Chris Lattner | e6c9104 | 2007-10-22 06:34:15 +0000 | [diff] [blame^] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | |
| 4 | <html> |
| 5 | <head> |
| 6 | <title>Kaleidoscope: Implementing a Parser and AST</title> |
| 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 8 | <meta name="author" content="Chris Lattner"> |
| 9 | <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| 10 | </head> |
| 11 | |
| 12 | <body> |
| 13 | |
| 14 | <div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div> |
| 15 | |
| 16 | <div class="doc_author"> |
| 17 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 18 | </div> |
| 19 | |
| 20 | <!-- *********************************************************************** --> |
| 21 | <div class="doc_section"><a name="intro">Part 2 Introduction</a></div> |
| 22 | <!-- *********************************************************************** --> |
| 23 | |
| 24 | <div class="doc_text"> |
| 25 | |
| 26 | <p>Welcome to part 2 of the "<a href="index.html">Implementing a language with |
| 27 | LLVM</a>" tutorial. This chapter shows you how to use the <a |
| 28 | href="LangImpl1.html">Lexer built in Chapter 1</a> to build a full <a |
| 29 | href="http://en.wikipedia.org/wiki/Parsing">parser</a> for |
| 30 | our Kaleidoscope language and build an <a |
| 31 | href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax |
| 32 | Tree</a> (AST).</p> |
| 33 | |
| 34 | <p>The parser we will build uses a combination of <a |
| 35 | href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent |
| 36 | Parsing</a> and <a href= |
| 37 | "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence |
| 38 | Parsing</a> to parse the Kaleidoscope language (the later for binary expression |
| 39 | and the former for everything else). Before we get to parsing though, lets talk |
| 40 | about the output of the parser: the Abstract Syntax Tree.</p> |
| 41 | |
| 42 | </div> |
| 43 | |
| 44 | <!-- *********************************************************************** --> |
| 45 | <div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div> |
| 46 | <!-- *********************************************************************** --> |
| 47 | |
| 48 | <div class="doc_text"> |
| 49 | |
| 50 | <p>The AST for a program captures its behavior in a way that it is easy for |
| 51 | later stages of the compiler (e.g. code generation) to interpret. We basically |
| 52 | want one object for each construct in the language, and the AST should closely |
| 53 | model the language. In Kaleidoscope, we have expressions, a prototype, and a |
| 54 | function object. We'll start with expressions first:</p> |
| 55 | |
| 56 | <div class="doc_code"> |
| 57 | <pre> |
| 58 | /// ExprAST - Base class for all expression nodes. |
| 59 | class ExprAST { |
| 60 | public: |
| 61 | virtual ~ExprAST() {} |
| 62 | }; |
| 63 | |
| 64 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 65 | class NumberExprAST : public ExprAST { |
| 66 | double Val; |
| 67 | public: |
| 68 | NumberExprAST(double val) : Val(val) {} |
| 69 | }; |
| 70 | </pre> |
| 71 | </div> |
| 72 | |
| 73 | <p>The code above shows the definition of the base ExprAST class and one |
| 74 | subclass which we use for numeric literals. The important thing about this is |
| 75 | that the NumberExprAST class captures the numeric value of the literal in the |
| 76 | class, so that later phases of the compiler can know what it is.</p> |
| 77 | |
| 78 | <p>Right now we only create the AST, so there are no useful accessor methods on |
| 79 | them. It would be very easy to add a virtual method to pretty print the code, |
| 80 | for example. Here are the other expression AST node definitions that we'll use |
| 81 | in the basic form of the Kaleidoscope language. |
| 82 | </p> |
| 83 | |
| 84 | <div class="doc_code"> |
| 85 | <pre> |
| 86 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 87 | class VariableExprAST : public ExprAST { |
| 88 | std::string Name; |
| 89 | public: |
| 90 | VariableExprAST(const std::string &name) : Name(name) {} |
| 91 | }; |
| 92 | |
| 93 | /// BinaryExprAST - Expression class for a binary operator. |
| 94 | class BinaryExprAST : public ExprAST { |
| 95 | char Op; |
| 96 | ExprAST *LHS, *RHS; |
| 97 | public: |
| 98 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 99 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 100 | }; |
| 101 | |
| 102 | /// CallExprAST - Expression class for function calls. |
| 103 | class CallExprAST : public ExprAST { |
| 104 | std::string Callee; |
| 105 | std::vector<ExprAST*> Args; |
| 106 | public: |
| 107 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 108 | : Callee(callee), Args(args) {} |
| 109 | }; |
| 110 | </pre> |
| 111 | </div> |
| 112 | |
| 113 | <p>This is all (intentially) rather straight-forward: variables capture the |
| 114 | variable name, binary operators capture their opcode (e.g. '+'), and calls |
| 115 | capture a function name and list of argument expressions. One thing that is |
| 116 | nice about our AST is that it captures the language features without talking |
| 117 | about the syntax of the language. Note that there is no discussion about |
| 118 | precedence of binary operators, lexical structure etc.</p> |
| 119 | |
| 120 | <p>For our basic language, these are all of the expression nodes we'll define. |
| 121 | because it doesn't have conditional control flow, it isn't turing complete: |
| 122 | we'll fix that in a later installment. The two things we need next are a way |
| 123 | to talk about the interface to a function, and a way to talk about functions |
| 124 | themselves:</p> |
| 125 | |
| 126 | <div class="doc_code"> |
| 127 | <pre> |
| 128 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 129 | /// which captures its argument names as well as if it is an operator. |
| 130 | class PrototypeAST { |
| 131 | std::string Name; |
| 132 | std::vector<std::string> Args; |
| 133 | public: |
