blob: 6d6c2a107081142890ee562124274010b5eb2fe7 [file] [log] [blame]
Dmitri Gribenko91cb6942012-12-01 12:13:48 +00001================================
2Writing an LLVM Compiler Backend
3================================
4
Sean Silva5d0d67f2012-12-31 11:49:51 +00005.. toctree::
6 :hidden:
7
8 HowToUseInstrMappings
9
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000010.. contents::
11 :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages. Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC. The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45 the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48 generation algorithms) for translating the LLVM internal representation into
49 machine code for a specified target. Pay particular attention to the
50 descriptions of code generation stages: Instruction Selection, Scheduling and
51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52 Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGenFundamentals` --- a document that describes the TableGen
55 (``tblgen``) application that manages domain-specific information to support
56 LLVM code generation. TableGen processes input from a target description
57 file (``.td`` suffix) and generates C++ code that can be used for code
58 generation.
59
Dmitri Gribenkob64f0202012-12-12 17:02:44 +000060* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61 are several ``SelectionDAG`` processing steps.
Dmitri Gribenko91cb6942012-12-01 12:13:48 +000062
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference. For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer. "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79 characteristics of your target machine. Copy existing examples of specific
80 ``TargetMachine`` class and header files; for example, start with
81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82 names for your target. Similarly, change code that references "``Sparc``" to
83 reference your target.
84
85* Describe the register set of the target. Use TableGen to generate code for
86 register definition, register aliases, and register classes from a
87 target-specific ``RegisterInfo.td`` input file. You should also write
88 additional code for a subclass of the ``TargetRegisterInfo`` class that
89 represents the class register file data used for register allocation and also
90 describes the interactions between registers.
91
92* Describe the instruction set of the target. Use TableGen to generate code
93 for target-specific instructions from target-specific versions of
94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write
95 additional code for a subclass of the ``TargetInstrInfo`` class to represent
96 machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99 Graph (DAG) representation of instructions to native target-specific
100 instructions. Use TableGen to generate code that matches patterns and
101 selects instructions based on additional information in a target-specific
102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``,
103 where ``XXX`` identifies the specific target, to perform pattern matching and
104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp``
105 to replace or remove operations and data types that are not supported
106 natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109 your target machine. You should add assembly strings to the instructions
110 defined in your target-specific version of ``TargetInstrInfo.td``. You
111 should also write code for a subclass of ``AsmPrinter`` that performs the
112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115 capabilities). You should also write code for a subclass of the
116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117 ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120 ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later. Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files. The absolute minimum is discussed here. But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target. If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``Makefile``. It is easiest to copy a
139``Makefile`` of another target and modify it. It should at least contain the
140``LEVEL``, ``LIBRARYNAME`` and ``TARGET`` variables, and then include
141``$(LEVEL)/Makefile.common``. The library can be named ``LLVMDummy`` (for
142example, see the MIPS target). Alternatively, you can split the library into
143``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which should be
144implemented in a subdirectory below ``lib/Target/Dummy`` (for example, see the
145PowerPC target).
146
147Note that these two naming schemes are hardcoded into ``llvm-config``. Using
148any other naming scheme will confuse ``llvm-config`` and produce a lot of
149(seemingly unrelated) linker errors when linking ``llc``.
150
151To make your target actually do something, you need to implement a subclass of
152``TargetMachine``. This implementation should typically be in the file
153``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
154directory will be built and should work. To use LLVM's target independent code
155generator, you should do what all current machine backends do: create a
156subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a
157subclass of ``TargetMachine``.)
158
159To get LLVM to actually build and link your target, you need to add it to the
160``TARGETS_TO_BUILD`` variable. To do this, you modify the configure script to
161know about your target when parsing the ``--enable-targets`` option. Search
162the configure script for ``TARGETS_TO_BUILD``, add your target to the lists
163there (some creativity required), and then reconfigure. Alternatively, you can
164change ``autotools/configure.ac`` and regenerate configure by running
165``./autoconf/AutoRegen.sh``.
166
167Target Machine
168==============
169
170``LLVMTargetMachine`` is designed as a base class for targets implemented with
171the LLVM target-independent code generator. The ``LLVMTargetMachine`` class
172should be specialized by a concrete target class that implements the various
173virtual methods. ``LLVMTargetMachine`` is defined as a subclass of
174``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The
175``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
176numerous command-line options.
177
178To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
179by copying an existing ``TargetMachine`` class and header. You should name the
180files that you create to reflect your specific target. For instance, for the
181SPARC target, name the files ``SparcTargetMachine.h`` and
182``SparcTargetMachine.cpp``.
183
184For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
185have access methods to obtain objects that represent target components. These
186methods are named ``get*Info``, and are intended to obtain the instruction set
187(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
188(``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also
189implement the ``getDataLayout`` method to access an object with target-specific
190data characteristics, such as data type size and alignment requirements.
191
192For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
193declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
194simply return a class member.
