blob: 3bce3f3ed3f3049a067e3e91183669fce37a6c26 [file] [log] [blame]
Shih-wei Liaoe264f622010-02-10 11:10:31 -08001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/raw_ostream.h"
24#include <cmath>
25#include <limits>
26#include <cstring>
27#include <cstdlib>
28using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
32inline static uint64_t* getClearedMemory(unsigned numWords) {
33 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
37}
38
39/// A utility function for allocating memory and checking for allocation
40/// failure. The content is not zeroed.
41inline static uint64_t* getMemory(unsigned numWords) {
42 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
47/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
49 unsigned r;
50
51 if (radix == 16) {
52 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
63 }
64
65 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
70}
71
72
73void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
74 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
76 if (isSigned && int64_t(val) < 0)
77 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
79}
80
81void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
87APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
88 : BitWidth(numBits), VAL(0) {
89 assert(BitWidth && "Bitwidth too small");
90 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
92 VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words = std::min<unsigned>(numWords, getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
100 }
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
103}
104
105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
106 : BitWidth(numbits), VAL(0) {
107 assert(BitWidth && "Bitwidth too small");
108 fromString(numbits, Str, radix);
109}
110
111APInt& APInt::AssignSlowCase(const APInt& RHS) {
112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
116 if (BitWidth == RHS.getBitWidth()) {
117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
120 return *this;
121 }
122
123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
129 } else if (getNumWords() == RHS.getNumWords())
130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
133 VAL = RHS.VAL;
134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
141}
142
143APInt& APInt::operator=(uint64_t RHS) {
144 if (isSingleWord())
145 VAL = RHS;
146 else {
147 pVal[0] = RHS;
148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
149 }
150 return clearUnusedBits();
151}
152
153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
155 ID.AddInteger(BitWidth);
156
157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
162 unsigned NumWords = getNumWords();
163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
167/// add_1 - This function adds a single "digit" integer, y, to the multiple
168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
170/// @returns the carry of the addition.
171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
173 dest[i] = y + x[i];
174 if (dest[i] < y)
175 y = 1; // Carry one to next digit.
176 else {
177 y = 0; // No need to carry so exit early
178 break;
179 }
180 }
181 return y;
182}
183
184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
186 if (isSingleWord())
187 ++VAL;
188 else
189 add_1(pVal, pVal, getNumWords(), 1);
190 return clearUnusedBits();
191}
192
193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
198/// @returns the borrow out of the subtraction
199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
201 uint64_t X = x[i];
202 x[i] -= y;
203 if (y > X)
204 y = 1; // We have to "borrow 1" from next "digit"
205 else {
206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
208 }
209 }
210 return bool(y);
211}
212
213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
215 if (isSingleWord())
216 --VAL;
217 else
218 sub_1(pVal, getNumWords(), 1);
219 return clearUnusedBits();
220}
221
222/// add - This function adds the integer array x to the integer array Y and
223/// places the result in dest.
224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227 unsigned len) {
228 bool carry = false;
229 for (unsigned i = 0; i< len; ++i) {
230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
231 dest[i] = x[i] + y[i] + carry;
232 carry = dest[i] < limit || (carry && dest[i] == limit);
233 }
234 return carry;
235}
236
237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
239/// @brief Addition assignment operator.
240APInt& APInt::operator+=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL += RHS.VAL;
244 else {
245 add(pVal, pVal, RHS.pVal, getNumWords());
246 }
247 return clearUnusedBits();
248}
249
250/// Subtracts the integer array y from the integer array x
251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
254 unsigned len) {
255 bool borrow = false;
256 for (unsigned i = 0; i < len; ++i) {
257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
260 }
261 return borrow;
262}
263
264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
266/// @brief Subtraction assignment operator.
267APInt& APInt::operator-=(const APInt& RHS) {
268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
269 if (isSingleWord())
270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
273 return clearUnusedBits();
274}
275
276/// Multiplies an integer array, x, by a uint64_t integer and places the result
277/// into dest.
278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
283 uint64_t carry = 0;
284
285 // For each digit of x.
286 for (unsigned i = 0; i < len; ++i) {
287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
308 return carry;
309}
310
311/// Multiplies integer array x by integer array y and stores the result into
312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
317 for (unsigned i = 1; i < ylen; ++i) {
318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
319 uint64_t carry = 0, lx = 0, hx = 0;
320 for (unsigned j = 0; j < xlen; ++j) {
321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
344APInt& APInt::operator*=(const APInt& RHS) {
345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
346 if (isSingleWord()) {
347 VAL *= RHS.VAL;
348 clearUnusedBits();
349 return *this;
350 }
351
352 // Get some bit facts about LHS and check for zero
353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
355 if (!lhsWords)
356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
369 unsigned destWords = rhsWords + lhsWords;
370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
382 return *this;
383}
384
385APInt& APInt::operator&=(const APInt& RHS) {
386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387 if (isSingleWord()) {
388 VAL &= RHS.VAL;
389 return *this;
390 }
391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
393 pVal[i] &= RHS.pVal[i];
394 return *this;
395}
396
397APInt& APInt::operator|=(const APInt& RHS) {
398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399 if (isSingleWord()) {
400 VAL |= RHS.VAL;
401 return *this;
402 }
403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
405 pVal[i] |= RHS.pVal[i];
406 return *this;
407}
408
409APInt& APInt::operator^=(const APInt& RHS) {
410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
411 if (isSingleWord()) {
412 VAL ^= RHS.VAL;
413 this->clearUnusedBits();
414 return *this;
415 }
416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
418 pVal[i] ^= RHS.pVal[i];
419 return clearUnusedBits();
420}
421
422APInt APInt::AndSlowCase(const APInt& RHS) const {
423 unsigned numWords = getNumWords();
424 uint64_t* val = getMemory(numWords);
425 for (unsigned i = 0; i < numWords; ++i)
426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
428}
429
430APInt APInt::OrSlowCase(const APInt& RHS) const {
431 unsigned numWords = getNumWords();
432 uint64_t *val = getMemory(numWords);
433 for (unsigned i = 0; i < numWords; ++i)
434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
436}
437
438APInt APInt::XorSlowCase(const APInt& RHS) const {
439 unsigned numWords = getNumWords();
440 uint64_t *val = getMemory(numWords);
441 for (unsigned i = 0; i < numWords; ++i)
442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
451
452 for (unsigned i = 0; i < getNumWords(); ++i)
453 if (pVal[i])
454 return false;
455 return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460 if (isSingleWord())
461 return APInt(BitWidth, VAL * RHS.VAL);
462 APInt Result(*this);
463 Result *= RHS;
464 return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469 if (isSingleWord())
470 return APInt(BitWidth, VAL + RHS.VAL);
471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473 return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478 if (isSingleWord())
479 return APInt(BitWidth, VAL - RHS.VAL);
480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482 return Result.clearUnusedBits();
483}
484
485bool APInt::operator[](unsigned bitPosition) const {
486 return (maskBit(bitPosition) &
487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
490bool APInt::EqualSlowCase(const APInt& RHS) const {
491 // Get some facts about the number of bits used in the two operands.
492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
494
495 // If the number of bits isn't the same, they aren't equal
496 if (n1 != n2)
497 return false;
498
499 // If the number of bits fits in a word, we only need to compare the low word.
500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
503 // Otherwise, compare everything
504 for (int i = whichWord(n1 - 1); i >= 0; --i)
505 if (pVal[i] != RHS.pVal[i])
506 return false;
507 return true;
508}
509
510bool APInt::EqualSlowCase(uint64_t Val) const {
511 unsigned n = getActiveBits();
512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
516}
517
518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
522
523 // Get active bit length of both operands
524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
540 unsigned topWord = whichWord(std::max(n1,n2)-1);
541 for (int i = topWord; i >= 0; --i) {
542 if (pVal[i] > RHS.pVal[i])
543 return false;
544 if (pVal[i] < RHS.pVal[i])
545 return true;
546 }
547 return false;
548}
549
550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
556 }
557
558 APInt lhs(*this);
559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
564 lhs.flip();
565 lhs++;
566 }
567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
569 rhs.flip();
570 rhs++;
571 }
572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
578 else
579 return true;
580 else if (rhsNeg)
581 return false;
582 else
583 return lhs.ult(rhs);
584}
585
586APInt& APInt::set(unsigned bitPosition) {
587 if (isSingleWord())
588 VAL |= maskBit(bitPosition);
589 else
590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
591 return *this;
592}
593
594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
596APInt& APInt::clear(unsigned bitPosition) {
597 if (isSingleWord())
598 VAL &= ~maskBit(bitPosition);
599 else
600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
601 return *this;
602}
603
604/// @brief Toggle every bit to its opposite value.
605
606/// Toggle a given bit to its opposite value whose position is given
607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
609APInt& APInt::flip(unsigned bitPosition) {
610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
620
621 size_t slen = str.size();
622
623 // Each computation below needs to know if it's negative.
624 StringRef::iterator p = str.begin();
625 unsigned isNegative = *p == '-';
626 if (*p == '-' || *p == '+') {
627 p++;
628 slen--;
629 assert(slen && "String is only a sign, needs a value.");
630 }
631
632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
650
651 // Convert to the actual binary value.