| 134 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 135 | : Name(name), Args(args) {} |
| 136 | }; |
| 137 | |
| 138 | /// FunctionAST - This class represents a function definition itself. |
| 139 | class FunctionAST { |
| 140 | PrototypeAST *Proto; |
| 141 | ExprAST *Body; |
| 142 | public: |
| 143 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 144 | : Proto(proto), Body(body) {} |
| 145 | }; |
| 146 | </pre> |
| 147 | </div> |
| 148 | |
| 149 | <p>In Kaleidoscope, functions are typed with just a count of their arguments. |
| 150 | Since all values are double precision floating point, this fact doesn't need to |
| 151 | be captured anywhere. In a more aggressive and realistic language, the |
| 152 | "ExprAST" class would probably have a type field.</p> |
| 153 | |
| 154 | <p>With this scaffolding, we can now talk about parsing expressions and function |
| 155 | bodies in Kaleidoscope.</p> |
| 156 | |
| 157 | </div> |
| 158 | |
| 159 | <!-- *********************************************************************** --> |
| 160 | <div class="doc_section"><a name="parserbasics">Parser Basics</a></div> |
| 161 | <!-- *********************************************************************** --> |
| 162 | |
| 163 | <div class="doc_text"> |
| 164 | |
| 165 | <p>Now that we have an AST to build, we need to define the parser code to build |
| 166 | it. The idea here is that we want to parse something like "x+y" (which is |
| 167 | returned as three tokens by the lexer) into an AST that could be generated with |
| 168 | calls like this:</p> |
| 169 | |
| 170 | <div class="doc_code"> |
| 171 | <pre> |
| 172 | ExprAST *X = new VariableExprAST("x"); |
| 173 | ExprAST *Y = new VariableExprAST("y"); |
| 174 | ExprAST *Result = new BinaryExprAST('+', X, Y); |
| 175 | </pre> |
| 176 | </div> |
| 177 | |
| 178 | <p>In order to do this, we'll start by defining some basic helper routines:</p> |
| 179 | |
| 180 | <div class="doc_code"> |
| 181 | <pre> |
| 182 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 183 | /// token the parser it looking at. getNextToken reads another token from the |
| 184 | /// lexer and updates CurTok with its results. |
| 185 | static int CurTok; |
| 186 | static int getNextToken() { |
| 187 | return CurTok = gettok(); |
| 188 | } |
| 189 | </pre> |
| 190 | </div> |
| 191 | |
| 192 | <p> |
| 193 | This implements a simple token buffer around the lexer. This allows |
| 194 | us to look one token ahead at what the lexer is returning. Every function in |
| 195 | our lexer will assume that CurTok is the current token that needs to be |
| 196 | parsed.</p> |
| 197 | |
| 198 | <p>Again, we define |
| 199 | these with global variables: it would be better design to wrap the entire parser |
| 200 | in a class and use instance variables for these. |
| 201 | </p> |
| 202 | |
| 203 | <div class="doc_code"> |
| 204 | <pre> |
| 205 | |
| 206 | /// Error* - These are little helper functions for error handling. |
| 207 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 208 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 209 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 210 | </pre> |
| 211 | </div> |
| 212 | |
| 213 | <p> |
| 214 | The <tt>Error</tt> routines are simple helper routines that our parser will use |
| 215 | to handle errors. The error recovery in our parser will not be the best and |
| 216 | are not particular user-friendly, but it will be enough for our tutorial. These |
| 217 | routines make it easier to handle errors in routines that have various return |
| 218 | types: they always return null.</p> |
| 219 | |
| 220 | <p>With these basic helper functions implemented, we can implement the first |
| 221 | piece of our grammar: we'll start with numeric literals.</p> |
| 222 | |
| 223 | </div> |
| 224 | |
| 225 | <!-- *********************************************************************** --> |
| 226 | <div class="doc_section"><a name="parserprimexprs">Basic Expression |
| 227 | Parsing</a></div> |
| 228 | <!-- *********************************************************************** --> |
| 229 | |
| 230 | <div class="doc_text"> |
| 231 | |
| 232 | <p>We start with numeric literals, because they are the simplest to process. |
| 233 | For each production in our grammar, we'll define a function which parses that |
| 234 | production. For numeric literals, we have: |
| 235 | </p> |
| 236 | |
| 237 | <div class="doc_code"> |
| 238 | <pre> |
| 239 | /// numberexpr ::= number |
| 240 | static ExprAST *ParseNumberExpr() { |
| 241 | ExprAST *Result = new NumberExprAST(NumVal); |
| 242 | getNextToken(); // consume the number |
| 243 | return Result; |
| 244 | } |
| 245 | </pre> |
| 246 | </div> |
| 247 | |
| 248 | <p>This routine is very simple: it expects to be called when the current token |
| 249 | is a <tt>tok_number</tt> token. It takes the current number value, creates |
| 250 | a <tt>NumberExprAST</tt> node, advances the lexer to the next token, then |
| 251 | returns.</p> |
| 252 | |
| 253 | <p>There are some interesting aspects of this. The most important one is that |
| 254 | this routine eats all of the tokens that correspond to the production, and |
| 255 | returns the lexer buffer with the next token (which is not part of the grammar |
| 256 | production) ready to go. This is a fairly standard way to go for recursive |
| 257 | descent parsers. For a better example, the parenthesis operator is defined like |
| 258 | this:</p> |
| 259 | |
| 260 | <div class="doc_code"> |
| 261 | <pre> |
| 262 | /// parenexpr ::= '(' expression ')' |
| 263 | static ExprAST *ParseParenExpr() { |
| 264 | getNextToken(); // eat (. |
| 265 | ExprAST *V = ParseExpression(); |
| 266 | if (!V) return 0; |
| 267 | |
| 268 | if (CurTok != ')') |
| 269 | return Error("expected ')'"); |
| 270 | getNextToken(); // eat ). |
| 271 | return V; |
| 272 | } |
| 273 | </pre> |
| 274 | </div> |
| 275 | |
