Chris Lattner | da272d1 | 2010-02-15 08:04:42 +0000 | [diff] [blame] | 1 | //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "DAGISelMatcher.h" |
| 11 | #include "CodeGenDAGPatterns.h" |
| 12 | #include "Record.h" |
| 13 | #include "llvm/ADT/StringMap.h" |
| 14 | using namespace llvm; |
| 15 | |
| 16 | namespace { |
| 17 | class MatcherGen { |
| 18 | const PatternToMatch &Pattern; |
| 19 | const CodeGenDAGPatterns &CGP; |
| 20 | |
| 21 | /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts |
| 22 | /// out with all of the types removed. This allows us to insert type checks |
| 23 | /// as we scan the tree. |
| 24 | TreePatternNode *PatWithNoTypes; |
| 25 | |
| 26 | /// VariableMap - A map from variable names ('$dst') to the recorded operand |
| 27 | /// number that they were captured as. These are biased by 1 to make |
| 28 | /// insertion easier. |
| 29 | StringMap<unsigned> VariableMap; |
| 30 | unsigned NextRecordedOperandNo; |
| 31 | |
| 32 | MatcherNodeWithChild *Matcher; |
| 33 | MatcherNodeWithChild *CurPredicate; |
| 34 | public: |
| 35 | MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); |
| 36 | |
| 37 | ~MatcherGen() { |
| 38 | delete PatWithNoTypes; |
| 39 | } |
| 40 | |
| 41 | void EmitMatcherCode(); |
| 42 | |
| 43 | MatcherNodeWithChild *GetMatcher() const { return Matcher; } |
| 44 | MatcherNodeWithChild *GetCurPredicate() const { return CurPredicate; } |
| 45 | private: |
| 46 | void AddMatcherNode(MatcherNodeWithChild *NewNode); |
| 47 | void InferPossibleTypes(); |
| 48 | void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); |
| 49 | void EmitLeafMatchCode(const TreePatternNode *N); |
| 50 | void EmitOperatorMatchCode(const TreePatternNode *N, |
| 51 | TreePatternNode *NodeNoTypes); |
| 52 | }; |
| 53 | |
| 54 | } // end anon namespace. |
| 55 | |
| 56 | MatcherGen::MatcherGen(const PatternToMatch &pattern, |
| 57 | const CodeGenDAGPatterns &cgp) |
| 58 | : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), |
| 59 | Matcher(0), CurPredicate(0) { |
| 60 | // We need to produce the matcher tree for the patterns source pattern. To do |
| 61 | // this we need to match the structure as well as the types. To do the type |
| 62 | // matching, we want to figure out the fewest number of type checks we need to |
| 63 | // emit. For example, if there is only one integer type supported by a |
| 64 | // target, there should be no type comparisons at all for integer patterns! |
| 65 | // |
| 66 | // To figure out the fewest number of type checks needed, clone the pattern, |
| 67 | // remove the types, then perform type inference on the pattern as a whole. |
| 68 | // If there are unresolved types, emit an explicit check for those types, |
| 69 | // apply the type to the tree, then rerun type inference. Iterate until all |
| 70 | // types are resolved. |
| 71 | // |
| 72 | PatWithNoTypes = Pattern.getSrcPattern()->clone(); |
| 73 | PatWithNoTypes->RemoveAllTypes(); |
| 74 | |
| 75 | // If there are types that are manifestly known, infer them. |
| 76 | InferPossibleTypes(); |
| 77 | } |
| 78 | |
| 79 | /// InferPossibleTypes - As we emit the pattern, we end up generating type |
| 80 | /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we |
| 81 | /// want to propagate implied types as far throughout the tree as possible so |
| 82 | /// that we avoid doing redundant type checks. This does the type propagation. |
| 83 | void MatcherGen::InferPossibleTypes() { |
| 84 | // TP - Get *SOME* tree pattern, we don't care which. It is only used for |
| 85 | // diagnostics, which we know are impossible at this point. |