195
196.. code-block:: c++
197
198 namespace llvm {
199
200 class Module;
201
202 class SparcTargetMachine : public LLVMTargetMachine {
203 const DataLayout DataLayout; // Calculates type size & alignment
204 SparcSubtarget Subtarget;
205 SparcInstrInfo InstrInfo;
206 TargetFrameInfo FrameInfo;
207
208 protected:
209 virtual const TargetAsmInfo *createTargetAsmInfo() const;
210
211 public:
212 SparcTargetMachine(const Module &M, const std::string &FS);
213
214 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
215 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
216 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
217 virtual const TargetRegisterInfo *getRegisterInfo() const {
218 return &InstrInfo.getRegisterInfo();
219 }
220 virtual const DataLayout *getDataLayout() const { return &DataLayout; }
221 static unsigned getModuleMatchQuality(const Module &M);
222
223 // Pass Pipeline Configuration
224 virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
225 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
226 };
227
228 } // end namespace llvm
229
230* ``getInstrInfo()``
231* ``getRegisterInfo()``
232* ``getFrameInfo()``
233* ``getDataLayout()``
234* ``getSubtargetImpl()``
235
236For some targets, you also need to support the following methods:
237
238* ``getTargetLowering()``
239* ``getJITInfo()``
240
241In addition, the ``XXXTargetMachine`` constructor should specify a
242``TargetDescription`` string that determines the data layout for the target
243machine, including characteristics such as pointer size, alignment, and
244endianness. For example, the constructor for ``SparcTargetMachine`` contains
245the following:
246
247.. code-block:: c++
248
249 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
250 : DataLayout("E-p:32:32-f128:128:128"),
251 Subtarget(M, FS), InstrInfo(Subtarget),
252 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
253 }
254
255Hyphens separate portions of the ``TargetDescription`` string.
256
257* An upper-case "``E``" in the string indicates a big-endian target data model.
258 A lower-case "``e``" indicates little-endian.
259
260* "``p:``" is followed by pointer information: size, ABI alignment, and
261 preferred alignment. If only two figures follow "``p:``", then the first
262 value is pointer size, and the second value is both ABI and preferred
263 alignment.
264
265* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
266 "``a``" (corresponding to integer, floating point, vector, or aggregate).
267 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
268 alignment. "``f``" is followed by three values: the first indicates the size
269 of a long double, then ABI alignment, and then ABI preferred alignment.
270
271Target Registration
272===================
273
274You must also register your target with the ``TargetRegistry``, which is what
275other LLVM tools use to be able to lookup and use your target at runtime. The
276``TargetRegistry`` can be used directly, but for most targets there are helper
277templates which should take care of the work for you.
278
279All targets should declare a global ``Target`` object which is used to
280represent the target during registration. Then, in the target's ``TargetInfo``
281library, the target should define that object and use the ``RegisterTarget``
282template to register the target. For example, the Sparc registration code
283looks like this:
284
285.. code-block:: c++
286
287 Target llvm::TheSparcTarget;
288
289 extern "C" void LLVMInitializeSparcTargetInfo() {
290 RegisterTarget<Triple::sparc, /*HasJIT=*/false>
291 X(TheSparcTarget, "sparc", "Sparc");
292 }
293
294This allows the ``TargetRegistry`` to look up the target by name or by target
295triple. In addition, most targets will also register additional features which
296are available in separate libraries. These registration steps are separate,
297because some clients may wish to only link in some parts of the target --- the
298JIT code generator does not require the use of the assembler printer, for
299example. Here is an example of registering the Sparc assembly printer:
300
301.. code-block:: c++
302
303 extern "C" void LLVMInitializeSparcAsmPrinter() {
304 RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
305 }
306
307For more information, see "`llvm/Target/TargetRegistry.h
308</doxygen/TargetRegistry_8h-source.html>`_".
309
310Register Set and Register Classes
311=================================
312
313You should describe a concrete target-specific class that represents the
314register file of a target machine. This class is called ``XXXRegisterInfo``
315(where ``XXX`` identifies the target) and represents the class register file
316data that is used for register allocation. It also describes the interactions
317between registers.
318
319You also need to define register classes to categorize related registers. A
320register class should be added for groups of registers that are all treated the
321same way for some instruction. Typical examples are register classes for
322integer, floating-point, or vector registers. A register allocator allows an
323instruction to use any register in a specified register class to perform the
324instruction in a similar manner. Register classes allocate virtual registers
325to instructions from these sets, and register classes let the
326target-independent register allocator automatically choose the actual
327registers.
328
329Much of the code for registers, including register definition, register
330aliases, and register classes, is generated by TableGen from
331``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
332and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the
333implementation of ``XXXRegisterInfo`` requires hand-coding.
334
335Defining a Register
336-------------------
337
338The ``XXXRegisterInfo.td`` file typically starts with register definitions for
339a target machine. The ``Register`` class (specified in ``Target.td``) is used
340to define an object for each register. The specified string ``n`` becomes the
341``Name`` of the register. The basic ``Register`` object does not have any
342subregisters and does not specify any aliases.
343
344.. code-block:: llvm
345
346 class Register<string n> {
347 string Namespace = "";
348 string AsmName = n;
349 string Name = n;
350 int SpillSize = 0;
351 int SpillAlignment = 0;
352 list<Register> Aliases = [];
353 list<Register> SubRegs = [];
354 list<int> DwarfNumbers = [];
355 }
356
357For example, in the ``X86RegisterInfo.td`` file, there are register definitions
358that utilize the ``Register`` class, such as:
359
360.. code-block:: llvm
361
362 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
363
364This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
365that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
366register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
367representing 3 different modes: the first element is for X86-64, the second for
368exception handling (EH) on X86-32, and the third is generic. -1 is a special
369Dwarf number that indicates the gcc number is undefined, and -2 indicates the
370register number is invalid for this mode.
371
372From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
373generates this code in the ``X86GenRegisterInfo.inc`` file:
374
375.. code-block:: c++
376
377 static const unsigned GR8[] = { X86::AL, ... };
378
379 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
380
381 const TargetRegisterDesc RegisterDescriptors[] = {
382 ...