| 276 | <p>This function illustrates a number of interesting things about the parser: |
| 277 | 1) it shows how we use the Error routines. When called, this function expects |
| 278 | that the current token is a '(' token, but after parsing the subexpression, it |
| 279 | is possible that there is not a ')' waiting. For example, if the user types in |
| 280 | "(4 x" instead of "(4)", the parser should emit an error. Because errors can |
| 281 | occur, the parser needs a way to indicate that they happened: in our parser, we |
| 282 | return null on an error.</p> |
| 283 | |
| 284 | <p>Another interesting aspect of this function is that it uses recursion by |
| 285 | calling <tt>ParseExpression</tt> (we will soon see that ParseExpression can call |
| 286 | <tt>ParseParenExpr</tt>). This is powerful because it allows us to handle |
| 287 | recursive grammars, and keeps each production very simple. Note that |
| 288 | parenthesis do not cause construction of AST nodes themselves. While we could |
| 289 | do this, the most important role of parens are to guide the parser and provide |
| 290 | grouping. Once the parser constructs the AST, parens are not needed.</p> |
| 291 | |
| 292 | <p>The next simple production is for handling variable references and function |
| 293 | calls:</p> |
| 294 | |
| 295 | <div class="doc_code"> |
| 296 | <pre> |
| 297 | /// identifierexpr |
| 298 | /// ::= identifer |
| 299 | /// ::= identifer '(' expression* ')' |
| 300 | static ExprAST *ParseIdentifierExpr() { |
| 301 | std::string IdName = IdentifierStr; |
| 302 | |
| 303 | getNextToken(); // eat identifer. |
| 304 | |
| 305 | if (CurTok != '(') // Simple variable ref. |
| 306 | return new VariableExprAST(IdName); |
| 307 | |
| 308 | // Call. |
| 309 | getNextToken(); // eat ( |
| 310 | std::vector<ExprAST*> Args; |
| 311 | while (1) { |
| 312 | ExprAST *Arg = ParseExpression(); |
| 313 | if (!Arg) return 0; |
| 314 | Args.push_back(Arg); |
| 315 | |
| 316 | if (CurTok == ')') break; |
| 317 | |
| 318 | if (CurTok != ',') |
| 319 | return Error("Expected ')'"); |
| 320 | getNextToken(); |
| 321 | } |
| 322 | |
| 323 | // Eat the ')'. |
| 324 | getNextToken(); |
| 325 | |
| 326 | return new CallExprAST(IdName, Args); |
| 327 | } |
| 328 | </pre> |
| 329 | </div> |
| 330 | |
| 331 | <p>This routine follows the same style as the other routines (it expects to be |
| 332 | called if the current token is a <tt>tok_identifier</tt> token). It also has |
| 333 | recursion and error handling. One interesting aspect of this is that it uses |
| 334 | <em>look-ahead</em> to determine if the current identifier is a stand alone |
| 335 | variable reference or if it is a function call expression. It handles this by |
| 336 | checking to see if the token after the identifier is a '(' token, and constructs |
| 337 | either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate. |
| 338 | </p> |
| 339 | |
| 340 | <p>Now that we have all of our simple expression parsing logic in place, we can |
| 341 | define a helper function to wrap them up in a class. We call this class of |
| 342 | expressions "primary" expressions, for reasons that will become more clear |
| 343 | later. In order to parse a primary expression, we need to determine what sort |
| 344 | of expression it is:</p> |
| 345 | |
| 346 | <div class="doc_code"> |
| 347 | <pre> |
| 348 | /// primary |
| 349 | /// ::= identifierexpr |
| 350 | /// ::= numberexpr |
| 351 | /// ::= parenexpr |
| 352 | static ExprAST *ParsePrimary() { |
| 353 | switch (CurTok) { |
| 354 | default: return Error("unknown token when expecting an expression"); |
| 355 | case tok_identifier: return ParseIdentifierExpr(); |
| 356 | case tok_number: return ParseNumberExpr(); |
| 357 | case '(': return ParseParenExpr(); |
| 358 | } |
| 359 | } |
| 360 | </pre> |
| 361 | </div> |
| 362 | |
| 363 | <p>Now that you see the definition of this function, it makes it more obvious |
| 364 | why we can assume the state of CurTok in the various functions. This uses |
| 365 | look-ahead to determine which sort of expression is being inspected, and parses |
| 366 | it with a function call.</p> |
| 367 | |
| 368 | <p>Now that basic expressions are handled, we need to handle binary expressions, |
| 369 | which are a bit more complex.</p> |
| 370 | |
| 371 | </div> |
| 372 | |
| 373 | <!-- *********************************************************************** --> |
| 374 | <div class="doc_section"><a name="parserbinops">Binary Expression |
| 375 | Parsing</a></div> |
| 376 | <!-- *********************************************************************** --> |
| 377 | |
| 378 | <div class="doc_text"> |
| 379 | |
| 380 | <p>Binary expressions are significantly harder to parse because they are often |
| 381 | ambiguous. For example, when given the string "x+y*z", the parser can choose |
| 382 | to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from |
| 383 | mathematics, we expect the later parse, because "*" (multiplication) has |
| 384 | higher <em>precedence</em> than "+" (addition).</p> |
| 385 | |
| 386 | <p>There are many ways to handle this, but an elegant and efficient way is to |
| 387 | use <a href= |
| 388 | "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence |
| 389 | Parsing</a>. This parsing technique uses the precedence of binary operators to |
| 390 | guide recursion. To start with, we need a table of precedences:</p> |
| 391 | |
| 392 | <div class="doc_code"> |
| 393 | <pre> |
| 394 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 395 | /// defined. |
| 396 | static std::map<char, int> BinopPrecedence; |
| 397 | |
| 398 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 399 | static int GetTokPrecedence() { |
| 400 | if (!isascii(CurTok)) |
| 401 | return -1; |
| 402 | |
| 403 | // Make sure it's a declared binop. |
| 404 | int TokPrec = BinopPrecedence[CurTok]; |
| 405 | if (TokPrec <= 0) return -1; |
| 406 | return TokPrec; |
| 407 | } |