| 86 | TreePattern &TP = *CGP.pf_begin()->second; |
| 87 | |
| 88 | try { |
| 89 | bool MadeChange = true; |
| 90 | while (MadeChange) |
| 91 | MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, |
| 92 | true/*Ignore reg constraints*/); |
| 93 | } catch (...) { |
| 94 | errs() << "Type constraint application shouldn't fail!"; |
| 95 | abort(); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | |
| 100 | /// AddMatcherNode - Add a matcher node to the current graph we're building. |
| 101 | void MatcherGen::AddMatcherNode(MatcherNodeWithChild *NewNode) { |
| 102 | if (CurPredicate != 0) |
| 103 | CurPredicate->setChild(NewNode); |
| 104 | else |
| 105 | Matcher = NewNode; |
| 106 | CurPredicate = NewNode; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | |
| 111 | /// EmitLeafMatchCode - Generate matching code for leaf nodes. |
| 112 | void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { |
| 113 | assert(N->isLeaf() && "Not a leaf?"); |
| 114 | // Direct match against an integer constant. |
| 115 | if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) |
| 116 | return AddMatcherNode(new CheckIntegerMatcherNode(II->getValue())); |
| 117 | |
| 118 | DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue()); |
| 119 | if (DI == 0) { |
| 120 | errs() << "Unknown leaf kind: " << *DI << "\n"; |
| 121 | abort(); |
| 122 | } |
| 123 | |
| 124 | Record *LeafRec = DI->getDef(); |
| 125 | if (// Handle register references. Nothing to do here, they always match. |
| 126 | LeafRec->isSubClassOf("RegisterClass") || |
| 127 | LeafRec->isSubClassOf("PointerLikeRegClass") || |
| 128 | LeafRec->isSubClassOf("Register") || |
| 129 | // Place holder for SRCVALUE nodes. Nothing to do here. |
| 130 | LeafRec->getName() == "srcvalue") |
| 131 | return; |
| 132 | |
| 133 | if (LeafRec->isSubClassOf("ValueType")) |
| 134 | return AddMatcherNode(new CheckValueTypeMatcherNode(LeafRec->getName())); |
| 135 | |
| 136 | if (LeafRec->isSubClassOf("CondCode")) |
| 137 | return AddMatcherNode(new CheckCondCodeMatcherNode(LeafRec->getName())); |
| 138 | |
| 139 | if (LeafRec->isSubClassOf("ComplexPattern")) { |
| 140 | // Handle complex pattern. |
| 141 | const ComplexPattern &CP = CGP.getComplexPattern(LeafRec); |
| 142 | return AddMatcherNode(new CheckComplexPatMatcherNode(CP)); |
| 143 | } |
| 144 | |
| 145 | errs() << "Unknown leaf kind: " << *N << "\n"; |
| 146 | abort(); |
| 147 | } |
| 148 | |
| 149 | void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, |
| 150 | TreePatternNode *NodeNoTypes) { |
| 151 | assert(!N->isLeaf() && "Not an operator?"); |
| 152 | const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); |
| 153 | |
| 154 | // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is |
| 155 | // a constant without a predicate fn that has more that one bit set, handle |
| 156 | // this as a special case. This is usually for targets that have special |
| 157 | // handling of certain large constants (e.g. alpha with it's 8/16/32-bit |
| 158 | // handling stuff). Using these instructions is often far more efficient |
| 159 | // than materializing the constant. Unfortunately, both the instcombiner |
| 160 | // and the dag combiner can often infer that bits are dead, and thus drop |
| 161 | // them from the mask in the dag. For example, it might turn 'AND X, 255' |
| 162 | // into 'AND X, 254' if it knows the low bit is set. Emit code that checks |
| 163 | // to handle this. |
| 164 | if ((N->getOperator()->getName() == "and" || |
| 165 | N->getOperator()->getName() == "or") && |
| 166 | N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty()) { |