652 APInt tmp(sufficient, StringRef(p, slen), radix);
653
654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
662}
663
664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
668
669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
705 while (length > 3)
706 {
707 a += k[0];
708 b += k[1];
709 c += k[2];
710 mix(a,b,c);
711 length -= 3;
712 k += 3;
713 }
714
715 /*------------------------------------------- handle the last 3 uint32_t's */
716 switch (length) { /* all the case statements fall through */
717 case 3 : c+=k[2];
718 case 2 : b+=k[1];
719 case 1 : a+=k[0];
720 final(a,b,c);
721 case 0: /* case 0: nothing left to add */
722 break;
723 }
724 /*------------------------------------------------------ report the result */
725 return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins. This computes a 32-bit hash from one 64-bit word. When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734 uint32_t a,b,c;
735 a = b = c = 0xdeadbeef + 4;
736 b += k64 >> 32;
737 a += k64 & 0xffffffff;
738 final(a,b,c);
739 return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746 uint64_t hash;
747 if (isSingleWord())
748 hash = hashword8(VAL);
749 else
750 hash = hashword(pVal, getNumWords()*2);
751 return hash;
752}
753
754/// HiBits - This function returns the high "numBits" bits of this APInt.
755APInt APInt::getHiBits(unsigned numBits) const {
756 return APIntOps::lshr(*this, BitWidth - numBits);
757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
760APInt APInt::getLoBits(unsigned numBits) const {
761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
762 BitWidth - numBits);
763}
764
765bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
769unsigned APInt::countLeadingZerosSlowCase() const {
770 // Treat the most significand word differently because it might have
771 // meaningless bits set beyond the precision.
772 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
773 integerPart MSWMask;
774 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
775 else {
776 MSWMask = ~integerPart(0);
777 BitsInMSW = APINT_BITS_PER_WORD;
778 }
779
780 unsigned i = getNumWords();
781 integerPart MSW = pVal[i-1] & MSWMask;
782 if (MSW)
783 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784
785 unsigned Count = BitsInMSW;
786 for (--i; i > 0u; --i) {
787 if (pVal[i-1] == 0)
788 Count += APINT_BITS_PER_WORD;
789 else {
790 Count += CountLeadingZeros_64(pVal[i-1]);
791 break;
792 }
793 }
794 return Count;
795}
796
797static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
798 unsigned Count = 0;
799 if (skip)
800 V <<= skip;
801 while (V && (V & (1ULL << 63))) {
802 Count++;
803 V <<= 1;
804 }
805 return Count;
806}
807
808unsigned APInt::countLeadingOnes() const {
809 if (isSingleWord())
810 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811
812 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
813 unsigned shift;
814 if (!highWordBits) {
815 highWordBits = APINT_BITS_PER_WORD;
816 shift = 0;
817 } else {
818 shift = APINT_BITS_PER_WORD - highWordBits;
819 }
820 int i = getNumWords() - 1;
821 unsigned Count = countLeadingOnes_64(pVal[i], shift);
822 if (Count == highWordBits) {
823 for (i--; i >= 0; --i) {
824 if (pVal[i] == -1ULL)
825 Count += APINT_BITS_PER_WORD;
826 else {
827 Count += countLeadingOnes_64(pVal[i], 0);
828 break;
829 }
830 }
831 }
832 return Count;
833}
834
835unsigned APInt::countTrailingZeros() const {
836 if (isSingleWord())
837 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
838 unsigned Count = 0;
839 unsigned i = 0;
840 for (; i < getNumWords() && pVal[i] == 0; ++i)
841 Count += APINT_BITS_PER_WORD;
842 if (i < getNumWords())
843 Count += CountTrailingZeros_64(pVal[i]);
844 return std::min(Count, BitWidth);
845}
846
847unsigned APInt::countTrailingOnesSlowCase() const {
848 unsigned Count = 0;
849 unsigned i = 0;
850 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
851 Count += APINT_BITS_PER_WORD;
852 if (i < getNumWords())
853 Count += CountTrailingOnes_64(pVal[i]);
854 return std::min(Count, BitWidth);
855}
856
857unsigned APInt::countPopulationSlowCase() const {
858 unsigned Count = 0;
859 for (unsigned i = 0; i < getNumWords(); ++i)
860 Count += CountPopulation_64(pVal[i]);
861 return Count;
862}
863
864APInt APInt::byteSwap() const {
865 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
866 if (BitWidth == 16)
867 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
868 else if (BitWidth == 32)
869 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
870 else if (BitWidth == 48) {
871 unsigned Tmp1 = unsigned(VAL >> 16);
872 Tmp1 = ByteSwap_32(Tmp1);
873 uint16_t Tmp2 = uint16_t(VAL);
874 Tmp2 = ByteSwap_16(Tmp2);
875 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
876 } else if (BitWidth == 64)
877 return APInt(BitWidth, ByteSwap_64(VAL));
878 else {
879 APInt Result(BitWidth, 0);
880 char *pByte = (char*)Result.pVal;
881 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
882 char Tmp = pByte[i];
883 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
884 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
885 }
886 return Result;
887 }
888}
889
890APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
891 const APInt& API2) {
892 APInt A = API1, B = API2;
893 while (!!B) {
894 APInt T = B;
895 B = APIntOps::urem(A, B);
896 A = T;
897 }
898 return A;
899}
900
901APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
902 union {
903 double D;
904 uint64_t I;
905 } T;
906 T.D = Double;
907
908 // Get the sign bit from the highest order bit
909 bool isNeg = T.I >> 63;
910
911 // Get the 11-bit exponent and adjust for the 1023 bit bias
912 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
913
914 // If the exponent is negative, the value is < 0 so just return 0.
915 if (exp < 0)
916 return APInt(width, 0u);
917
918 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
919 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920
921 // If the exponent doesn't shift all bits out of the mantissa
922 if (exp < 52)
923 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
924 APInt(width, mantissa >> (52 - exp));
925
926 // If the client didn't provide enough bits for us to shift the mantissa into
927 // then the result is undefined, just return 0
928 if (width <= exp - 52)
929 return APInt(width, 0);
930
931 // Otherwise, we have to shift the mantissa bits up to the right location
932 APInt Tmp(width, mantissa);
933 Tmp = Tmp.shl((unsigned)exp - 52);
934 return isNeg ? -Tmp : Tmp;
935}
936
937/// RoundToDouble - This function converts this APInt to a double.
938/// The layout for double is as following (IEEE Standard 754):
939/// --------------------------------------
940/// | Sign Exponent Fraction Bias |
941/// |-------------------------------------- |
942/// | 1[63] 11[62-52] 52[51-00] 1023 |
943/// --------------------------------------
944double APInt::roundToDouble(bool isSigned) const {
945
946 // Handle the simple case where the value is contained in one uint64_t.
947 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
948 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
949 if (isSigned) {
950 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
951 return double(sext);
952 } else
953 return double(getWord(0));
954 }
955
956 // Determine if the value is negative.
957 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
958
959 // Construct the absolute value if we're negative.
960 APInt Tmp(isNeg ? -(*this) : (*this));
961
962 // Figure out how many bits we're using.
963 unsigned n = Tmp.getActiveBits();
964
965 // The exponent (without bias normalization) is just the number of bits
966 // we are using. Note that the sign bit is gone since we constructed the
967 // absolute value.
968 uint64_t exp = n;
969
970 // Return infinity for exponent overflow
971 if (exp > 1023) {
972 if (!isSigned || !isNeg)
973 return std::numeric_limits<double>::infinity();
974 else
975 return -std::numeric_limits<double>::infinity();
976 }
977 exp += 1023; // Increment for 1023 bias
978
979 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
980 // extract the high 52 bits from the correct words in pVal.
981 uint64_t mantissa;
982 unsigned hiWord = whichWord(n-1);
983 if (hiWord == 0) {
984 mantissa = Tmp.pVal[0];
985 if (n > 52)
986 mantissa >>= n - 52; // shift down, we want the top 52 bits.
987 } else {
988 assert(hiWord > 0 && "huh?");
989 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
990 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
991 mantissa = hibits | lobits;
992 }
993
994 // The leading bit of mantissa is implicit, so get rid of it.
995 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
996 union {
997 double D;
998 uint64_t I;
999 } T;
1000 T.I = sign | (exp << 52) | mantissa;
1001 return T.D;
1002}
1003
1004// Truncate to new width.
1005APInt &APInt::trunc(unsigned width) {
1006 assert(width < BitWidth && "Invalid APInt Truncate request");
1007 assert(width && "Can't truncate to 0 bits");
1008 unsigned wordsBefore = getNumWords();
1009 BitWidth = width;
1010 unsigned wordsAfter = getNumWords();
1011 if (wordsBefore != wordsAfter) {
1012 if (wordsAfter == 1) {
1013 uint64_t *tmp = pVal;
1014 VAL = pVal[0];
1015 delete [] tmp;
1016 } else {
1017 uint64_t *newVal = getClearedMemory(wordsAfter);
1018 for (unsigned i = 0; i < wordsAfter; ++i)
1019 newVal[i] = pVal[i];
1020 delete [] pVal;
1021 pVal = newVal;
1022 }
1023 }
1024 return clearUnusedBits();
1025}
1026
1027// Sign extend to a new width.
1028APInt &APInt::sext(unsigned width) {
1029 assert(width > BitWidth && "Invalid APInt SignExtend request");
1030 // If the sign bit isn't set, this is the same as zext.
1031 if (!isNegative()) {
1032 zext(width);
1033 return *this;
1034 }
1035
1036 // The sign bit is set. First, get some facts
1037 unsigned wordsBefore = getNumWords();
1038 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
1039 BitWidth = width;
1040 unsigned wordsAfter = getNumWords();
1041
1042 // Mask the high order word appropriately
1043 if (wordsBefore == wordsAfter) {
1044 unsigned newWordBits = width % APINT_BITS_PER_WORD;
1045 // The extension is contained to the wordsBefore-1th word.