| 408 | |
| 409 | int main() { |
| 410 | // Install standard binary operators. |
| 411 | // 1 is lowest precedence. |
| 412 | BinopPrecedence['<'] = 10; |
| 413 | BinopPrecedence['+'] = 20; |
| 414 | BinopPrecedence['-'] = 20; |
| 415 | BinopPrecedence['*'] = 40; // highest. |
| 416 | ... |
| 417 | } |
| 418 | </pre> |
| 419 | </div> |
| 420 | |
| 421 | <p>For the basic form of Kaleidoscope, we will only support 4 binary operators |
| 422 | (this can obviously be extended by you, the reader). The |
| 423 | <tt>GetTokPrecedence</tt> function returns the precedence for the current token, |
| 424 | or -1 if the token is not a binary operator. Having a map makes it easy to add |
| 425 | new operators and makes it clear that the algorithm doesn't depend on the |
| 426 | specific operators involved, but it would be easy enough to eliminate the map |
| 427 | and do the comparisons in the <tt>GetTokPrecedence</tt> function.</p> |
| 428 | |
| 429 | <p>With the helper above defined, we can now start parsing binary expressions. |
| 430 | The basic idea of operator precedence parsing is to break down an expression |
| 431 | with potentially ambiguous binary operators into pieces. Consider for example |
| 432 | the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this |
| 433 | as a stream of primary expressions separated by binary operators. As such, |
| 434 | it will first parse the leading primary expression "a", then it will see the |
| 435 | pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses |
| 436 | are primary expressions that the binary expression parser doesn't need to worry |
| 437 | about nested subexpressions like (c+d) at all. |
| 438 | </p> |
| 439 | |
| 440 | <p> |
| 441 | To start, an expression is a primary expression potentially followed by a |
| 442 | sequence of [binop,primaryexpr] pairs:</p> |
| 443 | |
| 444 | <div class="doc_code"> |
| 445 | <pre> |
| 446 | /// expression |
| 447 | /// ::= primary binoprhs |
| 448 | /// |
| 449 | static ExprAST *ParseExpression() { |
| 450 | ExprAST *LHS = ParsePrimary(); |
| 451 | if (!LHS) return 0; |
| 452 | |
| 453 | return ParseBinOpRHS(0, LHS); |
| 454 | } |
| 455 | </pre> |
| 456 | </div> |
| 457 | |
| 458 | <p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for |
| 459 | us. It takes a precedence and a pointer to an expression for the part parsed |
| 460 | so far. Note that "x" is a perfectly valid expression: As such, "binoprhs" is |
| 461 | allowed to be empty, in which case it returns the expression that is passed into |
| 462 | it. In our example above, the code passes the expression for "a" into |
| 463 | <tt>ParseBinOpRHS</tt> and the current token is "+".</p> |
| 464 | |
| 465 | <p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em> |
| 466 | minimal operator precedence</em> that the function is allowed to eat. For |
| 467 | example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is |
| 468 | passed in a precedence of 40, it will not consume any tokens (because the |
| 469 | precedence of '+' is only 20). With this in mind, <tt>ParseBinOpRHS</tt> starts |
| 470 | with:</p> |
| 471 | |
| 472 | <div class="doc_code"> |
| 473 | <pre> |
| 474 | /// binoprhs |
| 475 | /// ::= ('+' primary)* |
| 476 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 477 | // If this is a binop, find its precedence. |
| 478 | while (1) { |
| 479 | int TokPrec = GetTokPrecedence(); |
| 480 | |
| 481 | // If this is a binop that binds at least as tightly as the current binop, |
| 482 | // consume it, otherwise we are done. |
| 483 | if (TokPrec < ExprPrec) |
| 484 | return LHS; |
| 485 | </pre> |
| 486 | </div> |
| 487 | |
| 488 | <p>This code gets the precedence of the current token and checks to see if if is |
| 489 | too low. Because we defined invalid tokens to have a precedence of -1, this |
| 490 | check implicitly knows that the pair-stream ends when the token stream runs out |
| 491 | of binary operators. If this check succeeds, we know that the token is a binary |
| 492 | operator and that it will be included in this expression:</p> |
| 493 | |
| 494 | <div class="doc_code"> |
| 495 | <pre> |
| 496 | // Okay, we know this is a binop. |
| 497 | int BinOp = CurTok; |
| 498 | getNextToken(); // eat binop |
| 499 | |
| 500 | // Parse the primary expression after the binary operator. |
| 501 | ExprAST *RHS = ParsePrimary(); |
| 502 | if (!RHS) return 0; |
| 503 | </pre> |
| 504 | </div> |
| 505 | |
| 506 | <p>As such, this code eats (and remembers) the binary operator and then parses |
| 507 | the following primary expression. This builds up the whole pair, the first of |
| 508 | which is [+, b] for the running example.</p> |
| 509 | |
| 510 | <p>Now that we parsed the left-hand side of an expression and one pair of the |
| 511 | RHS sequence, we have to decide which way the expression associates. In |
| 512 | particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)". |
| 513 | To determine this, we look ahead at "binop" to determine its precedence and |
| 514 | compare it to BinOp's precedence (which is '+' in this case):</p> |
| 515 | |
| 516 | <div class="doc_code"> |
| 517 | <pre> |
| 518 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 519 | // the pending operator take RHS as its LHS. |
| 520 | int NextPrec = GetTokPrecedence(); |
| 521 | if (TokPrec < NextPrec) { |
| 522 | </pre> |
| 523 | </div> |
| 524 | |
| 525 | <p>If the precedence of the binop to the right of "RHS" is lower or equal to the |
| 526 | precedence of our current operator, then we know that the parentheses associate |
| 527 | as "(a+b) binop ...". In our example, since the next operator is "+" and so is |
| 528 | our current one, we know that they have the same precedence. In this case we'll |
| 529 | create the AST node for "a+b", and then continue parsing:</p> |
| 530 | |
| 531 | <div class="doc_code"> |
| 532 | <pre> |
| 533 | ... if body omitted ... |
| 534 | } |
| 535 | |