383 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
384
385From the register info file, TableGen generates a ``TargetRegisterDesc`` object
386for each register. ``TargetRegisterDesc`` is defined in
387``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
388
389.. code-block:: c++
390
391 struct TargetRegisterDesc {
392 const char *AsmName; // Assembly language name for the register
393 const char *Name; // Printable name for the reg (for debugging)
394 const unsigned *AliasSet; // Register Alias Set
395 const unsigned *SubRegs; // Sub-register set
396 const unsigned *ImmSubRegs; // Immediate sub-register set
397 const unsigned *SuperRegs; // Super-register set
398 };
399
400TableGen uses the entire target description file (``.td``) to determine text
401names for the register (in the ``AsmName`` and ``Name`` fields of
402``TargetRegisterDesc``) and the relationships of other registers to the defined
403register (in the other ``TargetRegisterDesc`` fields). In this example, other
404definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
405aliases for one another, so TableGen generates a null-terminated array
406(``AL_AliasSet``) for this register alias set.
407
408The ``Register`` class is commonly used as a base class for more complex
409classes. In ``Target.td``, the ``Register`` class is the base for the
410``RegisterWithSubRegs`` class that is used to define registers that need to
411specify subregisters in the ``SubRegs`` list, as shown here:
412
413.. code-block:: llvm
414
415 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
416 let SubRegs = subregs;
417 }
418
419In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
420a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
421and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a
422feature common to these subclasses. Note the use of "``let``" expressions to
423override values that are initially defined in a superclass (such as ``SubRegs``
424field in the ``Rd`` class).
425
426.. code-block:: llvm
427
428 class SparcReg<string n> : Register<n> {
429 field bits<5> Num;
430 let Namespace = "SP";
431 }
432 // Ri - 32-bit integer registers
433 class Ri<bits<5> num, string n> :
434 SparcReg<n> {
435 let Num = num;
436 }
437 // Rf - 32-bit floating-point registers
438 class Rf<bits<5> num, string n> :
439 SparcReg<n> {
440 let Num = num;
441 }
442 // Rd - Slots in the FP register file for 64-bit floating-point values.
443 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
444 let Num = num;
445 let SubRegs = subregs;
446 }
447
448In the ``SparcRegisterInfo.td`` file, there are register definitions that
449utilize these subclasses of ``Register``, such as:
450
451.. code-block:: llvm
452
453 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
454 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
455 ...
456 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
457 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
458 ...
459 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
460 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
461
462The last two registers shown above (``D0`` and ``D1``) are double-precision
463floating-point registers that are aliases for pairs of single-precision
464floating-point sub-registers. In addition to aliases, the sub-register and
465super-register relationships of the defined register are in fields of a
466register's ``TargetRegisterDesc``.
467
468Defining a Register Class
469-------------------------
470
471The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
472object that represents a group of related registers and also defines the
473default allocation order of the registers. A target description file
474``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
475using the following class:
476
477.. code-block:: llvm
478
479 class RegisterClass<string namespace,
480 list<ValueType> regTypes, int alignment, dag regList> {
481 string Namespace = namespace;
482 list<ValueType> RegTypes = regTypes;
483 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
484 int Alignment = alignment;
485
486 // CopyCost is the cost of copying a value between two registers
487 // default value 1 means a single instruction
488 // A negative value means copying is extremely expensive or impossible
489 int CopyCost = 1;
490 dag MemberList = regList;
491
492 // for register classes that are subregisters of this class
493 list<RegisterClass> SubRegClassList = [];
494
495 code MethodProtos = [{}]; // to insert arbitrary code
496 code MethodBodies = [{}];
497 }
498
499To define a ``RegisterClass``, use the following 4 arguments:
500
501* The first argument of the definition is the name of the namespace.
502
503* The second argument is a list of ``ValueType`` register type values that are
504 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include
505 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
506 floating-point types (``f32``, ``f64``), and vector types (for example,
507 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass``
508 must have the same ``ValueType``, but some registers may store vector data in
509 different configurations. For example a register that can process a 128-bit
510 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
511 32-bit integers, and so on.
512
513* The third argument of the ``RegisterClass`` definition specifies the
514 alignment required of the registers when they are stored or loaded to
515 memory.
516
517* The final argument, ``regList``, specifies which registers are in this class.
518 If an alternative allocation order method is not specified, then ``regList``
519 also defines the order of allocation used by the register allocator. Besides
520 simply listing registers with ``(add R0, R1, ...)``, more advanced set
521 operators are available. See ``include/llvm/Target/Target.td`` for more
522 information.
523
524In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
525``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the
526first argument defines the namespace with the string "``SP``". ``FPRegs``
527defines a group of 32 single-precision floating-point registers (``F0`` to
528``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
529(``D0-D15``).
530
531.. code-block:: llvm
532
533 // F0, F1, F2, ..., F31
534 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
535
536 def DFPRegs : RegisterClass<"SP", [f64], 64,
537 (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
538 D9, D10, D11, D12, D13, D14, D15)>;
539
540 def IntRegs : RegisterClass<"SP", [i32], 32,
541 (add L0, L1, L2, L3, L4, L5, L6, L7,
542 I0, I1, I2, I3, I4, I5,
543 O0, O1, O2, O3, O4, O5, O7,
544 G1,
545 // Non-allocatable regs:
546 G2, G3, G4,
547 O6, // stack ptr
548 I6, // frame ptr
549 I7, // return address
550 G0, // constant zero
551 G5, G6, G7 // reserved for kernel
552 )>;
553
554Using ``SparcRegisterInfo.td`` with TableGen generates several output files
555that are intended for inclusion in other source code that you write.
556``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
557be included in the header file for the implementation of the SPARC register
558implementation that you write (``SparcRegisterInfo.h``). In
559``SparcGenRegisterInfo.h.inc`` a new structure is defined called
560``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also
561specifies types, based upon the defined register classes: ``DFPRegsClass``,
562``FPRegsClass``, and ``IntRegsClass``.