1046 uint64_t mask = ~0ULL;
1047 if (newWordBits)
1048 mask >>= APINT_BITS_PER_WORD - newWordBits;
1049 mask <<= wordBits;
1050 if (wordsBefore == 1)
1051 VAL |= mask;
1052 else
1053 pVal[wordsBefore-1] |= mask;
1054 return clearUnusedBits();
1055 }
1056
1057 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1058 uint64_t *newVal = getMemory(wordsAfter);
1059 if (wordsBefore == 1)
1060 newVal[0] = VAL | mask;
1061 else {
1062 for (unsigned i = 0; i < wordsBefore; ++i)
1063 newVal[i] = pVal[i];
1064 newVal[wordsBefore-1] |= mask;
1065 }
1066 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1067 newVal[i] = -1ULL;
1068 if (wordsBefore != 1)
1069 delete [] pVal;
1070 pVal = newVal;
1071 return clearUnusedBits();
1072}
1073
1074// Zero extend to a new width.
1075APInt &APInt::zext(unsigned width) {
1076 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1077 unsigned wordsBefore = getNumWords();
1078 BitWidth = width;
1079 unsigned wordsAfter = getNumWords();
1080 if (wordsBefore != wordsAfter) {
1081 uint64_t *newVal = getClearedMemory(wordsAfter);
1082 if (wordsBefore == 1)
1083 newVal[0] = VAL;
1084 else
1085 for (unsigned i = 0; i < wordsBefore; ++i)
1086 newVal[i] = pVal[i];
1087 if (wordsBefore != 1)
1088 delete [] pVal;
1089 pVal = newVal;
1090 }
1091 return *this;
1092}
1093
1094APInt &APInt::zextOrTrunc(unsigned width) {
1095 if (BitWidth < width)
1096 return zext(width);
1097 if (BitWidth > width)
1098 return trunc(width);
1099 return *this;
1100}
1101
1102APInt &APInt::sextOrTrunc(unsigned width) {
1103 if (BitWidth < width)
1104 return sext(width);
1105 if (BitWidth > width)
1106 return trunc(width);
1107 return *this;
1108}
1109
1110/// Arithmetic right-shift this APInt by shiftAmt.
1111/// @brief Arithmetic right-shift function.
1112APInt APInt::ashr(const APInt &shiftAmt) const {
1113 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1114}
1115
1116/// Arithmetic right-shift this APInt by shiftAmt.
1117/// @brief Arithmetic right-shift function.
1118APInt APInt::ashr(unsigned shiftAmt) const {
1119 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1120 // Handle a degenerate case
1121 if (shiftAmt == 0)
1122 return *this;
1123
1124 // Handle single word shifts with built-in ashr
1125 if (isSingleWord()) {
1126 if (shiftAmt == BitWidth)
1127 return APInt(BitWidth, 0); // undefined
1128 else {
1129 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1130 return APInt(BitWidth,
1131 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1132 }
1133 }
1134
1135 // If all the bits were shifted out, the result is, technically, undefined.
1136 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1137 // issues in the algorithm below.
1138 if (shiftAmt == BitWidth) {
1139 if (isNegative())
1140 return APInt(BitWidth, -1ULL, true);
1141 else
1142 return APInt(BitWidth, 0);
1143 }
1144
1145 // Create some space for the result.
1146 uint64_t * val = new uint64_t[getNumWords()];
1147
1148 // Compute some values needed by the following shift algorithms
1149 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1150 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1151 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1152 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1153 if (bitsInWord == 0)
1154 bitsInWord = APINT_BITS_PER_WORD;
1155
1156 // If we are shifting whole words, just move whole words
1157 if (wordShift == 0) {
1158 // Move the words containing significant bits
1159 for (unsigned i = 0; i <= breakWord; ++i)
1160 val[i] = pVal[i+offset]; // move whole word
1161
1162 // Adjust the top significant word for sign bit fill, if negative
1163 if (isNegative())
1164 if (bitsInWord < APINT_BITS_PER_WORD)
1165 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1166 } else {
1167 // Shift the low order words
1168 for (unsigned i = 0; i < breakWord; ++i) {
1169 // This combines the shifted corresponding word with the low bits from
1170 // the next word (shifted into this word's high bits).
1171 val[i] = (pVal[i+offset] >> wordShift) |
1172 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173 }
1174
1175 // Shift the break word. In this case there are no bits from the next word
1176 // to include in this word.
1177 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178
1179 // Deal with sign extenstion in the break word, and possibly the word before
1180 // it.
1181 if (isNegative()) {
1182 if (wordShift > bitsInWord) {
1183 if (breakWord > 0)
1184 val[breakWord-1] |=
1185 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1186 val[breakWord] |= ~0ULL;
1187 } else
1188 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1189 }
1190 }
1191
1192 // Remaining words are 0 or -1, just assign them.
1193 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1194 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1195 val[i] = fillValue;
1196 return APInt(val, BitWidth).clearUnusedBits();
1197}
1198
1199/// Logical right-shift this APInt by shiftAmt.
1200/// @brief Logical right-shift function.
1201APInt APInt::lshr(const APInt &shiftAmt) const {
1202 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1203}
1204
1205/// Logical right-shift this APInt by shiftAmt.
1206/// @brief Logical right-shift function.
1207APInt APInt::lshr(unsigned shiftAmt) const {
1208 if (isSingleWord()) {
1209 if (shiftAmt == BitWidth)
1210 return APInt(BitWidth, 0);
1211 else
1212 return APInt(BitWidth, this->VAL >> shiftAmt);
1213 }
1214
1215 // If all the bits were shifted out, the result is 0. This avoids issues
1216 // with shifting by the size of the integer type, which produces undefined
1217 // results. We define these "undefined results" to always be 0.
1218 if (shiftAmt == BitWidth)
1219 return APInt(BitWidth, 0);
1220
1221 // If none of the bits are shifted out, the result is *this. This avoids
1222 // issues with shifting by the size of the integer type, which produces
1223 // undefined results in the code below. This is also an optimization.
1224 if (shiftAmt == 0)
1225 return *this;
1226
1227 // Create some space for the result.
1228 uint64_t * val = new uint64_t[getNumWords()];
1229
1230 // If we are shifting less than a word, compute the shift with a simple carry
1231 if (shiftAmt < APINT_BITS_PER_WORD) {
1232 uint64_t carry = 0;
1233 for (int i = getNumWords()-1; i >= 0; --i) {
1234 val[i] = (pVal[i] >> shiftAmt) | carry;
1235 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236 }
1237 return APInt(val, BitWidth).clearUnusedBits();
1238 }
1239
1240 // Compute some values needed by the remaining shift algorithms
1241 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1242 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1243
1244 // If we are shifting whole words, just move whole words
1245 if (wordShift == 0) {
1246 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1247 val[i] = pVal[i+offset];
1248 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1249 val[i] = 0;
1250 return APInt(val,BitWidth).clearUnusedBits();
1251 }
1252
1253 // Shift the low order words
1254 unsigned breakWord = getNumWords() - offset -1;
1255 for (unsigned i = 0; i < breakWord; ++i)
1256 val[i] = (pVal[i+offset] >> wordShift) |
1257 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1258 // Shift the break word.
1259 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260
1261 // Remaining words are 0
1262 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1263 val[i] = 0;
1264 return APInt(val, BitWidth).clearUnusedBits();
1265}
1266
1267/// Left-shift this APInt by shiftAmt.
1268/// @brief Left-shift function.
1269APInt APInt::shl(const APInt &shiftAmt) const {
1270 // It's undefined behavior in C to shift by BitWidth or greater.
1271 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1272}
1273
1274APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1275 // If all the bits were shifted out, the result is 0. This avoids issues
1276 // with shifting by the size of the integer type, which produces undefined
1277 // results. We define these "undefined results" to always be 0.
1278 if (shiftAmt == BitWidth)
1279 return APInt(BitWidth, 0);
1280
1281 // If none of the bits are shifted out, the result is *this. This avoids a
1282 // lshr by the words size in the loop below which can produce incorrect
1283 // results. It also avoids the expensive computation below for a common case.
1284 if (shiftAmt == 0)
1285 return *this;
1286
1287 // Create some space for the result.
1288 uint64_t * val = new uint64_t[getNumWords()];
1289
1290 // If we are shifting less than a word, do it the easy way
1291 if (shiftAmt < APINT_BITS_PER_WORD) {
1292 uint64_t carry = 0;
1293 for (unsigned i = 0; i < getNumWords(); i++) {
1294 val[i] = pVal[i] << shiftAmt | carry;
1295 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296 }
1297 return APInt(val, BitWidth).clearUnusedBits();
1298 }
1299
1300 // Compute some values needed by the remaining shift algorithms
1301 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1302 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1303
1304 // If we are shifting whole words, just move whole words
1305 if (wordShift == 0) {
1306 for (unsigned i = 0; i < offset; i++)
1307 val[i] = 0;
1308 for (unsigned i = offset; i < getNumWords(); i++)
1309 val[i] = pVal[i-offset];
1310 return APInt(val,BitWidth).clearUnusedBits();
1311 }
1312
1313 // Copy whole words from this to Result.