| 536 | // Merge LHS/RHS. |
| 537 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 538 | } // loop around to the top of the while loop. |
| 539 | } |
| 540 | </pre> |
| 541 | </div> |
| 542 | |
| 543 | <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next |
| 544 | iteration of the loop, with "+" as the current token. The code above will eat |
| 545 | and remember it and parse "(c+d)" as the primary expression, which makes the |
| 546 | current pair be [+, (c+d)]. It will then enter the 'if' above with "*" as the |
| 547 | binop to the right of the primary. In this case, the precedence of "*" is |
| 548 | higher than the precedence of "+" so the if condition will be entered.</p> |
| 549 | |
| 550 | <p>The critical question left here is "how can the if condition parse the right |
| 551 | hand side in full"? In particular, to build the AST correctly for our example, |
| 552 | it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to |
| 553 | do this is surprisingly simple (code from the above two blocks duplicated for |
| 554 | context):</p> |
| 555 | |
| 556 | <div class="doc_code"> |
| 557 | <pre> |
| 558 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 559 | // the pending operator take RHS as its LHS. |
| 560 | int NextPrec = GetTokPrecedence(); |
| 561 | if (TokPrec < NextPrec) { |
| 562 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 563 | if (RHS == 0) return 0; |
| 564 | } |
| 565 | // Merge LHS/RHS. |
| 566 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 567 | } // loop around to the top of the while loop. |
| 568 | } |
| 569 | </pre> |
| 570 | </div> |
| 571 | |
| 572 | <p>At this point, we know that the binary operator to the RHS of our primary |
| 573 | has higher precedence than the binop we are currently parsing. As such, we know |
| 574 | that any sequence of pairs whose operators are all higher precedence than "+" |
| 575 | should be parsed together and returned as "RHS". To do this, we recursively |
| 576 | invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum |
| 577 | precedence required for it to continue. In our example above, this will cause |
| 578 | it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS |
| 579 | of the '+' expression.</p> |
| 580 | |
| 581 | <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed. |
| 582 | and added to the AST. With this little bit of code (14 non-trivial lines), we |
| 583 | correctly handle fully general binary expression parsing in a very elegant way. |
| 584 | </p> |
| 585 | |
| 586 | <p>This wraps up handling of expressions. At this point, we can point the |
| 587 | parser at an arbitrary token stream and build an expression from them, stopping |
| 588 | at the first token that is not part of the expression. Next up we need to |
| 589 | handle function definitions etc.</p> |
| 590 | |
| 591 | </div> |
| 592 | |
| 593 | <!-- *********************************************************************** --> |
| 594 | <div class="doc_section"><a name="parsertop">Parsing the Rest</a></div> |
| 595 | <!-- *********************************************************************** --> |
| 596 | |
| 597 | <div class="doc_text"> |
| 598 | |
| 599 | <p> |
| 600 | The first basic thing missing is that of function prototypes. In Kaleidoscope, |
| 601 | these are used both for 'extern' function declarations as well as function body |
| 602 | definitions. The code to do this is straight-forward and not very interesting |
| 603 | (once you've survived expressions): |
| 604 | </p> |
| 605 | |
| 606 | <div class="doc_code"> |
| 607 | <pre> |
| 608 | /// prototype |
| 609 | /// ::= id '(' id* ')' |
| 610 | static PrototypeAST *ParsePrototype() { |
| 611 | if (CurTok != tok_identifier) |
| 612 | return ErrorP("Expected function name in prototype"); |
| 613 | |
| 614 | std::string FnName = IdentifierStr; |
| 615 | getNextToken(); |
| 616 | |
| 617 | if (CurTok != '(') |
| 618 | return ErrorP("Expected '(' in prototype"); |
| 619 | |
| 620 | std::vector<std::string> ArgNames; |
| 621 | while (getNextToken() == tok_identifier) |
| 622 | ArgNames.push_back(IdentifierStr); |
| 623 | if (CurTok != ')') |
| 624 | return ErrorP("Expected ')' in prototype"); |
| 625 | |
| 626 | // success. |
| 627 | getNextToken(); // eat ')'. |
| 628 | |
| 629 | return new PrototypeAST(FnName, ArgNames); |
| 630 | } |
| 631 | </pre> |
| 632 | </div> |
| 633 | |
| 634 | <p>Given this, a function definition is very simple, just a prototype plus |
| 635 | and expression to implement the body:</p> |
| 636 | |
| 637 | <div class="doc_code"> |
| 638 | <pre> |
| 639 | /// definition ::= 'def' prototype expression |
| 640 | static FunctionAST *ParseDefinition() { |
| 641 | getNextToken(); // eat def. |
| 642 | PrototypeAST *Proto = ParsePrototype(); |
| 643 | if (Proto == 0) return 0; |
| 644 | |
| 645 | if (ExprAST *E = ParseExpression()) |
| 646 | return new FunctionAST(Proto, E); |
| 647 | return 0; |
| 648 | } |
| 649 | </pre> |
| 650 | </div> |
| 651 | |
| 652 | <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as |
| 653 | well as to support forward declaration of user functions. 'externs' are just |
| 654 | prototypes with no body:</p> |
| 655 | |
| 656 | <div class="doc_code"> |
| 657 | <pre> |
| 658 | /// external ::= 'extern' prototype |
| 659 | static PrototypeAST *ParseExtern() { |
| 660 | getNextToken(); // eat extern. |
| 661 | return ParsePrototype(); |
| 662 | } |
| 663 | </pre> |
| 664 | </div> |
| 665 | |
| 666 | <p>Finally, we'll also let the user type in arbitrary top-level expressions and |
| 667 | evaluate them on the fly. We will handle this by defining anonymous nullary |
| 668 | (zero argument) functions for them:</p> |
| 669 | |
| 670 | <div class="doc_code"> |
| 671 | <pre> |
| 672 | /// toplevelexpr ::= expression |
| 673 | static FunctionAST *ParseTopLevelExpr() { |
| 674 | if (ExprAST *E = ParseExpression()) { |
| 675 | // Make an anonymous proto. |