563
564``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
565included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
566implementation. The code below shows only the generated integer registers and
567associated register classes. The order of registers in ``IntRegs`` reflects
568the order in the definition of ``IntRegs`` in the target description file.
569
570.. code-block:: c++
571
572 // IntRegs Register Class...
573 static const unsigned IntRegs[] = {
574 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
575 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
576 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
577 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
578 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
579 SP::G6, SP::G7,
580 };
581
582 // IntRegsVTs Register Class Value Types...
583 static const MVT::ValueType IntRegsVTs[] = {
584 MVT::i32, MVT::Other
585 };
586
587 namespace SP { // Register class instances
588 DFPRegsClass DFPRegsRegClass;
589 FPRegsClass FPRegsRegClass;
590 IntRegsClass IntRegsRegClass;
591 ...
592 // IntRegs Sub-register Classess...
593 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
594 NULL
595 };
596 ...
597 // IntRegs Super-register Classess...
598 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
599 NULL
600 };
601 ...
602 // IntRegs Register Class sub-classes...
603 static const TargetRegisterClass* const IntRegsSubclasses [] = {
604 NULL
605 };
606 ...
607 // IntRegs Register Class super-classes...
608 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
609 NULL
610 };
611
612 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
613 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
614 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
615 }
616
617The register allocators will avoid using reserved registers, and callee saved
618registers are not used until all the volatile registers have been used. That
619is usually good enough, but in some cases it may be necessary to provide custom
620allocation orders.
621
622Implement a subclass of ``TargetRegisterInfo``
623----------------------------------------------
624
625The final step is to hand code portions of ``XXXRegisterInfo``, which
626implements the interface described in ``TargetRegisterInfo.h`` (see
627:ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or
628``false``, unless overridden. Here is a list of functions that are overridden
629for the SPARC implementation in ``SparcRegisterInfo.cpp``:
630
631* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
632 order of the desired callee-save stack frame offset.
633
634* ``getReservedRegs`` --- Returns a bitset indexed by physical register
635 numbers, indicating if a particular register is unavailable.
636
637* ``hasFP`` --- Return a Boolean indicating if a function should have a
638 dedicated frame pointer register.
639
640* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
641 instructions are used, this can be called to eliminate them.
642
643* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
644 instructions that may use them.
645
646* ``emitPrologue`` --- Insert prologue code into the function.
647
648* ``emitEpilogue`` --- Insert epilogue code into the function.
649
650.. _instruction-set:
651
652Instruction Set
653===============
654
655During the early stages of code generation, the LLVM IR code is converted to a
656``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
657containing target instructions. An ``SDNode`` has an opcode, operands, type
658requirements, and operation properties. For example, is an operation
659commutative, does an operation load from memory. The various operation node
660types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
661(values of the ``NodeType`` enum in the ``ISD`` namespace).
662
663TableGen uses the following target description (``.td``) input files to
664generate much of the code for instruction definition:
665
666* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
667 other fundamental classes are defined.
668
669* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
670 generators, contains ``SDTC*`` classes (selection DAG type constraint),
671 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
672 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
673 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
674
675* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
676 instructions.
677
678* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
679 condition codes, and instructions of an instruction set. For architecture
680 modifications, a different file name may be used. For example, for Pentium
681 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
682 MMX, this file is ``X86InstrMMX.td``.
683
684There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
685the target. The ``XXX.td`` file includes the other ``.td`` input files, but
686its contents are only directly important for subtargets.
687
688You should describe a concrete target-specific class ``XXXInstrInfo`` that
689represents machine instructions supported by a target machine.
690``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
691which describes one instruction. An instruction descriptor defines:
692
693* Opcode mnemonic
694* Number of operands
695* List of implicit register definitions and uses
696* Target-independent properties (such as memory access, is commutable)
697* Target-specific flags
698
699The Instruction class (defined in ``Target.td``) is mostly used as a base for
700more complex instruction classes.
701
702.. code-block:: llvm
703
704 class Instruction {
705 string Namespace = "";
706 dag OutOperandList; // A dag containing the MI def operand list.
707 dag InOperandList; // A dag containing the MI use operand list.
708 string AsmString = ""; // The .s format to print the instruction with.
709 list<dag> Pattern; // Set to the DAG pattern for this instruction.
710 list<Register> Uses = [];
711 list<Register> Defs = [];
712 list<Predicate> Predicates = []; // predicates turned into isel match code
713 ... remainder not shown for space ...
714 }
715
716A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
717target-specific instruction that is defined in ``XXXInstrInfo.td``. The
718instruction objects should represent instructions from the architecture manual
719of the target machine (such as the SPARC Architecture Manual for the SPARC
720target).
721
722A single instruction from the architecture manual is often modeled as multiple
723target instructions, depending upon its operands. For example, a manual might
724describe an add instruction that takes a register or an immediate operand. An
725LLVM target could model this with two instructions named ``ADDri`` and
726``ADDrr``.
727
728You should define a class for each instruction category and define each opcode
729as a subclass of the category with appropriate parameters such as the fixed
730binary encoding of opcodes and extended opcodes. You should map the register
731bits to the bits of the instruction in which they are encoded (for the JIT).
732Also you should specify how the instruction should be printed when the
733automatic assembly printer is used.
734
735As is described in the SPARC Architecture Manual, Version 8, there are three
736major 32-bit formats for instructions. Format 1 is only for the ``CALL``
737instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high
738bits of a register) instructions. Format 3 is for other instructions.
739
740Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
741``InstSP`` is a base class for other instruction classes. Additional base
742classes are specified for more precise formats: for example in
743``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
744branches. There are three other base classes: ``F3_1`` for register/register
745operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
746floating-point operations. ``SparcInstrInfo.td`` also adds the base class
747``Pseudo`` for synthetic SPARC instructions.