1314 unsigned i = getNumWords() - 1;
1315 for (; i > offset; --i)
1316 val[i] = pVal[i-offset] << wordShift |
1317 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1318 val[offset] = pVal[0] << wordShift;
1319 for (i = 0; i < offset; ++i)
1320 val[i] = 0;
1321 return APInt(val, BitWidth).clearUnusedBits();
1322}
1323
1324APInt APInt::rotl(const APInt &rotateAmt) const {
1325 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1326}
1327
1328APInt APInt::rotl(unsigned rotateAmt) const {
1329 if (rotateAmt == 0)
1330 return *this;
1331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 hi.shl(rotateAmt);
1335 lo.lshr(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
1339APInt APInt::rotr(const APInt &rotateAmt) const {
1340 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1341}
1342
1343APInt APInt::rotr(unsigned rotateAmt) const {
1344 if (rotateAmt == 0)
1345 return *this;
1346 // Don't get too fancy, just use existing shift/or facilities
1347 APInt hi(*this);
1348 APInt lo(*this);
1349 lo.lshr(rotateAmt);
1350 hi.shl(BitWidth - rotateAmt);
1351 return hi | lo;
1352}
1353
1354// Square Root - this method computes and returns the square root of "this".
1355// Three mechanisms are used for computation. For small values (<= 5 bits),
1356// a table lookup is done. This gets some performance for common cases. For
1357// values using less than 52 bits, the value is converted to double and then
1358// the libc sqrt function is called. The result is rounded and then converted
1359// back to a uint64_t which is then used to construct the result. Finally,
1360// the Babylonian method for computing square roots is used.
1361APInt APInt::sqrt() const {
1362
1363 // Determine the magnitude of the value.
1364 unsigned magnitude = getActiveBits();
1365
1366 // Use a fast table for some small values. This also gets rid of some
1367 // rounding errors in libc sqrt for small values.
1368 if (magnitude <= 5) {
1369 static const uint8_t results[32] = {
1370 /* 0 */ 0,
1371 /* 1- 2 */ 1, 1,
1372 /* 3- 6 */ 2, 2, 2, 2,
1373 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1374 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1375 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1376 /* 31 */ 6
1377 };
1378 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1379 }
1380
1381 // If the magnitude of the value fits in less than 52 bits (the precision of
1382 // an IEEE double precision floating point value), then we can use the
1383 // libc sqrt function which will probably use a hardware sqrt computation.
1384 // This should be faster than the algorithm below.
1385 if (magnitude < 52) {
1386#ifdef _MSC_VER
1387 // Amazingly, VC++ doesn't have round().
1388 return APInt(BitWidth,
1389 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1390#else
1391 return APInt(BitWidth,
1392 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1393#endif
1394 }
1395
1396 // Okay, all the short cuts are exhausted. We must compute it. The following
1397 // is a classical Babylonian method for computing the square root. This code
1398 // was adapted to APINt from a wikipedia article on such computations.
1399 // See http://www.wikipedia.org/ and go to the page named
1400 // Calculate_an_integer_square_root.
1401 unsigned nbits = BitWidth, i = 4;
1402 APInt testy(BitWidth, 16);
1403 APInt x_old(BitWidth, 1);
1404 APInt x_new(BitWidth, 0);
1405 APInt two(BitWidth, 2);
1406
1407 // Select a good starting value using binary logarithms.
1408 for (;; i += 2, testy = testy.shl(2))
1409 if (i >= nbits || this->ule(testy)) {
1410 x_old = x_old.shl(i / 2);
1411 break;
1412 }
1413
1414 // Use the Babylonian method to arrive at the integer square root:
1415 for (;;) {
1416 x_new = (this->udiv(x_old) + x_old).udiv(two);
1417 if (x_old.ule(x_new))
1418 break;
1419 x_old = x_new;
1420 }
1421
1422 // Make sure we return the closest approximation
1423 // NOTE: The rounding calculation below is correct. It will produce an
1424 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1425 // determined to be a rounding issue with pari/gp as it begins to use a
1426 // floating point representation after 192 bits. There are no discrepancies
1427 // between this algorithm and pari/gp for bit widths < 192 bits.
1428 APInt square(x_old * x_old);
1429 APInt nextSquare((x_old + 1) * (x_old +1));
1430 if (this->ult(square))
1431 return x_old;
1432 else if (this->ule(nextSquare)) {
1433 APInt midpoint((nextSquare - square).udiv(two));
1434 APInt offset(*this - square);
1435 if (offset.ult(midpoint))
1436 return x_old;
1437 else
1438 return x_old + 1;
1439 } else
1440 llvm_unreachable("Error in APInt::sqrt computation");
1441 return x_old + 1;
1442}
1443
1444/// Computes the multiplicative inverse of this APInt for a given modulo. The
1445/// iterative extended Euclidean algorithm is used to solve for this value,
1446/// however we simplify it to speed up calculating only the inverse, and take
1447/// advantage of div+rem calculations. We also use some tricks to avoid copying
1448/// (potentially large) APInts around.
1449APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1450 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1451
1452 // Using the properties listed at the following web page (accessed 06/21/08):
1453 // http://www.numbertheory.org/php/euclid.html
1454 // (especially the properties numbered 3, 4 and 9) it can be proved that
1455 // BitWidth bits suffice for all the computations in the algorithm implemented
1456 // below. More precisely, this number of bits suffice if the multiplicative
1457 // inverse exists, but may not suffice for the general extended Euclidean
1458 // algorithm.
1459
1460 APInt r[2] = { modulo, *this };
1461 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1462 APInt q(BitWidth, 0);
1463
1464 unsigned i;
1465 for (i = 0; r[i^1] != 0; i ^= 1) {
1466 // An overview of the math without the confusing bit-flipping:
1467 // q = r[i-2] / r[i-1]
1468 // r[i] = r[i-2] % r[i-1]
1469 // t[i] = t[i-2] - t[i-1] * q
1470 udivrem(r[i], r[i^1], q, r[i]);
1471 t[i] -= t[i^1] * q;
1472 }
1473
1474 // If this APInt and the modulo are not coprime, there is no multiplicative
1475 // inverse, so return 0. We check this by looking at the next-to-last
1476 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1477 // algorithm.
1478 if (r[i] != 1)
1479 return APInt(BitWidth, 0);
1480
1481 // The next-to-last t is the multiplicative inverse. However, we are
1482 // interested in a positive inverse. Calcuate a positive one from a negative
1483 // one if necessary. A simple addition of the modulo suffices because
1484 // abs(t[i]) is known to be less than *this/2 (see the link above).
1485 return t[i].isNegative() ? t[i] + modulo : t[i];
1486}
1487
1488/// Calculate the magic numbers required to implement a signed integer division
1489/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1490/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1491/// Warren, Jr., chapter 10.
1492APInt::ms APInt::magic() const {
1493 const APInt& d = *this;
1494 unsigned p;
1495 APInt ad, anc, delta, q1, r1, q2, r2, t;
1496 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1497 struct ms mag;
1498
1499 ad = d.abs();
1500 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1501 anc = t - 1 - t.urem(ad); // absolute value of nc
1502 p = d.getBitWidth() - 1; // initialize p
1503 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1504 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1505 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1506 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1507 do {
1508 p = p + 1;
1509 q1 = q1<<1; // update q1 = 2p/abs(nc)
1510 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1511 if (r1.uge(anc)) { // must be unsigned comparison
1512 q1 = q1 + 1;
1513 r1 = r1 - anc;
1514 }
1515 q2 = q2<<1; // update q2 = 2p/abs(d)
1516 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1517 if (r2.uge(ad)) { // must be unsigned comparison
1518 q2 = q2 + 1;
1519 r2 = r2 - ad;
1520 }
1521 delta = ad - r2;
1522 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1523
1524 mag.m = q2 + 1;
1525 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1526 mag.s = p - d.getBitWidth(); // resulting shift
1527 return mag;
1528}
1529
1530/// Calculate the magic numbers required to implement an unsigned integer
1531/// division by a constant as a sequence of multiplies, adds and shifts.
1532/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1533/// S. Warren, Jr., chapter 10.
1534APInt::mu APInt::magicu() const {
1535 const APInt& d = *this;
1536 unsigned p;
1537 APInt nc, delta, q1, r1, q2, r2;
1538 struct mu magu;
1539 magu.a = 0; // initialize "add" indicator
1540 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1541 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1542 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1543
1544 nc = allOnes - (-d).urem(d);
1545 p = d.getBitWidth() - 1; // initialize p
1546 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1547 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1548 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1549 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1550 do {
1551 p = p + 1;
1552 if (r1.uge(nc - r1)) {
1553 q1 = q1 + q1 + 1; // update q1
1554 r1 = r1 + r1 - nc; // update r1
1555 }
1556 else {
1557 q1 = q1+q1; // update q1
1558 r1 = r1+r1; // update r1
1559 }
1560 if ((r2 + 1).uge(d - r2)) {
1561 if (q2.uge(signedMax)) magu.a = 1;
1562 q2 = q2+q2 + 1; // update q2
1563 r2 = r2+r2 + 1 - d; // update r2
1564 }
1565 else {
1566 if (q2.uge(signedMin)) magu.a = 1;
1567 q2 = q2+q2; // update q2
1568 r2 = r2+r2 + 1; // update r2
1569 }
1570 delta = d - 1 - r2;
1571 } while (p < d.getBitWidth()*2 &&
1572 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1573 magu.m = q2 + 1; // resulting magic number
1574 magu.s = p - d.getBitWidth(); // resulting shift
1575 return magu;
1576}
1577
1578/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1579/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1580/// variables here have the same names as in the algorithm. Comments explain
1581/// the algorithm and any deviation from it.