| 167 | if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { |
| 168 | if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. |
| 169 | if (N->getOperator()->getName() == "and") |
| 170 | AddMatcherNode(new CheckAndImmMatcherNode(II->getValue())); |
| 171 | else |
| 172 | AddMatcherNode(new CheckOrImmMatcherNode(II->getValue())); |
| 173 | |
| 174 | // Match the LHS of the AND as appropriate. |
| 175 | AddMatcherNode(new MoveChildMatcherNode(0)); |
| 176 | EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); |
| 177 | AddMatcherNode(new MoveParentMatcherNode()); |
| 178 | return; |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | // Check that the current opcode lines up. |
| 184 | AddMatcherNode(new CheckOpcodeMatcherNode(CInfo.getEnumName())); |
| 185 | |
| 186 | // If this node has a chain, then the chain is operand #0 is the SDNode, and |
| 187 | // the child numbers of the node are all offset by one. |
| 188 | unsigned OpNo = 0; |
| 189 | if (N->NodeHasProperty(SDNPHasChain, CGP)) |
| 190 | OpNo = 1; |
| 191 | |
Chris Lattner | e39650a | 2010-02-16 06:10:58 +0000 | [diff] [blame^] | 192 | // If this node is not the root and the subtree underneath it produces a |
| 193 | // chain, then the result of matching the node is also produce a chain. |
| 194 | // Beyond that, this means that we're also folding (at least) the root node |
| 195 | // into the node that produce the chain (for example, matching |
| 196 | // "(add reg, (load ptr))" as a add_with_memory on X86). This is problematic, |
| 197 | // if the 'reg' node also uses the load (say, its chain). Graphically: |
| 198 | // |
| 199 | // [LD] |
| 200 | // ^ ^ |
| 201 | // | \ DAG's like cheese. |
| 202 | // / | |
| 203 | // / [YY] |
| 204 | // | ^ |
| 205 | // [XX]--/ |
| 206 | // |
| 207 | // It would be invalid to fold XX and LD. In this case, folding the two |
| 208 | // nodes together would induce a cycle in the DAG, making it a cyclic DAG (!). |
| 209 | // To prevent this, we emit a dynamic check for legality before allowing this |
| 210 | // to be folded. |
| 211 | // |
| 212 | const TreePatternNode *Root = Pattern.getSrcPattern(); |
| 213 | if (N != Root && // Not the root of the pattern. |
| 214 | N->TreeHasProperty(SDNPHasChain, CGP)) { // Has a chain somewhere in tree. |
| 215 | |
| 216 | AddMatcherNode(new CheckProfitableToFoldMatcherNode()); |
| 217 | |
| 218 | // If this non-root node produces a chain, we may need to emit a validity |
| 219 | // check. |
| 220 | if (OpNo != 0) { |
| 221 | // If there is a node between the root and this node, then we definitely |
| 222 | // need to emit the check. |
| 223 | bool NeedCheck = !Root->hasChild(N); |
| 224 | |
| 225 | // If it *is* an immediate child of the root, we can still need a check if |
| 226 | // the root SDNode has multiple inputs. For us, this means that it is an |
| 227 | // intrinsic, has multiple operands, or has other inputs like chain or |
| 228 | // flag). |
| 229 | if (!NeedCheck) { |
| 230 | const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); |
| 231 | NeedCheck = |
| 232 | Root->getOperator() == CGP.get_intrinsic_void_sdnode() || |
| 233 | Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || |
| 234 | Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || |
| 235 | PInfo.getNumOperands() > 1 || |
| 236 | PInfo.hasProperty(SDNPHasChain) || |
| 237 | PInfo.hasProperty(SDNPInFlag) || |
| 238 | PInfo.hasProperty(SDNPOptInFlag); |
| 239 | } |
| 240 | |
| 241 | if (NeedCheck) |
| 242 | AddMatcherNode(new CheckLegalToFoldMatcherNode()); |
| 243 | } |
Chris Lattner | da272d1 | 2010-02-15 08:04:42 +0000 | [diff] [blame] | 244 | } |
| 245 | |