748
749``SparcInstrInfo.td`` largely consists of operand and instruction definitions
750for the SPARC target. In ``SparcInstrInfo.td``, the following target
751description file entry, ``LDrr``, defines the Load Integer instruction for a
752Word (the ``LD`` SPARC opcode) from a memory address to a register. The first
753parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
754category of operation. The second parameter (``000000``\ :sub:`2`) is the
755specific operation value for ``LD``/Load Word. The third parameter is the
756output destination, which is a register operand and defined in the ``Register``
757target description file (``IntRegs``).
758
759.. code-block:: llvm
760
761 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
762 "ld [$addr], $dst",
763 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
764
765The fourth parameter is the input source, which uses the address operand
766``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
767
768.. code-block:: llvm
769
770 def MEMrr : Operand<i32> {
771 let PrintMethod = "printMemOperand";
772 let MIOperandInfo = (ops IntRegs, IntRegs);
773 }
774
775The fifth parameter is a string that is used by the assembly printer and can be
776left as an empty string until the assembly printer interface is implemented.
777The sixth and final parameter is the pattern used to match the instruction
778during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
779This parameter is detailed in the next section, :ref:`instruction-selector`.
780
781Instruction class definitions are not overloaded for different operand types,
782so separate versions of instructions are needed for register, memory, or
783immediate value operands. For example, to perform a Load Integer instruction
784for a Word from an immediate operand to a register, the following instruction
785class is defined:
786
787.. code-block:: llvm
788
789 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
790 "ld [$addr], $dst",
791 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
792
793Writing these definitions for so many similar instructions can involve a lot of
794cut and paste. In ``.td`` files, the ``multiclass`` directive enables the
795creation of templates to define several instruction classes at once (using the
796``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass``
797pattern ``F3_12`` is defined to create 2 instruction classes each time
798``F3_12`` is invoked:
799
800.. code-block:: llvm
801
802 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
803 def rr : F3_1 <2, Op3Val,
804 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
805 !strconcat(OpcStr, " $b, $c, $dst"),
806 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
807 def ri : F3_2 <2, Op3Val,
808 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
809 !strconcat(OpcStr, " $b, $c, $dst"),
810 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
811 }
812
813So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
814instructions, as seen below, it creates four instruction objects: ``XORrr``,
815``XORri``, ``ADDrr``, and ``ADDri``.
816
817.. code-block:: llvm
818
819 defm XOR : F3_12<"xor", 0b000011, xor>;
820 defm ADD : F3_12<"add", 0b000000, add>;
821
822``SparcInstrInfo.td`` also includes definitions for condition codes that are
823referenced by branch instructions. The following definitions in
824``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
825For example, the 10\ :sup:`th` bit represents the "greater than" condition for
826integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
827floats.
828
829.. code-block:: llvm
830
831 def ICC_NE : ICC_VAL< 9>; // Not Equal
832 def ICC_E : ICC_VAL< 1>; // Equal
833 def ICC_G : ICC_VAL<10>; // Greater
834 ...
835 def FCC_U : FCC_VAL<23>; // Unordered
836 def FCC_G : FCC_VAL<22>; // Greater
837 def FCC_UG : FCC_VAL<21>; // Unordered or Greater
838 ...
839
840(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
841condition codes. Care must be taken to ensure the values in ``Sparc.h``
842correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``,
843``SPCC::FCC_U = 23`` and so on.)
844
845Instruction Operand Mapping
846---------------------------
847
848The code generator backend maps instruction operands to fields in the
849instruction. Operands are assigned to unbound fields in the instruction in the
850order they are defined. Fields are bound when they are assigned a value. For
851example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
852format instruction having three operands.
853
854.. code-block:: llvm
855
856 def XNORrr : F3_1<2, 0b000111,
857 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
858 "xnor $b, $c, $dst",
859 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
860
861The instruction templates in ``SparcInstrFormats.td`` show the base class for
862``F3_1`` is ``InstSP``.
863
864.. code-block:: llvm
865
866 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
867 field bits<32> Inst;
868 let Namespace = "SP";
869 bits<2> op;
870 let Inst{31-30} = op;
871 dag OutOperandList = outs;
872 dag InOperandList = ins;
873 let AsmString = asmstr;
874 let Pattern = pattern;
875 }
876
877``InstSP`` leaves the ``op`` field unbound.
878
879.. code-block:: llvm
880
881 class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
882 : InstSP<outs, ins, asmstr, pattern> {
883 bits<5> rd;
884 bits<6> op3;
885 bits<5> rs1;
886 let op{1} = 1; // Op = 2 or 3
887 let Inst{29-25} = rd;
888 let Inst{24-19} = op3;
889 let Inst{18-14} = rs1;
890 }
891
892``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
893fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
894``rs1`` fields.
895
896.. code-block:: llvm
897
898 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
899 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
900 bits<8> asi = 0; // asi not currently used
901 bits<5> rs2;
902 let op = opVal;
903 let op3 = op3val;
904 let Inst{13} = 0; // i field = 0
905 let Inst{12-5} = asi; // address space identifier
906 let Inst{4-0} = rs2;
907 }
908
909``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1``
910format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
911fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
912and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
913
914Instruction Relation Mapping
915----------------------------
916
917This TableGen feature is used to relate instructions with each other. It is
918particularly useful when you have multiple instruction formats and need to
919switch between them after instruction selection. This entire feature is driven
920by relation models which can be defined in ``XXXInstrInfo.td`` files
921according to the target-specific instruction set. Relation models are defined
922using ``InstrMapping`` class as a base. TableGen parses all the models
923and generates instruction relation maps using the specified information.
924Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
925along with the functions to query them. For the detailed information on how to
926use this feature, please refer to :doc:`HowToUseInstrMappings`.