| 676 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 677 | return new FunctionAST(Proto, E); |
| 678 | } |
| 679 | return 0; |
| 680 | } |
| 681 | </pre> |
| 682 | </div> |
| 683 | |
| 684 | <p>Now that we have all the pieces, lets build a little driver that will let us |
| 685 | actually <em>execute</em> this code we've built!</p> |
| 686 | |
| 687 | </div> |
| 688 | |
| 689 | <!-- *********************************************************************** --> |
| 690 | <div class="doc_section"><a name="driver">The Driver</a></div> |
| 691 | <!-- *********************************************************************** --> |
| 692 | |
| 693 | <div class="doc_text"> |
| 694 | |
| 695 | <p>The driver for this simply invokes all of the parsing pieces with a top-level |
| 696 | dispatch loop. There isn't much interesting here, so I'll just include the |
| 697 | top-level loop. See <a href="#code">below</a> for full code in the "Top-Level |
| 698 | Parsing" section.</p> |
| 699 | |
| 700 | <div class="doc_code"> |
| 701 | <pre> |
| 702 | /// top ::= definition | external | expression | ';' |
| 703 | static void MainLoop() { |
| 704 | while (1) { |
| 705 | fprintf(stderr, "ready> "); |
| 706 | switch (CurTok) { |
| 707 | case tok_eof: return; |
| 708 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 709 | case tok_def: HandleDefinition(); break; |
| 710 | case tok_extern: HandleExtern(); break; |
| 711 | default: HandleTopLevelExpression(); break; |
| 712 | } |
| 713 | } |
| 714 | } |
| 715 | </pre> |
| 716 | </div> |
| 717 | |
| 718 | <p>The most interesting part of this is that we ignore top-level semi colons. |
| 719 | Why is this do you ask? The basic reason is that if you type "4 + 5" at the |
| 720 | command line, the parser doesn't know that that is the end of what you will |
| 721 | type. For example, on the next line you could type "def foo..." in which case |
| 722 | 4+5 is the end of a top-level expression. Alternatively you could type "* 6", |
| 723 | which would continue the expression. Having top-level semicolons allows you to |
| 724 | type "4+5;" and the parser will know you are done.</p> |
| 725 | |
| 726 | </div> |
| 727 | |
| 728 | <!-- *********************************************************************** --> |
| 729 | <div class="doc_section"><a name="code">Conclusions and the Full Code</a></div> |
| 730 | <!-- *********************************************************************** --> |
| 731 | |
| 732 | <div class="doc_text"> |
| 733 | |
| 734 | <p>With just under 400 lines of commented code, we fully defined our minimal |
| 735 | language, including a lexer, parser and AST builder. With this done, the |
| 736 | executable will validate code and tell us if it is gramatically invalid. For |
| 737 | example, here is a sample interaction:</p> |
| 738 | |
| 739 | <div class="doc_code"> |
| 740 | <pre> |
| 741 | $ ./a.out |
| 742 | ready> def foo(x y) x+foo(y, 4.0); |
| 743 | ready> Parsed an function definition. |
| 744 | ready> def foo(x y) x+y y; |
| 745 | ready> Parsed an function definition. |
| 746 | ready> Parsed a top-level expr |
| 747 | ready> def foo(x y) x+y ); |
| 748 | ready> Parsed an function definition. |
| 749 | ready> Error: unknown token when expecting an expression |
| 750 | ready> extern sin(a); |
| 751 | ready> Parsed an extern |
| 752 | ready> ^D |
| 753 | $ |
| 754 | </pre> |
| 755 | </div> |
| 756 | |
| 757 | <p> |
| 758 | Here is the full code. Note that it is fully self-contained: you don't even |
| 759 | need LLVM for this. In the <a href="LangImpl3.html">next installment</a>, we |
| 760 | will describe how to generate LLVM IR from the AST.</p> |
| 761 | |
| 762 | <div class="doc_code"> |
| 763 | <pre> |
| 764 | // To build this: |
| 765 | // g++ -g toy.cpp |
| 766 | // ./a.out |
| 767 | |
| 768 | #include <cstdio> |
| 769 | #include <string> |
| 770 | #include < |
| 771 | #include <vector> |
| 772 | |
| 773 | //===----------------------------------------------------------------------===// |
| 774 | // Lexer |
| 775 | //===----------------------------------------------------------------------===// |
| 776 | |
| 777 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 778 | // of these for known things. |
| 779 | enum Token { |
| 780 | tok_eof = -1, |
| 781 | |
| 782 | // commands |
| 783 | tok_def = -2, tok_extern = -3, |
| 784 | |
| 785 | // primary |
| 786 | tok_identifier = -4, tok_number = -5, |
| 787 | }; |
| 788 | |
| 789 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 790 | static double NumVal; // Filled in if tok_number |
| 791 | |
| 792 | /// gettok - Return the next token from standard input. |
| 793 | static int gettok() { |
| 794 | static int LastChar = ' '; |
| 795 | |
| 796 | // Skip any whitespace. |
| 797 | while (isspace(LastChar)) |
| 798 | LastChar = getchar(); |
| 799 | |
| 800 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 801 | IdentifierStr = LastChar; |
| 802 | while (isalnum((LastChar = getchar()))) |
| 803 | IdentifierStr += LastChar; |
| 804 | |
| 805 | if (IdentifierStr == "def") return tok_def; |
| 806 | if (IdentifierStr == "extern") return tok_extern; |
| 807 | return tok_identifier; |
| 808 | } |
| 809 | |
| 810 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 811 | std::string NumStr; |
| 812 | do { |
| 813 | NumStr += LastChar; |
| 814 | LastChar = getchar(); |
| 815 | } while (isdigit(LastChar) || LastChar == '.'); |
| 816 | |
| 817 | NumVal = strtod(NumStr.c_str(), 0); |
| 818 | return tok_number; |
| 819 | } |
| 820 | |
| 821 | if (LastChar == '#') { |
| 822 | // Comment until end of line. |
| 823 | do LastChar = getchar(); |
| 824 | while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); |
| 825 | |
| 826 | if (LastChar != EOF) |
| 827 | return gettok(); |
| 828 | } |
| 829 | |
| 830 | // Check for end of file. Don't eat the EOF. |
| 831 | if (LastChar == EOF) |
| 832 | return tok_eof; |
| 833 | |