1582static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1583 unsigned m, unsigned n) {
1584 assert(u && "Must provide dividend");
1585 assert(v && "Must provide divisor");
1586 assert(q && "Must provide quotient");
1587 assert(u != v && u != q && v != q && "Must us different memory");
1588 assert(n>1 && "n must be > 1");
1589
1590 // Knuth uses the value b as the base of the number system. In our case b
1591 // is 2^31 so we just set it to -1u.
1592 uint64_t b = uint64_t(1) << 32;
1593
1594#if 0
1595 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1596 DEBUG(dbgs() << "KnuthDiv: original:");
1597 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1598 DEBUG(dbgs() << " by");
1599 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1600 DEBUG(dbgs() << '\n');
1601#endif
1602 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1603 // u and v by d. Note that we have taken Knuth's advice here to use a power
1604 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1605 // 2 allows us to shift instead of multiply and it is easy to determine the
1606 // shift amount from the leading zeros. We are basically normalizing the u
1607 // and v so that its high bits are shifted to the top of v's range without
1608 // overflow. Note that this can require an extra word in u so that u must
1609 // be of length m+n+1.
1610 unsigned shift = CountLeadingZeros_32(v[n-1]);
1611 unsigned v_carry = 0;
1612 unsigned u_carry = 0;
1613 if (shift) {
1614 for (unsigned i = 0; i < m+n; ++i) {
1615 unsigned u_tmp = u[i] >> (32 - shift);
1616 u[i] = (u[i] << shift) | u_carry;
1617 u_carry = u_tmp;
1618 }
1619 for (unsigned i = 0; i < n; ++i) {
1620 unsigned v_tmp = v[i] >> (32 - shift);
1621 v[i] = (v[i] << shift) | v_carry;
1622 v_carry = v_tmp;
1623 }
1624 }
1625 u[m+n] = u_carry;
1626#if 0
1627 DEBUG(dbgs() << "KnuthDiv: normal:");
1628 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1629 DEBUG(dbgs() << " by");
1630 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1631 DEBUG(dbgs() << '\n');
1632#endif
1633
1634 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1635 int j = m;
1636 do {
1637 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1638 // D3. [Calculate q'.].
1639 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1640 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1641 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1642 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1643 // on v[n-2] determines at high speed most of the cases in which the trial
1644 // value qp is one too large, and it eliminates all cases where qp is two
1645 // too large.
1646 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1647 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1648 uint64_t qp = dividend / v[n-1];
1649 uint64_t rp = dividend % v[n-1];
1650 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1651 qp--;
1652 rp += v[n-1];
1653 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1654 qp--;
1655 }
1656 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1657
1658 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1659 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1660 // consists of a simple multiplication by a one-place number, combined with
1661 // a subtraction.
1662 bool isNeg = false;
1663 for (unsigned i = 0; i < n; ++i) {
1664 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1665 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1666 bool borrow = subtrahend > u_tmp;
1667 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1668 << ", subtrahend == " << subtrahend
1669 << ", borrow = " << borrow << '\n');
1670
1671 uint64_t result = u_tmp - subtrahend;
1672 unsigned k = j + i;
1673 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1674 u[k++] = (unsigned)(result >> 32); // subtract high word
1675 while (borrow && k <= m+n) { // deal with borrow to the left
1676 borrow = u[k] == 0;
1677 u[k]--;
1678 k++;
1679 }
1680 isNeg |= borrow;
1681 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1682 u[j+i+1] << '\n');
1683 }
1684 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1685 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1686 DEBUG(dbgs() << '\n');
1687 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1688 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1689 // true value plus b**(n+1), namely as the b's complement of
1690 // the true value, and a "borrow" to the left should be remembered.
1691 //
1692 if (isNeg) {
1693 bool carry = true; // true because b's complement is "complement + 1"
1694 for (unsigned i = 0; i <= m+n; ++i) {
1695 u[i] = ~u[i] + carry; // b's complement
1696 carry = carry && u[i] == 0;
1697 }
1698 }
1699 DEBUG(dbgs() << "KnuthDiv: after complement:");
1700 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1701 DEBUG(dbgs() << '\n');
1702
1703 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1704 // negative, go to step D6; otherwise go on to step D7.
1705 q[j] = (unsigned)qp;
1706 if (isNeg) {
1707 // D6. [Add back]. The probability that this step is necessary is very
1708 // small, on the order of only 2/b. Make sure that test data accounts for
1709 // this possibility. Decrease q[j] by 1
1710 q[j]--;
1711 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1712 // A carry will occur to the left of u[j+n], and it should be ignored
1713 // since it cancels with the borrow that occurred in D4.
1714 bool carry = false;
1715 for (unsigned i = 0; i < n; i++) {
1716 unsigned limit = std::min(u[j+i],v[i]);
1717 u[j+i] += v[i] + carry;
1718 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1719 }
1720 u[j+n] += carry;
1721 }
1722 DEBUG(dbgs() << "KnuthDiv: after correction:");
1723 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1724 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1725
1726 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1727 } while (--j >= 0);
1728
1729 DEBUG(dbgs() << "KnuthDiv: quotient:");
1730 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1731 DEBUG(dbgs() << '\n');
1732
1733 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1734 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1735 // compute the remainder (urem uses this).
1736 if (r) {
1737 // The value d is expressed by the "shift" value above since we avoided
1738 // multiplication by d by using a shift left. So, all we have to do is
1739 // shift right here. In order to mak
1740 if (shift) {
1741 unsigned carry = 0;
1742 DEBUG(dbgs() << "KnuthDiv: remainder:");
1743 for (int i = n-1; i >= 0; i--) {
1744 r[i] = (u[i] >> shift) | carry;
1745 carry = u[i] << (32 - shift);
1746 DEBUG(dbgs() << " " << r[i]);
1747 }
1748 } else {
1749 for (int i = n-1; i >= 0; i--) {
1750 r[i] = u[i];
1751 DEBUG(dbgs() << " " << r[i]);
1752 }
1753 }
1754 DEBUG(dbgs() << '\n');
1755 }
1756#if 0
1757 DEBUG(dbgs() << '\n');
1758#endif
1759}
1760
1761void APInt::divide(const APInt LHS, unsigned lhsWords,
1762 const APInt &RHS, unsigned rhsWords,
1763 APInt *Quotient, APInt *Remainder)
1764{
1765 assert(lhsWords >= rhsWords && "Fractional result");
1766
1767 // First, compose the values into an array of 32-bit words instead of
1768 // 64-bit words. This is a necessity of both the "short division" algorithm
1769 // and the Knuth "classical algorithm" which requires there to be native
1770 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1771 // can't use 64-bit operands here because we don't have native results of
1772 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1773 // work on large-endian machines.
1774 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1775 unsigned n = rhsWords * 2;
1776 unsigned m = (lhsWords * 2) - n;
1777
1778 // Allocate space for the temporary values we need either on the stack, if
1779 // it will fit, or on the heap if it won't.
1780 unsigned SPACE[128];
1781 unsigned *U = 0;
1782 unsigned *V = 0;
1783 unsigned *Q = 0;
1784 unsigned *R = 0;
1785 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1786 U = &SPACE[0];
1787 V = &SPACE[m+n+1];
1788 Q = &SPACE[(m+n+1) + n];
1789 if (Remainder)
1790 R = &SPACE[(m+n+1) + n + (m+n)];
1791 } else {
1792 U = new unsigned[m + n + 1];
1793 V = new unsigned[n];
1794 Q = new unsigned[m+n];
1795 if (Remainder)
1796 R = new unsigned[n];
1797 }
1798
1799 // Initialize the dividend
1800 memset(U, 0, (m+n+1)*sizeof(unsigned));
1801 for (unsigned i = 0; i < lhsWords; ++i) {
1802 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1803 U[i * 2] = (unsigned)(tmp & mask);
1804 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1805 }
1806 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1807
1808 // Initialize the divisor
1809 memset(V, 0, (n)*sizeof(unsigned));
1810 for (unsigned i = 0; i < rhsWords; ++i) {
1811 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1812 V[i * 2] = (unsigned)(tmp & mask);
1813 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1814 }
1815
1816 // initialize the quotient and remainder
1817 memset(Q, 0, (m+n) * sizeof(unsigned));
1818 if (Remainder)
1819 memset(R, 0, n * sizeof(unsigned));
1820
1821 // Now, adjust m and n for the Knuth division. n is the number of words in
1822 // the divisor. m is the number of words by which the dividend exceeds the
1823 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1824 // contain any zero words or the Knuth algorithm fails.
1825 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1826 n--;
1827 m++;
1828 }
1829 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1830 m--;
1831
1832 // If we're left with only a single word for the divisor, Knuth doesn't work
1833 // so we implement the short division algorithm here. This is much simpler
1834 // and faster because we are certain that we can divide a 64-bit quantity
1835 // by a 32-bit quantity at hardware speed and short division is simply a
1836 // series of such operations. This is just like doing short division but we
1837 // are using base 2^32 instead of base 10.
