump is the inter-part jump; shift is is intra-part shift. */ |
| 2702 | jump = count / integerPartWidth; |
| 2703 | shift = count % integerPartWidth; |
| 2704 | |
| 2705 | while (parts > jump) { |
| 2706 | integerPart part; |
| 2707 | |
| 2708 | parts--; |
| 2709 | |
| 2710 | /* dst[i] comes from the two parts src[i - jump] and, if we have |
| 2711 | an intra-part shift, src[i - jump - 1]. */ |
| 2712 | part = dst[parts - jump]; |
| 2713 | if (shift) { |
| 2714 | part <<= shift; |
| 2715 | if (parts >= jump + 1) |
| 2716 | part |= dst[parts - jump - 1] >> (integerPartWidth - shift); |
| 2717 | } |
| 2718 | |
| 2719 | dst[parts] = part; |
| 2720 | } |
| 2721 | |
| 2722 | while (parts > 0) |
| 2723 | dst[--parts] = 0; |
| 2724 | } |
| 2725 | } |
| 2726 | |
| 2727 | /* Shift a bignum right COUNT bits in-place. Shifted in bits are |
| 2728 | zero. There are no restrictions on COUNT. */ |
| 2729 | void |
| 2730 | APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) |
| 2731 | { |
| 2732 | if (count) { |
| 2733 | unsigned int i, jump, shift; |
| 2734 | |
| 2735 | /* Jump is the inter-part jump; shift is is intra-part shift. */ |
| 2736 | jump = count / integerPartWidth; |
| 2737 | shift = count % integerPartWidth; |
| 2738 | |
| 2739 | /* Perform the shift. This leaves the most significant COUNT bits |
| 2740 | of the result at zero. */ |
| 2741 | for(i = 0; i < parts; i++) { |
| 2742 | integerPart part; |
| 2743 | |
| 2744 | if (i + jump >= parts) { |
| 2745 | part = 0; |
| 2746 | } else { |
| 2747 | part = dst[i + jump]; |
| 2748 | if (shift) { |
| 2749 | part >>= shift; |
| 2750 | if (i + jump + 1 < parts) |
| 2751 | part |= dst[i + jump + 1] << (integerPartWidth - shift); |
| 2752 | } |
| 2753 | } |
| 2754 | |
| 2755 | dst[i] = part; |
| 2756 | } |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | /* Bitwise and of two bignums. */ |
| 2761 | void |
| 2762 | APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) |
| 2763 | { |
| 2764 | unsigned int i; |
| 2765 | |
| 2766 | for(i = 0; i < parts; i++) |
| 2767 | dst[i] &= rhs[i]; |
| 2768 | } |
| 2769 | |
| 2770 | /* Bitwise inclusive or of two bignums. */ |
| 2771 | void |
| 2772 | APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) |
| 2773 | { |
| 2774 | unsigned int i; |
| 2775 | |
| 2776 | for(i = 0; i < parts; i++) |
| 2777 | dst[i] |= rhs[i]; |
| 2778 | } |
| 2779 | |
| 2780 | /* Bitwise exclusive or of two bignums. */ |
| 2781 | void |
| 2782 | APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) |
| 2783 | { |
| 2784 | unsigned int i; |
| 2785 | |
| 2786 | for(i = 0; i < parts; i++) |
| 2787 | dst[i] ^= rhs[i]; |
| 2788 | } |
| 2789 | |
| 2790 | /* Complement a bignum in-place. */ |
| 2791 | void |
| 2792 | APInt::tcComplement(integerPart *dst, unsigned int parts) |
| 2793 | { |
| 2794 | unsigned int i; |
| 2795 | |
| 2796 | for(i = 0; i < parts; i++) |
| 2797 | dst[i] = ~dst[i]; |
| 2798 | } |
| 2799 | |
| 2800 | /* Comparison (unsigned) of two bignums. */ |
| 2801 | int |
| 2802 | APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, |
| 2803 | unsigned int parts) |
| 2804 | { |
| 2805 | while (parts) { |
| 2806 | parts--; |
| 2807 | if (lhs[parts] == rhs[parts]) |
| 2808 | continue; |
| 2809 | |
| 2810 | if (lhs[parts] > rhs[parts]) |
| 2811 | return 1; |
| 2812 | else |
| 2813 | return -1; |
| 2814 | } |
| 2815 | |
| 2816 | return 0; |
| 2817 | } |
| 2818 | |
| 2819 | /* Increment a bignum in-place, return the carry flag. */ |
| 2820 | integerPart |
| 2821 | APInt::tcIncrement(integerPart *dst, unsigned int parts) |
| 2822 | { |
| 2823 | unsigned int i; |
| 2824 | |
| 2825 | for(i = 0; i < parts; i++) |
| 2826 | if (++dst[i] != 0) |
| 2827 | break; |
| 2828 | |
| 2829 | return i == parts; |
| 2830 | } |
| 2831 | |
| 2832 | /* Set the least significant BITS bits of a bignum, clear the |
| 2833 | rest. */ |
| 2834 | void |
| 2835 | APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, |
| 2836 | unsigned int bits) |
| 2837 | { |
| 2838 | unsigned int i; |
| 2839 | |
| 2840 | i = 0; |
| 2841 | while (bits > integerPartWidth) { |
| 2842 | dst[i++] = ~(integerPart) 0; |
| 2843 | bits -= integerPartWidth; |
| 2844 | } |
| 2845 | |
| 2846 | if (bits) |
| 2847 | dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); |
| 2848 | |
| 2849 | while (i < parts) |
| 2850 | dst[i++] = 0; |
| 2851 | } |