| 834 | // Otherwise, just return the character as its ascii value. |
| 835 | int ThisChar = LastChar; |
| 836 | LastChar = getchar(); |
| 837 | return ThisChar; |
| 838 | } |
| 839 | |
| 840 | //===----------------------------------------------------------------------===// |
| 841 | // Abstract Syntax Tree (aka Parse Tree) |
| 842 | //===----------------------------------------------------------------------===// |
| 843 | |
| 844 | /// ExprAST - Base class for all expression nodes. |
| 845 | class ExprAST { |
| 846 | public: |
| 847 | virtual ~ExprAST() {} |
| 848 | }; |
| 849 | |
| 850 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 851 | class NumberExprAST : public ExprAST { |
| 852 | double Val; |
| 853 | public: |
| 854 | NumberExprAST(double val) : Val(val) {} |
| 855 | }; |
| 856 | |
| 857 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 858 | class VariableExprAST : public ExprAST { |
| 859 | std::string Name; |
| 860 | public: |
| 861 | VariableExprAST(const std::string &name) : Name(name) {} |
| 862 | }; |
| 863 | |
| 864 | /// BinaryExprAST - Expression class for a binary operator. |
| 865 | class BinaryExprAST : public ExprAST { |
| 866 | char Op; |
| 867 | ExprAST *LHS, *RHS; |
| 868 | public: |
| 869 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 870 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 871 | }; |
| 872 | |
| 873 | /// CallExprAST - Expression class for function calls. |
| 874 | class CallExprAST : public ExprAST { |
| 875 | std::string Callee; |
| 876 | std::vector<ExprAST*> Args; |
| 877 | public: |
| 878 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 879 | : Callee(callee), Args(args) {} |
| 880 | }; |
| 881 | |
| 882 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 883 | /// which captures its argument names as well as if it is an operator. |
| 884 | class PrototypeAST { |
| 885 | std::string Name; |
| 886 | std::vector< Args; |
| 887 | public: |
| 888 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 889 | : Name(name), Args(args) {} |
| 890 | |
| 891 | }; |
| 892 | |
| 893 | /// FunctionAST - This class represents a function definition itself. |
| 894 | class FunctionAST { |
| 895 | PrototypeAST *Proto; |
| 896 | ExprAST *Body; |
| 897 | public: |
| 898 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 899 | : Proto(proto), Body(body) {} |
| 900 | |
| 901 | }; |
| 902 | |
| 903 | //===----------------------------------------------------------------------===// |
| 904 | // Parser |
| 905 | //===----------------------------------------------------------------------===// |
| 906 | |
| 907 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 908 | /// token the parser it looking at. getNextToken reads another token from the |
| 909 | /// lexer and updates CurTok with its results. |
| 910 | static int CurTok; |
| 911 | static int getNextToken() { |
| 912 | return CurTok = gettok(); |
| 913 | } |
| 914 | |
| 915 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 916 | /// defined. |
| 917 | static std::map<char, int> BinopPrecedence; |
| 918 | |
| 919 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 920 | static int GetTokPrecedence() { |
| 921 | if (!isascii(CurTok)) |
| 922 | return -1; |
| 923 | |
| 924 | // Make sure it's a declared binop. |
| 925 | int TokPrec = BinopPrecedence[CurTok]; |
| 926 | if (TokPrec <= 0) return -1; |
| 927 | return TokPrec; |
| 928 | } |
| 929 | |
| 930 | /// Error* - These are little helper functions for error handling. |
| 931 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 932 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 933 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 934 | |
| 935 | static ExprAST *ParseExpression(); |
| 936 | |
| 937 | /// identifierexpr |
| 938 | /// ::= identifer |
| 939 | /// ::= identifer '(' expression* ')' |
| 940 | static ExprAST *ParseIdentifierExpr() { |
| 941 | std::string IdName = IdentifierStr; |
| 942 | |
| 943 | getNextToken(); // eat identifer. |
| 944 | |
| 945 | if (CurTok != '(') // Simple variable ref. |
| 946 | return new VariableExprAST(IdName); |
| 947 | |
| 948 | // Call. |
| 949 | getNextToken(); // eat ( |
| 950 | std::vector<ExprAST*> Args; |
| 951 | while (1) { |
| 952 | ExprAST *Arg = ParseExpression(); |
| 953 | if (!Arg) return 0; |
| 954 | Args.push_back(Arg); |
| 955 | |
| 956 | if (CurTok == ')') break; |
| 957 | |
| 958 | if (CurTok != ',') |
| 959 | return Error("Expected ')'"); |
| 960 | getNextToken(); |
| 961 | } |
| 962 | |
| 963 | // Eat the ')'. |
| 964 | getNextToken(); |
| 965 | |
| 966 | return new CallExprAST(IdName, Args); |
| 967 | } |
| 968 | |
| 969 | /// numberexpr ::= number |
| 970 | static ExprAST *ParseNumberExpr() { |
| 971 | ExprAST *Result = new NumberExprAST(NumVal); |
| 972 | getNextToken(); // consume the number |
| 973 | return Result; |
| 974 | } |
| 975 | |
| 976 | /// parenexpr ::= '(' expression ')' |
| 977 | static ExprAST *ParseParenExpr() { |
| 978 | getNextToken(); // eat (. |
| 979 | ExprAST *V = ParseExpression(); |
| 980 | if (!V) return 0; |
| 981 | |
| 982 | if (CurTok != ')') |
| 983 | return Error("expected ')'"); |
| 984 | getNextToken(); // eat ). |
| 985 | return V; |
| 986 | } |
| 987 | |
| 988 | /// primary |
| 989 | /// ::= identifierexpr |
| 990 | /// ::= numberexpr |
| 991 | /// ::= parenexpr |
| 992 | static ExprAST *ParsePrimary() { |
| 993 | switch (CurTok) { |
| 994 | default: return Error("unknown token when expecting an expression"); |
| 995 | case tok_identifier: return ParseIdentifierExpr(); |
| 996 | case tok_number: return ParseNumberExpr(); |
| 997 | case '(': return ParseParenExpr(); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /// binoprhs |
| 1002 | /// ::= ('+' primary)* |
| 1003 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 1004 | // If this is a binop, find its precedence. |
| 1005 | while (1) { |
| 1006 | int TokPrec = GetTokPrecedence(); |
| 1007 | |