Chris Lattner | e39650a | 2010-02-16 06:10:58 +0000 | [diff] [blame^] | 246 | // FIXME: Handle EmittedUseCheck & Flags & .hasOneUse() |
Chris Lattner | da272d1 | 2010-02-15 08:04:42 +0000 | [diff] [blame] | 247 | |
| 248 | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| 249 | // Get the code suitable for matching this child. Move to the child, check |
| 250 | // it then move back to the parent. |
| 251 | AddMatcherNode(new MoveChildMatcherNode(i)); |
| 252 | EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); |
| 253 | AddMatcherNode(new MoveParentMatcherNode()); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | |
| 258 | void MatcherGen::EmitMatchCode(const TreePatternNode *N, |
| 259 | TreePatternNode *NodeNoTypes) { |
| 260 | // If N and NodeNoTypes don't agree on a type, then this is a case where we |
| 261 | // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and |
| 262 | // reinfer any correlated types. |
| 263 | if (NodeNoTypes->getExtTypes() != N->getExtTypes()) { |
| 264 | AddMatcherNode(new CheckTypeMatcherNode(N->getTypeNum(0))); |
| 265 | NodeNoTypes->setTypes(N->getExtTypes()); |
| 266 | InferPossibleTypes(); |
| 267 | } |
| 268 | |
| 269 | |
| 270 | // If this node has a name associated with it, capture it in VariableMap. If |
| 271 | // we already saw this in the pattern, emit code to verify dagness. |
| 272 | if (!N->getName().empty()) { |
| 273 | unsigned &VarMapEntry = VariableMap[N->getName()]; |
| 274 | if (VarMapEntry == 0) { |
| 275 | VarMapEntry = ++NextRecordedOperandNo; |
| 276 | AddMatcherNode(new RecordMatcherNode()); |
| 277 | } else { |
| 278 | // If we get here, this is a second reference to a specific name. Since |
| 279 | // we already have checked that the first reference is valid, we don't |
| 280 | // have to recursively match it, just check that it's the same as the |
| 281 | // previously named thing. |
| 282 | AddMatcherNode(new CheckSameMatcherNode(VarMapEntry-1)); |
| 283 | return; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | // If there are node predicates for this node, generate their checks. |
| 288 | for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) |
| 289 | AddMatcherNode(new CheckPredicateMatcherNode(N->getPredicateFns()[i])); |
| 290 | |
| 291 | if (N->isLeaf()) |
| 292 | EmitLeafMatchCode(N); |
| 293 | else |
| 294 | EmitOperatorMatchCode(N, NodeNoTypes); |
| 295 | } |
| 296 | |
| 297 | void MatcherGen::EmitMatcherCode() { |
| 298 | // If the pattern has a predicate on it (e.g. only enabled when a subtarget |
| 299 | // feature is around, do the check). |
| 300 | if (!Pattern.getPredicateCheck().empty()) |
| 301 | AddMatcherNode(new |
| 302 | CheckPatternPredicateMatcherNode(Pattern.getPredicateCheck())); |
| 303 | |
| 304 | // Emit the matcher for the pattern structure and types. |
| 305 | EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); |
| 306 | } |
| 307 | |
| 308 | |
| 309 | MatcherNode *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, |
| 310 | const CodeGenDAGPatterns &CGP) { |
| 311 | MatcherGen Gen(Pattern, CGP); |
| 312 | |
| 313 | // Generate the code for the matcher. |
| 314 | Gen.EmitMatcherCode(); |
| 315 | |
| 316 | // If the match succeeds, then we generate Pattern. |
| 317 | EmitNodeMatcherNode *Result = new EmitNodeMatcherNode(Pattern); |
| 318 | |
| 319 | // Link it into the pattern. |
| 320 | if (MatcherNodeWithChild *Pred = Gen.GetCurPredicate()) { |
| 321 | Pred->setChild(Result); |
| 322 | return Gen.GetMatcher(); |
| 323 | } |
| 324 | |
| 325 | // Unconditional match. |
| 326 | return Result; |
| 327 | } |
| 328 | |
| 329 | |
| 330 | |