1838 assert(n != 0 && "Divide by zero?");
1839 if (n == 1) {
1840 unsigned divisor = V[0];
1841 unsigned remainder = 0;
1842 for (int i = m+n-1; i >= 0; i--) {
1843 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1844 if (partial_dividend == 0) {
1845 Q[i] = 0;
1846 remainder = 0;
1847 } else if (partial_dividend < divisor) {
1848 Q[i] = 0;
1849 remainder = (unsigned)partial_dividend;
1850 } else if (partial_dividend == divisor) {
1851 Q[i] = 1;
1852 remainder = 0;
1853 } else {
1854 Q[i] = (unsigned)(partial_dividend / divisor);
1855 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1856 }
1857 }
1858 if (R)
1859 R[0] = remainder;
1860 } else {
1861 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1862 // case n > 1.
1863 KnuthDiv(U, V, Q, R, m, n);
1864 }
1865
1866 // If the caller wants the quotient
1867 if (Quotient) {
1868 // Set up the Quotient value's memory.
1869 if (Quotient->BitWidth != LHS.BitWidth) {
1870 if (Quotient->isSingleWord())
1871 Quotient->VAL = 0;
1872 else
1873 delete [] Quotient->pVal;
1874 Quotient->BitWidth = LHS.BitWidth;
1875 if (!Quotient->isSingleWord())
1876 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1877 } else
1878 Quotient->clear();
1879
1880 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1881 // order words.
1882 if (lhsWords == 1) {
1883 uint64_t tmp =
1884 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1885 if (Quotient->isSingleWord())
1886 Quotient->VAL = tmp;
1887 else
1888 Quotient->pVal[0] = tmp;
1889 } else {
1890 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1891 for (unsigned i = 0; i < lhsWords; ++i)
1892 Quotient->pVal[i] =
1893 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1894 }
1895 }
1896
1897 // If the caller wants the remainder
1898 if (Remainder) {
1899 // Set up the Remainder value's memory.
1900 if (Remainder->BitWidth != RHS.BitWidth) {
1901 if (Remainder->isSingleWord())
1902 Remainder->VAL = 0;
1903 else
1904 delete [] Remainder->pVal;
1905 Remainder->BitWidth = RHS.BitWidth;
1906 if (!Remainder->isSingleWord())
1907 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1908 } else
1909 Remainder->clear();
1910
1911 // The remainder is in R. Reconstitute the remainder into Remainder's low
1912 // order words.
1913 if (rhsWords == 1) {
1914 uint64_t tmp =
1915 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1916 if (Remainder->isSingleWord())
1917 Remainder->VAL = tmp;
1918 else
1919 Remainder->pVal[0] = tmp;
1920 } else {
1921 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1922 for (unsigned i = 0; i < rhsWords; ++i)
1923 Remainder->pVal[i] =
1924 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1925 }
1926 }
1927
1928 // Clean up the memory we allocated.
1929 if (U != &SPACE[0]) {
1930 delete [] U;
1931 delete [] V;
1932 delete [] Q;
1933 delete [] R;
1934 }
1935}
1936
1937APInt APInt::udiv(const APInt& RHS) const {
1938 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1939
1940 // First, deal with the easy case
1941 if (isSingleWord()) {
1942 assert(RHS.VAL != 0 && "Divide by zero?");
1943 return APInt(BitWidth, VAL / RHS.VAL);
1944 }
1945
1946 // Get some facts about the LHS and RHS number of bits and words
1947 unsigned rhsBits = RHS.getActiveBits();
1948 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1949 assert(rhsWords && "Divided by zero???");
1950 unsigned lhsBits = this->getActiveBits();
1951 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1952
1953 // Deal with some degenerate cases
1954 if (!lhsWords)
1955 // 0 / X ===> 0
1956 return APInt(BitWidth, 0);
1957 else if (lhsWords < rhsWords || this->ult(RHS)) {
1958 // X / Y ===> 0, iff X < Y
1959 return APInt(BitWidth, 0);
1960 } else if (*this == RHS) {
1961 // X / X ===> 1
1962 return APInt(BitWidth, 1);
1963 } else if (lhsWords == 1 && rhsWords == 1) {
1964 // All high words are zero, just use native divide
1965 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1966 }
1967
1968 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1969 APInt Quotient(1,0); // to hold result.
1970 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1971 return Quotient;
1972}
1973
1974APInt APInt::urem(const APInt& RHS) const {
1975 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1976 if (isSingleWord()) {
1977 assert(RHS.VAL != 0 && "Remainder by zero?");
1978 return APInt(BitWidth, VAL % RHS.VAL);
1979 }
1980
1981 // Get some facts about the LHS
1982 unsigned lhsBits = getActiveBits();
1983 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1984
1985 // Get some facts about the RHS
1986 unsigned rhsBits = RHS.getActiveBits();
1987 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1988 assert(rhsWords && "Performing remainder operation by zero ???");
1989
1990 // Check the degenerate cases
1991 if (lhsWords == 0) {
1992 // 0 % Y ===> 0
1993 return APInt(BitWidth, 0);
1994 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1995 // X % Y ===> X, iff X < Y
1996 return *this;
1997 } else if (*this == RHS) {
1998 // X % X == 0;
1999 return APInt(BitWidth, 0);
2000 } else if (lhsWords == 1) {
2001 // All high words are zero, just use native remainder
2002 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
2003 }
2004
2005 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
2006 APInt Remainder(1,0);
2007 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2008 return Remainder;
2009}
2010
2011void APInt::udivrem(const APInt &LHS, const APInt &RHS,
2012 APInt &Quotient, APInt &Remainder) {
2013 // Get some size facts about the dividend and divisor
2014 unsigned lhsBits = LHS.getActiveBits();
2015 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2016 unsigned rhsBits = RHS.getActiveBits();
2017 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
2018
2019 // Check the degenerate cases
2020 if (lhsWords == 0) {
2021 Quotient = 0; // 0 / Y ===> 0
2022 Remainder = 0; // 0 % Y ===> 0
2023 return;
2024 }
2025
2026 if (lhsWords < rhsWords || LHS.ult(RHS)) {
2027 Remainder = LHS; // X % Y ===> X, iff X < Y
2028 Quotient = 0; // X / Y ===> 0, iff X < Y
2029 return;
2030 }
2031
2032 if (LHS == RHS) {
2033 Quotient = 1; // X / X ===> 1
2034 Remainder = 0; // X % X ===> 0;
2035 return;
2036 }
2037
2038 if (lhsWords == 1 && rhsWords == 1) {
2039 // There is only one word to consider so use the native versions.
2040 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2041 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2042 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2043 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
2044 return;
2045 }
2046
2047 // Okay, lets do it the long way
2048 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2049}
2050
2051void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
2052 // Check our assumptions here
2053 assert(!str.empty() && "Invalid string length");
2054 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2055 "Radix should be 2, 8, 10, or 16!");
2056
2057 StringRef::iterator p = str.begin();
2058 size_t slen = str.size();
2059 bool isNeg = *p == '-';
2060 if (*p == '-' || *p == '+') {
2061 p++;
2062 slen--;
2063 assert(slen && "String is only a sign, needs a value.");
2064 }
2065 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2066 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2067 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2068 assert((((slen-1)*64)/22 <= numbits || radix != 10)
2069 && "Insufficient bit width");
2070
2071 // Allocate memory
2072 if (!isSingleWord())
2073 pVal = getClearedMemory(getNumWords());
2074
2075 // Figure out if we can shift instead of multiply
2076 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2077
2078 // Set up an APInt for the digit to add outside the loop so we don't
2079 // constantly construct/destruct it.
2080 APInt apdigit(getBitWidth(), 0);
2081 APInt apradix(getBitWidth(), radix);
2082
2083 // Enter digit traversal loop
2084 for (StringRef::iterator e = str.end(); p != e; ++p) {
2085 unsigned digit = getDigit(*p, radix);
2086 assert(digit < radix && "Invalid character in digit string");
2087
2088 // Shift or multiply the value by the radix
2089 if (slen > 1) {
2090 if (shift)
2091 *this <<= shift;
2092 else
2093 *this *= apradix;
2094 }
2095
2096 // Add in the digit we just interpreted
2097 if (apdigit.isSingleWord())
2098 apdigit.VAL = digit;
2099 else
2100 apdigit.pVal[0] = digit;
2101 *this += apdigit;
2102 }
2103 // If its negative, put it in two's complement form
2104 if (isNeg) {
2105 (*this)--;
2106 this->flip();
2107 }
2108}
2109
2110void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2111 bool Signed) const {
2112 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2113 "Radix should be 2, 8, 10, or 16!");
2114
2115 // First, check for a zero value and just short circuit the logic below.
2116 if (*this == 0) {
2117 Str.push_back('0');
2118 return;
2119 }
2120
2121 static const char Digits[] = "0123456789ABCDEF";
2122
2123 if (isSingleWord()) {
2124 char Buffer[65];
2125 char *BufPtr = Buffer+65;
2126
2127 uint64_t N;
2128 if (Signed) {
2129 int64_t I = getSExtValue();
2130 if (I < 0) {
2131 Str.push_back('-');
2132 I = -I;
2133 }
2134 N = I;
2135 } else {
2136 N = getZExtValue();
2137 }
2138
2139 while (N) {
2140 *--BufPtr = Digits[N % Radix];
2141 N /= Radix;
2142 }
2143 Str.append(BufPtr, Buffer+65);
2144 return;
2145 }
2146
2147 APInt Tmp(*this);
2148
2149 if (Signed && isNegative()) {
2150 // They want to print the signed version and it is a negative value
2151 // Flip the bits and add one to turn it into the equivalent positive
2152 // value and put a '-' in the result.