| 1008 | // If this is a binop that binds at least as tightly as the current binop, |
| 1009 | // consume it, otherwise we are done. |
| 1010 | if (TokPrec < ExprPrec) |
| 1011 | return LHS; |
| 1012 | |
| 1013 | // Okay, we know this is a binop. |
| 1014 | int BinOp = CurTok; |
| 1015 | getNextToken(); // eat binop |
| 1016 | |
| 1017 | // Parse the primary expression after the binary operator. |
| 1018 | ExprAST *RHS = ParsePrimary(); |
| 1019 | if (!RHS) return 0; |
| 1020 | |
| 1021 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 1022 | // the pending operator take RHS as its LHS. |
| 1023 | int NextPrec = GetTokPrecedence(); |
| 1024 | if (TokPrec < NextPrec) { |
| 1025 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 1026 | if (RHS == 0) return 0; |
| 1027 | } |
| 1028 | |
| 1029 | // Merge LHS/RHS. |
| 1030 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | /// expression |
| 1035 | /// ::= primary binoprhs |
| 1036 | /// |
| 1037 | static ExprAST *ParseExpression() { |
| 1038 | ExprAST *LHS = ParsePrimary(); |
| 1039 | if (!LHS) return 0; |
| 1040 | |
| 1041 | return ParseBinOpRHS(0, LHS); |
| 1042 | } |
| 1043 | |
| 1044 | /// prototype |
| 1045 | /// ::= id '(' id* ')' |
| 1046 | static PrototypeAST *ParsePrototype() { |
| 1047 | if (CurTok != tok_identifier) |
| 1048 | return ErrorP("Expected function name in prototype"); |
| 1049 | |
| 1050 | std::string FnName = IdentifierStr; |
| 1051 | getNextToken(); |
| 1052 | |
| 1053 | if (CurTok != '(') |
| 1054 | return ErrorP("Expected '(' in prototype"); |
| 1055 | |
| 1056 | std::vector<std::string> ArgNames; |
| 1057 | while (getNextToken() == tok_identifier) |
| 1058 | ArgNames.push_back(IdentifierStr); |
| 1059 | if (CurTok != ')') |
| 1060 | return ErrorP("Expected ')' in prototype"); |
| 1061 | |
| 1062 | // success. |
| 1063 | getNextToken(); // eat ')'. |
| 1064 | |
| 1065 | return new PrototypeAST(FnName, ArgNames); |
| 1066 | } |
| 1067 | |
| 1068 | /// definition ::= 'def' prototype expression |
| 1069 | static FunctionAST *ParseDefinition() { |
| 1070 | getNextToken(); // eat def. |
| 1071 | PrototypeAST *Proto = ParsePrototype(); |
| 1072 | if (Proto == 0) return 0; |
| 1073 | |
| 1074 | if (ExprAST *E = ParseExpression()) |
| 1075 | return new FunctionAST(Proto, E); |
| 1076 | return 0; |
| 1077 | } |
| 1078 | |
| 1079 | /// toplevelexpr ::= expression |
| 1080 | static FunctionAST *ParseTopLevelExpr() { |
| 1081 | if (ExprAST *E = ParseExpression()) { |
| 1082 | // Make an anonymous proto. |
| 1083 | PrototypeAST *Proto = new PrototypeAST("", std::vector<()); |
| 1084 | return new FunctionAST(Proto, E); |
| 1085 | } |
| 1086 | return 0; |
| 1087 | } |
| 1088 | |
| 1089 | /// external ::= 'extern' prototype |
| 1090 | static PrototypeAST *ParseExtern() { |
| 1091 | getNextToken(); // eat extern. |
| 1092 | return ParsePrototype(); |
| 1093 | } |
| 1094 | |
| 1095 | //===----------------------------------------------------------------------===// |
| 1096 | // Top-Level parsing |
| 1097 | //===----------------------------------------------------------------------===// |
| 1098 | |
| 1099 | static void HandleDefinition() { |
| 1100 | if (FunctionAST *F = ParseDefinition()) { |
| 1101 | fprintf(stderr, "Parsed a function definition.\n"); |
| 1102 | } else { |
| 1103 | // Skip token for error recovery. |
| 1104 | getNextToken(); |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | static void HandleExtern() { |
| 1109 | if (PrototypeAST *P = ParseExtern()) { |
| 1110 | fprintf(stderr, "Parsed an extern\n"); |
| 1111 | } else { |
| 1112 | // Skip token for error recovery. |
| 1113 | getNextToken(); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | static void HandleTopLevelExpression() { |
| 1118 | // Evaluate a top level expression into an anonymous function. |
| 1119 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 1120 | fprintf(stderr, "Parsed a top-level expr\n"); |
| 1121 | } else { |
| 1122 | // Skip token for error recovery. |
| 1123 | getNextToken(); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | /// top ::= definition | external | expression | ';' |
| 1128 | static void MainLoop() { |
| 1129 | while (1) { |
| 1130 | fprintf(stderr, "ready> "); |
| 1131 | switch (CurTok) { |
| 1132 | case tok_eof: return; |
| 1133 | case ';': getNextToken(); break; // ignore top level semicolons. |
| 1134 | case tok_def: HandleDefinition(); break; |
| 1135 | case tok_extern: HandleExtern(); break; |
| 1136 | default: HandleTopLevelExpression(); break; |
| 1137 | } |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | //===----------------------------------------------------------------------===// |
| 1142 | // Main driver code. |
| 1143 | //===----------------------------------------------------------------------===// |
| 1144 | |
| 1145 | int main() { |
| 1146 | // Install standard binary operators. |
| 1147 | // 1 is lowest precedence. |
| 1148 | BinopPrecedence['<'] = 10; |
| 1149 | BinopPrecedence['+'] = 20; |
| 1150 | BinopPrecedence['-'] = 20; |
| 1151 | BinopPrecedence['*'] = 40; // highest. |
| 1152 | |
| 1153 | // Prime the first token. |
| 1154 | fprintf(stderr, "ready> "); |
| 1155 | getNextToken(); |
| 1156 | |
| 1157 | MainLoop(); |
| 1158 | return 0; |
| 1159 | } |
| 1160 | </pre> |
| 1161 | </div> |
| 1162 | </div> |
| 1163 | |
| 1164 | <!-- *********************************************************************** --> |
| 1165 | <hr> |
| 1166 | <address> |
| 1167 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 1168 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 1169 | <a href="http://validator.w3.org/check/referer"><img |
| 1170 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a> |
| 1171 | |
| 1172 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 1173 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| 1174 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| 1175 | </address> |
| 1176 | </body> |
| 1177 | </html> |