927
928Implement a subclass of ``TargetInstrInfo``
929-------------------------------------------
930
931The final step is to hand code portions of ``XXXInstrInfo``, which implements
932the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
933These functions return ``0`` or a Boolean or they assert, unless overridden.
934Here's a list of functions that are overridden for the SPARC implementation in
935``SparcInstrInfo.cpp``:
936
937* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
938 load from a stack slot, return the register number of the destination and the
939 ``FrameIndex`` of the stack slot.
940
941* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
942 store to a stack slot, return the register number of the destination and the
943 ``FrameIndex`` of the stack slot.
944
945* ``copyPhysReg`` --- Copy values between a pair of physical registers.
946
947* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
948
949* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
950
951* ``storeRegToAddr`` --- Store a register value to memory.
952
953* ``loadRegFromAddr`` --- Load a register value from memory.
954
955* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
956 store instruction for the specified operand(s).
957
958Branch Folding and If Conversion
959--------------------------------
960
961Performance can be improved by combining instructions or by eliminating
962instructions that are never reached. The ``AnalyzeBranch`` method in
963``XXXInstrInfo`` may be implemented to examine conditional instructions and
964remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a
965machine basic block (MBB) for opportunities for improvement, such as branch
966folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine
967function passes (see the source files ``BranchFolding.cpp`` and
968``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
969to improve the control flow graph that represents the instructions.
970
971Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
972examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC
973does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
974shown below.
975
976``AnalyzeBranch`` returns a Boolean value and takes four parameters:
977
978* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
979
980* ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a
981 conditional branch that evaluates to true, ``TBB`` is the destination.
982
983* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
984 false, ``FBB`` is returned as the destination.
985
986* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
987 condition for a conditional branch.
988
989In the simplest case, if a block ends without a branch, then it falls through
990to the successor block. No destination blocks are specified for either ``TBB``
991or ``FBB``, so both parameters return ``NULL``. The start of the
992``AnalyzeBranch`` (see code below for the ARM target) shows the function
993parameters and the code for the simplest case.
994
995.. code-block:: c++
996
997 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
998 MachineBasicBlock *&TBB,
999 MachineBasicBlock *&FBB,
1000 std::vector<MachineOperand> &Cond) const
1001 {
1002 MachineBasicBlock::iterator I = MBB.end();
1003 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1004 return false;
1005
1006If a block ends with a single unconditional branch instruction, then
1007``AnalyzeBranch`` (shown below) should return the destination of that branch in
1008the ``TBB`` parameter.
1009
1010.. code-block:: c++
1011
1012 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1013 TBB = LastInst->getOperand(0).getMBB();
1014 return false;
1015 }
1016
1017If a block ends with two unconditional branches, then the second branch is
1018never reached. In that situation, as shown below, remove the last branch
1019instruction and return the penultimate branch in the ``TBB`` parameter.
1020
1021.. code-block:: c++
1022
1023 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1024 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1025 TBB = SecondLastInst->getOperand(0).getMBB();
1026 I = LastInst;
1027 I->eraseFromParent();
1028 return false;
1029 }
1030
1031A block may end with a single conditional branch instruction that falls through
1032to successor block if the condition evaluates to false. In that case,
1033``AnalyzeBranch`` (shown below) should return the destination of that
1034conditional branch in the ``TBB`` parameter and a list of operands in the
1035``Cond`` parameter to evaluate the condition.
1036
1037.. code-block:: c++
1038
1039 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1040 // Block ends with fall-through condbranch.
1041 TBB = LastInst->getOperand(0).getMBB();
1042 Cond.push_back(LastInst->getOperand(1));
1043 Cond.push_back(LastInst->getOperand(2));
1044 return false;
1045 }
1046
1047If a block ends with both a conditional branch and an ensuing unconditional
1048branch, then ``AnalyzeBranch`` (shown below) should return the conditional
1049branch destination (assuming it corresponds to a conditional evaluation of
1050"``true``") in the ``TBB`` parameter and the unconditional branch destination
1051in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A
1052list of operands to evaluate the condition should be returned in the ``Cond``
1053parameter.
1054
1055.. code-block:: c++
1056
1057 unsigned SecondLastOpc = SecondLastInst->getOpcode();
1058
1059 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1060 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1061 TBB = SecondLastInst->getOperand(0).getMBB();
1062 Cond.push_back(SecondLastInst->getOperand(1));
1063 Cond.push_back(SecondLastInst->getOperand(2));
1064 FBB = LastInst->getOperand(0).getMBB();
1065 return false;
1066 }
1067
1068For the last two cases (ending with a single conditional branch or ending with
1069one conditional and one unconditional branch), the operands returned in the
1070``Cond`` parameter can be passed to methods of other instructions to create new
1071branches or perform other operations. An implementation of ``AnalyzeBranch``
1072requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
1073subsequent operations.
1074
1075``AnalyzeBranch`` should return false indicating success in most circumstances.
1076``AnalyzeBranch`` should only return true when the method is stumped about what
1077to do, for example, if a block has three terminating branches.
1078``AnalyzeBranch`` may return true if it encounters a terminator it cannot
1079handle, such as an indirect branch.
1080
1081.. _instruction-selector:
1082
1083Instruction Selector
1084====================
1085
1086LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1087the ``SelectionDAG`` ideally represent native target instructions. During code
1088generation, instruction selection passes are performed to convert non-native
1089DAG instructions into native target-specific instructions. The pass described
1090in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1091instruction selection. Optionally, a pass may be defined (in
1092``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1093instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1094operations and data types not supported natively (legalizes) in a
1095``SelectionDAG``.