2153 Tmp.flip();
2154 Tmp++;
2155 Str.push_back('-');
2156 }
2157
2158 // We insert the digits backward, then reverse them to get the right order.
2159 unsigned StartDig = Str.size();
2160
2161 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2162 // because the number of bits per digit (1, 3 and 4 respectively) divides
2163 // equaly. We just shift until the value is zero.
2164 if (Radix != 10) {
2165 // Just shift tmp right for each digit width until it becomes zero
2166 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2167 unsigned MaskAmt = Radix - 1;
2168
2169 while (Tmp != 0) {
2170 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2171 Str.push_back(Digits[Digit]);
2172 Tmp = Tmp.lshr(ShiftAmt);
2173 }
2174 } else {
2175 APInt divisor(4, 10);
2176 while (Tmp != 0) {
2177 APInt APdigit(1, 0);
2178 APInt tmp2(Tmp.getBitWidth(), 0);
2179 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2180 &APdigit);
2181 unsigned Digit = (unsigned)APdigit.getZExtValue();
2182 assert(Digit < Radix && "divide failed");
2183 Str.push_back(Digits[Digit]);
2184 Tmp = tmp2;
2185 }
2186 }
2187
2188 // Reverse the digits before returning.
2189 std::reverse(Str.begin()+StartDig, Str.end());
2190}
2191
2192/// toString - This returns the APInt as a std::string. Note that this is an
2193/// inefficient method. It is better to pass in a SmallVector/SmallString
2194/// to the methods above.
2195std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2196 SmallString<40> S;
2197 toString(S, Radix, Signed);
2198 return S.str();
2199}
2200
2201
2202void APInt::dump() const {
2203 SmallString<40> S, U;
2204 this->toStringUnsigned(U);
2205 this->toStringSigned(S);
2206 dbgs() << "APInt(" << BitWidth << "b, "
2207 << U.str() << "u " << S.str() << "s)";
2208}
2209
2210void APInt::print(raw_ostream &OS, bool isSigned) const {
2211 SmallString<40> S;
2212 this->toString(S, 10, isSigned);
2213 OS << S.str();
2214}
2215
2216// This implements a variety of operations on a representation of
2217// arbitrary precision, two's-complement, bignum integer values.
2218
2219// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2220// and unrestricting assumption.
2221#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2222COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2223
2224/* Some handy functions local to this file. */
2225namespace {
2226
2227 /* Returns the integer part with the least significant BITS set.
2228 BITS cannot be zero. */
2229 static inline integerPart
2230 lowBitMask(unsigned int bits)
2231 {
2232 assert (bits != 0 && bits <= integerPartWidth);
2233
2234 return ~(integerPart) 0 >> (integerPartWidth - bits);
2235 }
2236
2237 /* Returns the value of the lower half of PART. */
2238 static inline integerPart
2239 lowHalf(integerPart part)
2240 {
2241 return part & lowBitMask(integerPartWidth / 2);
2242 }
2243
2244 /* Returns the value of the upper half of PART. */
2245 static inline integerPart
2246 highHalf(integerPart part)
2247 {
2248 return part >> (integerPartWidth / 2);
2249 }
2250
2251 /* Returns the bit number of the most significant set bit of a part.
2252 If the input number has no bits set -1U is returned. */
2253 static unsigned int
2254 partMSB(integerPart value)
2255 {
2256 unsigned int n, msb;
2257
2258 if (value == 0)
2259 return -1U;
2260
2261 n = integerPartWidth / 2;
2262
2263 msb = 0;
2264 do {
2265 if (value >> n) {
2266 value >>= n;
2267 msb += n;
2268 }
2269
2270 n >>= 1;
2271 } while (n);
2272
2273 return msb;
2274 }
2275
2276 /* Returns the bit number of the least significant set bit of a
2277 part. If the input number has no bits set -1U is returned. */
2278 static unsigned int
2279 partLSB(integerPart value)
2280 {
2281 unsigned int n, lsb;
2282
2283 if (value == 0)
2284 return -1U;
2285
2286 lsb = integerPartWidth - 1;
2287 n = integerPartWidth / 2;
2288
2289 do {
2290 if (value << n) {
2291 value <<= n;
2292 lsb -= n;
2293 }
2294
2295 n >>= 1;
2296 } while (n);
2297
2298 return lsb;
2299 }
2300}
2301
2302/* Sets the least significant part of a bignum to the input value, and
2303 zeroes out higher parts. */
2304void
2305APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2306{
2307 unsigned int i;
2308
2309 assert (parts > 0);
2310
2311 dst[0] = part;
2312 for(i = 1; i < parts; i++)
2313 dst[i] = 0;
2314}
2315
2316/* Assign one bignum to another. */
2317void
2318APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2319{
2320 unsigned int i;
2321
2322 for(i = 0; i < parts; i++)
2323 dst[i] = src[i];
2324}
2325
2326/* Returns true if a bignum is zero, false otherwise. */
2327bool
2328APInt::tcIsZero(const integerPart *src, unsigned int parts)
2329{
2330 unsigned int i;
2331
2332 for(i = 0; i < parts; i++)
2333 if (src[i])
2334 return false;
2335
2336 return true;
2337}
2338
2339/* Extract the given bit of a bignum; returns 0 or 1. */
2340int
2341APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2342{
2343 return(parts[bit / integerPartWidth]
2344 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2345}
2346
2347/* Set the given bit of a bignum. */
2348void
2349APInt::tcSetBit(integerPart *parts, unsigned int bit)
2350{
2351 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2352}
2353
2354/* Returns the bit number of the least significant set bit of a
2355 number. If the input number has no bits set -1U is returned. */
2356unsigned int
2357APInt::tcLSB(const integerPart *parts, unsigned int n)
2358{
2359 unsigned int i, lsb;
2360
2361 for(i = 0; i < n; i++) {
2362 if (parts[i] != 0) {
2363 lsb = partLSB(parts[i]);
2364
2365 return lsb + i * integerPartWidth;
2366 }
2367 }
2368
2369 return -1U;
2370}
2371
2372/* Returns the bit number of the most significant set bit of a number.
2373 If the input number has no bits set -1U is returned. */
2374unsigned int
2375APInt::tcMSB(const integerPart *parts, unsigned int n)
2376{
2377 unsigned int msb;
2378
2379 do {
2380 --n;
2381
2382 if (parts[n] != 0) {
2383 msb = partMSB(parts[n]);
2384
2385 return msb + n * integerPartWidth;
2386 }
2387 } while (n);
2388
2389 return -1U;
2390}
2391
2392/* Copy the bit vector of width srcBITS from SRC, starting at bit
2393 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2394 the least significant bit of DST. All high bits above srcBITS in
2395 DST are zero-filled. */
2396void
2397APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2398 unsigned int srcBits, unsigned int srcLSB)
2399{
2400 unsigned int firstSrcPart, dstParts, shift, n;
2401
2402 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2403 assert (dstParts <= dstCount);
2404
2405 firstSrcPart = srcLSB / integerPartWidth;
2406 tcAssign (dst, src + firstSrcPart, dstParts);
2407
2408 shift = srcLSB % integerPartWidth;
2409 tcShiftRight (dst, dstParts, shift);
2410
2411 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2412 in DST. If this is less that srcBits, append the rest, else
2413 clear the high bits. */
2414 n = dstParts * integerPartWidth - shift;
2415 if (n < srcBits) {
2416 integerPart mask = lowBitMask (srcBits - n);
2417 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2418 << n % integerPartWidth);
2419 } else if (n > srcBits) {
2420 if (srcBits % integerPartWidth)
2421 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2422 }
2423
2424 /* Clear high parts. */
2425 while (dstParts < dstCount)
2426 dst[dstParts++] = 0;
2427}
2428
2429/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2430integerPart
2431APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2432 integerPart c, unsigned int parts)
2433{
2434 unsigned int i;
2435
2436 assert(c <= 1);
2437
2438 for(i = 0; i < parts; i++) {
2439 integerPart l;
2440
2441 l = dst[i];
2442 if (c) {
2443 dst[i] += rhs[i] + 1;
2444 c = (dst[i] <= l);
2445 } else {
2446 dst[i] += rhs[i];
2447 c = (dst[i] < l);
2448 }
2449 }
2450
2451 return c;
2452}
2453
2454/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2455integerPart
2456APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2457 integerPart c, unsigned int parts)
2458{
2459 unsigned int i;
2460
2461 assert(c <= 1);
2462
2463 for(i = 0; i < parts; i++) {
2464 integerPart l;
2465
2466 l = dst[i];
2467 if (c) {
2468 dst[i] -= rhs[i] + 1;
2469 c = (dst[i] >= l);
2470 } else {
2471 dst[i] -= rhs[i];
2472 c = (dst[i] > l);
2473 }
2474 }
2475
2476 return c;
2477}
2478
2479/* Negate a bignum in-place. */
2480void
2481APInt::tcNegate(integerPart *dst, unsigned int parts)
2482{
2483 tcComplement(dst, parts);
2484 tcIncrement(dst, parts);
2485}
2486
2487/* DST += SRC * MULTIPLIER + CARRY if add is true
2488 DST = SRC * MULTIPLIER + CARRY if add is false
2489
2490 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2491 they must start at the same point, i.e. DST == SRC.