1096
1097TableGen generates code for instruction selection using the following target
1098description input files:
1099
1100* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1101 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1102 included in ``XXXISelDAGToDAG.cpp``.
1103
1104* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1105 for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1106 which is included in ``XXXISelLowering.cpp``.
1107
1108The implementation of an instruction selection pass must include a header that
1109declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In
1110``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1111selection pass into the queue of passes to run.
1112
1113The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1114contents of DAGs. To display the ``SelectionDAG`` before or after specific
1115processing phases, use the command line options for ``llc``, described at
1116:ref:`SelectionDAG-Process`.
1117
1118To describe instruction selector behavior, you should add patterns for lowering
1119LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1120definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``,
1121this entry defines a register store operation, and the last parameter describes
1122a pattern with the store DAG operator.
1123
1124.. code-block:: llvm
1125
1126 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1127 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>;
1128
1129``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1130
1131.. code-block:: llvm
1132
1133 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1134
1135The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1136defined in an implementation of the Instructor Selector (such as
1137``SparcISelDAGToDAG.cpp``).
1138
1139In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1140below:
1141
1142.. code-block:: llvm
1143
1144 def store : PatFrag<(ops node:$val, node:$ptr),
1145 (st node:$val, node:$ptr), [{
1146 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1147 return !ST->isTruncatingStore() &&
1148 ST->getAddressingMode() == ISD::UNINDEXED;
1149 return false;
1150 }]>;
1151
1152``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1153``SelectCode`` method that is used to call the appropriate processing method
1154for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1155for the ``ISD::STORE`` opcode.
1156
1157.. code-block:: c++
1158
1159 SDNode *SelectCode(SDValue N) {
1160 ...
1161 MVT::ValueType NVT = N.getNode()->getValueType(0);
1162 switch (N.getOpcode()) {
1163 case ISD::STORE: {
1164 switch (NVT) {
1165 default:
1166 return Select_ISD_STORE(N);
1167 break;
1168 }
1169 break;
1170 }
1171 ...
1172
1173The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1174code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method
1175is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1176instruction.
1177
1178.. code-block:: c++
1179
1180 SDNode *Select_ISD_STORE(const SDValue &N) {
1181 SDValue Chain = N.getOperand(0);
1182 if (Predicate_store(N.getNode())) {
1183 SDValue N1 = N.getOperand(1);
1184 SDValue N2 = N.getOperand(2);
1185 SDValue CPTmp0;
1186 SDValue CPTmp1;
1187
1188 // Pattern: (st:void IntRegs:i32:$src,
1189 // ADDRrr:i32:$addr)<<P:Predicate_store>>
1190 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1191 // Pattern complexity = 13 cost = 1 size = 0
1192 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1193 N1.getNode()->getValueType(0) == MVT::i32 &&
1194 N2.getNode()->getValueType(0) == MVT::i32) {
1195 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1196 }
1197 ...
1198
1199The SelectionDAG Legalize Phase
1200-------------------------------
1201
1202The Legalize phase converts a DAG to use types and operations that are natively
1203supported by the target. For natively unsupported types and operations, you
1204need to add code to the target-specific ``XXXTargetLowering`` implementation to
1205convert unsupported types and operations to supported ones.
1206
1207In the constructor for the ``XXXTargetLowering`` class, first use the
1208``addRegisterClass`` method to specify which types are supported and which
1209register classes are associated with them. The code for the register classes
1210are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1211``XXXGenRegisterInfo.h.inc``. For example, the implementation of the
1212constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1213starts with the following code:
1214
1215.. code-block:: c++
1216
1217 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1218 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1219 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1220
1221You should examine the node types in the ``ISD`` namespace
1222(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1223the target natively supports. For operations that do **not** have native
1224support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1225so the instruction selection process knows what to do. The ``TargetLowering``
1226class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1227
1228* ``setOperationAction`` --- General operation.
1229* ``setLoadExtAction`` --- Load with extension.
1230* ``setTruncStoreAction`` --- Truncating store.
1231* ``setIndexedLoadAction`` --- Indexed load.
1232* ``setIndexedStoreAction`` --- Indexed store.
1233* ``setConvertAction`` --- Type conversion.
1234* ``setCondCodeAction`` --- Support for a given condition code.
1235
1236Note: on older releases, ``setLoadXAction`` is used instead of
1237``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not
1238be supported. Examine your release to see what methods are specifically
1239supported.
1240
1241These callbacks are used to determine that an operation does or does not work
1242with a specified type (or types). And in all cases, the third parameter is a
1243``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1244``Legal``. ``SparcISelLowering.cpp`` contains examples of all four
1245``LegalAction`` values.
1246
1247Promote
1248^^^^^^^
1249
1250For an operation without native support for a given type, the specified type
1251may be promoted to a larger type that is supported. For example, SPARC does
1252not support a sign-extending load for Boolean values (``i1`` type), so in
1253``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1254``i1`` type values to a large type before loading.
1255
1256.. code-block:: c++
1257
1258 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1259
1260Expand
1261^^^^^^
1262
1263For a type without native support, a value may need to be broken down further,
1264rather than promoted. For an operation without native support, a combination
1265of other operations may be used to similar effect. In SPARC, the
1266floating-point sine and cosine trig operations are supported by expansion to
1267other operations, as indicated by the third parameter, ``Expand``, to
1268``setOperationAction``:
1269
1270.. code-block:: c++
1271
1272 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1273 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1274
1275Custom
1276^^^^^^
1277
1278For some operations, simple type promotion or operation expansion may be
1279insufficient. In some cases, a special intrinsic function must be implemented.
1280
1281For example, a constant value may require special treatment, or an operation
1282may require spilling and restoring registers in the stack and working with
1283register allocators.