2492
2493 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2494 returned. Otherwise DST is filled with the least significant
2495 DSTPARTS parts of the result, and if all of the omitted higher
2496 parts were zero return zero, otherwise overflow occurred and
2497 return one. */
2498int
2499APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2500 integerPart multiplier, integerPart carry,
2501 unsigned int srcParts, unsigned int dstParts,
2502 bool add)
2503{
2504 unsigned int i, n;
2505
2506 /* Otherwise our writes of DST kill our later reads of SRC. */
2507 assert(dst <= src || dst >= src + srcParts);
2508 assert(dstParts <= srcParts + 1);
2509
2510 /* N loops; minimum of dstParts and srcParts. */
2511 n = dstParts < srcParts ? dstParts: srcParts;
2512
2513 for(i = 0; i < n; i++) {
2514 integerPart low, mid, high, srcPart;
2515
2516 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2517
2518 This cannot overflow, because
2519
2520 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2521
2522 which is less than n^2. */
2523
2524 srcPart = src[i];
2525
2526 if (multiplier == 0 || srcPart == 0) {
2527 low = carry;
2528 high = 0;
2529 } else {
2530 low = lowHalf(srcPart) * lowHalf(multiplier);
2531 high = highHalf(srcPart) * highHalf(multiplier);
2532
2533 mid = lowHalf(srcPart) * highHalf(multiplier);
2534 high += highHalf(mid);
2535 mid <<= integerPartWidth / 2;
2536 if (low + mid < low)
2537 high++;
2538 low += mid;
2539
2540 mid = highHalf(srcPart) * lowHalf(multiplier);
2541 high += highHalf(mid);
2542 mid <<= integerPartWidth / 2;
2543 if (low + mid < low)
2544 high++;
2545 low += mid;
2546
2547 /* Now add carry. */
2548 if (low + carry < low)
2549 high++;
2550 low += carry;
2551 }
2552
2553 if (add) {
2554 /* And now DST[i], and store the new low part there. */
2555 if (low + dst[i] < low)
2556 high++;
2557 dst[i] += low;
2558 } else
2559 dst[i] = low;
2560
2561 carry = high;
2562 }
2563
2564 if (i < dstParts) {
2565 /* Full multiplication, there is no overflow. */
2566 assert(i + 1 == dstParts);
2567 dst[i] = carry;
2568 return 0;
2569 } else {
2570 /* We overflowed if there is carry. */
2571 if (carry)
2572 return 1;
2573
2574 /* We would overflow if any significant unwritten parts would be
2575 non-zero. This is true if any remaining src parts are non-zero
2576 and the multiplier is non-zero. */
2577 if (multiplier)
2578 for(; i < srcParts; i++)
2579 if (src[i])
2580 return 1;
2581
2582 /* We fitted in the narrow destination. */
2583 return 0;
2584 }
2585}
2586
2587/* DST = LHS * RHS, where DST has the same width as the operands and
2588 is filled with the least significant parts of the result. Returns
2589 one if overflow occurred, otherwise zero. DST must be disjoint
2590 from both operands. */
2591int
2592APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2593 const integerPart *rhs, unsigned int parts)
2594{
2595 unsigned int i;
2596 int overflow;
2597
2598 assert(dst != lhs && dst != rhs);
2599
2600 overflow = 0;
2601 tcSet(dst, 0, parts);
2602
2603 for(i = 0; i < parts; i++)
2604 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2605 parts - i, true);
2606
2607 return overflow;
2608}
2609
2610/* DST = LHS * RHS, where DST has width the sum of the widths of the
2611 operands. No overflow occurs. DST must be disjoint from both
2612 operands. Returns the number of parts required to hold the
2613 result. */
2614unsigned int
2615APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2616 const integerPart *rhs, unsigned int lhsParts,
2617 unsigned int rhsParts)
2618{
2619 /* Put the narrower number on the LHS for less loops below. */
2620 if (lhsParts > rhsParts) {
2621 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2622 } else {
2623 unsigned int n;
2624
2625 assert(dst != lhs && dst != rhs);
2626
2627 tcSet(dst, 0, rhsParts);
2628
2629 for(n = 0; n < lhsParts; n++)
2630 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2631
2632 n = lhsParts + rhsParts;
2633
2634 return n - (dst[n - 1] == 0);
2635 }
2636}
2637
2638/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2639 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2640 set REMAINDER to the remainder, return zero. i.e.
2641
2642 OLD_LHS = RHS * LHS + REMAINDER
2643
2644 SCRATCH is a bignum of the same size as the operands and result for
2645 use by the routine; its contents need not be initialized and are
2646 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2647*/
2648int
2649APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2650 integerPart *remainder, integerPart *srhs,
2651 unsigned int parts)
2652{
2653 unsigned int n, shiftCount;
2654 integerPart mask;
2655
2656 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2657
2658 shiftCount = tcMSB(rhs, parts) + 1;
2659 if (shiftCount == 0)
2660 return true;
2661
2662 shiftCount = parts * integerPartWidth - shiftCount;
2663 n = shiftCount / integerPartWidth;
2664 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2665
2666 tcAssign(srhs, rhs, parts);
2667 tcShiftLeft(srhs, parts, shiftCount);
2668 tcAssign(remainder, lhs, parts);
2669 tcSet(lhs, 0, parts);
2670
2671 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2672 the total. */
2673 for(;;) {
2674 int compare;
2675
2676 compare = tcCompare(remainder, srhs, parts);
2677 if (compare >= 0) {
2678 tcSubtract(remainder, srhs, 0, parts);
2679 lhs[n] |= mask;
2680 }
2681
2682 if (shiftCount == 0)
2683 break;
2684 shiftCount--;
2685 tcShiftRight(srhs, parts, 1);
2686 if ((mask >>= 1) == 0)
2687 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2688 }
2689
2690 return false;
2691}
2692
2693/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2694 There are no restrictions on COUNT. */
2695void
2696APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2697{
2698 if (count) {
2699 unsigned int jump, shift;
2700
2701 /* Jump is the inter-part jump; shift is is intra-part shift. */
2702 jump = count / integerPartWidth;
2703 shift = count % integerPartWidth;
2704
2705 while (parts > jump) {
2706 integerPart part;
2707
2708 parts--;
2709
2710 /* dst[i] comes from the two parts src[i - jump] and, if we have
2711 an intra-part shift, src[i - jump - 1]. */
2712 part = dst[parts - jump];
2713 if (shift) {
2714 part <<= shift;
2715 if (parts >= jump + 1)
2716 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2717 }
2718
2719 dst[parts] = part;
2720 }
2721
2722 while (parts > 0)
2723 dst[--parts] = 0;
2724 }
2725}
2726
2727/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2728 zero. There are no restrictions on COUNT. */
2729void
2730APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2731{
2732 if (count) {
2733 unsigned int i, jump, shift;
2734
2735 /* Jump is the inter-part jump; shift is is intra-part shift. */
2736 jump = count / integerPartWidth;
2737 shift = count % integerPartWidth;
2738
2739 /* Perform the shift. This leaves the most significant COUNT bits
2740 of the result at zero. */
2741 for(i = 0; i < parts; i++) {
2742 integerPart part;
2743
2744 if (i + jump >= parts) {
2745 part = 0;
2746 } else {
2747 part = dst[i + jump];
2748 if (shift) {
2749 part >>= shift;
2750 if (i + jump + 1 < parts)
2751 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2752 }
2753 }
2754
2755 dst[i] = part;
2756 }
2757 }
2758}
2759
2760/* Bitwise and of two bignums. */
2761void
2762APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2763{
2764 unsigned int i;
2765
2766 for(i = 0; i < parts; i++)
2767 dst[i] &= rhs[i];
2768}
2769
2770/* Bitwise inclusive or of two bignums. */
2771void
2772APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2773{
2774 unsigned int i;
2775
2776 for(i = 0; i < parts; i++)
2777 dst[i] |= rhs[i];
2778}
2779
2780/* Bitwise exclusive or of two bignums. */
2781void
2782APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2783{
2784 unsigned int i;
2785
2786 for(i = 0; i < parts; i++)
2787 dst[i] ^= rhs[i];
2788}
2789
2790/* Complement a bignum in-place. */
2791void
2792APInt::tcComplement(integerPart *dst, unsigned int parts)
2793{
2794 unsigned int i;
2795
2796 for(i = 0; i < parts; i++)
2797 dst[i] = ~dst[i];
2798}
2799
2800/* Comparison (unsigned) of two bignums. */
2801int
2802APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2803 unsigned int parts)
2804{
2805 while (parts) {
2806 parts--;
2807 if (lhs[parts] == rhs[parts])
2808 continue;
2809
2810 if (lhs[parts] > rhs[parts])
2811 return 1;
2812 else
2813 return -1;
2814 }
2815
2816 return 0;
2817}
2818
2819/* Increment a bignum in-place, return the carry flag. */
2820integerPart
2821APInt::tcIncrement(integerPart *dst, unsigned int parts)
2822{
2823 unsigned int i;
2824
2825 for(i = 0; i < parts; i++)
2826 if (++dst[i] != 0)
2827 break;
2828
2829 return i == parts;
2830}
2831
2832/* Set the least significant BITS bits of a bignum, clear the
2833 rest. */
2834void
2835APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2836 unsigned int bits)
2837{
2838 unsigned int i;
2839
2840 i = 0;
2841 while (bits > integerPartWidth) {
2842 dst[i++] = ~(integerPart) 0;
2843 bits -= integerPartWidth;
2844 }
2845
2846 if (bits)
2847 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2848
2849 while (i < parts)
2850 dst[i++] = 0;
2851}