1284
1285As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1286from a floating point value to a signed integer, first the
1287``setOperationAction`` should be called with ``Custom`` as the third parameter:
1288
1289.. code-block:: c++
1290
1291 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1292
1293In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1294statement should be added to indicate what function to call. In the following
1295code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1296
1297.. code-block:: c++
1298
1299 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1300 switch (Op.getOpcode()) {
1301 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1302 ...
1303 }
1304 }
1305
1306Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1307convert the floating-point value to an integer.
1308
1309.. code-block:: c++
1310
1311 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1312 assert(Op.getValueType() == MVT::i32);
1313 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1314 return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1315 }
1316
1317Legal
1318^^^^^
1319
1320The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1321**is** natively supported. ``Legal`` represents the default condition, so it
1322is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1323operation to count the bits set in an integer) is natively supported only for
1324SPARC v9. The following code enables the ``Expand`` conversion technique for
1325non-v9 SPARC implementations.
1326
1327.. code-block:: c++
1328
1329 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1330 ...
1331 if (TM.getSubtarget<SparcSubtarget>().isV9())
1332 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1333
1334Calling Conventions
1335-------------------
1336
1337To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1338interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1339``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor
1340file ``XXXGenCallingConv.td`` and generate the header file
1341``XXXGenCallingConv.inc``, which is typically included in
1342``XXXISelLowering.cpp``. You can use the interfaces in
1343``TargetCallingConv.td`` to specify:
1344
1345* The order of parameter allocation.
1346
1347* Where parameters and return values are placed (that is, on the stack or in
1348 registers).
1349
1350* Which registers may be used.
1351
1352* Whether the caller or callee unwinds the stack.
1353
1354The following example demonstrates the use of the ``CCIfType`` and
1355``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is,
1356if the current argument is of type ``f32`` or ``f64``), then the action is
1357performed. In this case, the ``CCAssignToReg`` action assigns the argument
1358value to the first available register: either ``R0`` or ``R1``.
1359
1360.. code-block:: llvm
1361
1362 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1363
1364``SparcCallingConv.td`` contains definitions for a target-specific return-value
1365calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1366(``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates
1367which registers are used for specified scalar return types. A single-precision
1368float is returned to register ``F0``, and a double-precision float goes to
1369register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``.
1370
1371.. code-block:: llvm
1372
1373 def RetCC_Sparc32 : CallingConv<[
1374 CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1375 CCIfType<[f32], CCAssignToReg<[F0]>>,
1376 CCIfType<[f64], CCAssignToReg<[D0]>>
1377 ]>;
1378
1379The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1380``CCAssignToStack``, which assigns the value to a stack slot with the specified
1381size and alignment. In the example below, the first parameter, 4, indicates
1382the size of the slot, and the second parameter, also 4, indicates the stack
1383alignment along 4-byte units. (Special cases: if size is zero, then the ABI
1384size is used; if alignment is zero, then the ABI alignment is used.)
1385
1386.. code-block:: llvm
1387
1388 def CC_Sparc32 : CallingConv<[
1389 // All arguments get passed in integer registers if there is space.
1390 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1391 CCAssignToStack<4, 4>
1392 ]>;
1393
1394``CCDelegateTo`` is another commonly used interface, which tries to find a
1395specified sub-calling convention, and, if a match is found, it is invoked. In
1396the following example (in ``X86CallingConv.td``), the definition of
1397``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is
1398assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1399invoked.
1400
1401.. code-block:: llvm
1402
1403 def RetCC_X86_32_C : CallingConv<[
1404 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1405 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1406 CCDelegateTo<RetCC_X86Common>
1407 ]>;
1408
1409``CCIfCC`` is an interface that attempts to match the given name to the current
1410calling convention. If the name identifies the current calling convention,
1411then a specified action is invoked. In the following example (in
1412``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1413``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in
1414use, then ``RetCC_X86_32_SSE`` is invoked.
1415
1416.. code-block:: llvm
1417
1418 def RetCC_X86_32 : CallingConv<[
1419 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1420 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1421 CCDelegateTo<RetCC_X86_32_C>
1422 ]>;
1423
1424Other calling convention interfaces include:
1425
1426* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1427
1428* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1429 attribute, then apply the action.
1430
1431* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1432 attribute, then apply the action.
1433
1434* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1435 variable number of arguments, apply the action.
1436
1437* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1438 ``CCAssignToReg``, but with a shadow list of registers.
1439
1440* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1441 minimum specified size and alignment.
1442
1443* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1444 type.
1445
1446* ``CallingConv <[actions]>`` --- Define each calling convention that is
1447 supported.
1448
1449Assembly Printer
1450================
1451
1452During the code emission stage, the code generator may utilize an LLVM pass to
1453produce assembly output. To do this, you want to implement the code for a
1454printer that converts LLVM IR to a GAS-format assembly language for your target
1455machine, using the following steps:
1456
1457* Define all the assembly strings for your target, adding them to the
1458 instructions defined in the ``XXXInstrInfo.td`` file. (See
1459 :ref:`instruction-set`.) TableGen will produce an output file
1460 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1461 method for the ``XXXAsmPrinter`` class.
1462
1463* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1464 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1465
1466* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1467 ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1468
1469* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1470 performs the LLVM-to-assembly conversion.
1471
1472The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1473``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly,
1474``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1475replacement values that override the default values in ``TargetAsmInfo.cpp``.
1476For example in ``SparcTargetAsmInfo.cpp``:
1477
1478.. code-block:: c++
1479
1480 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1481 Data16bitsDirective = "\t.half\t";
1482 Data32bitsDirective = "\t.word\t";
1483 Data64bitsDirective = 0; // .xword is only supported by V9.
1484 ZeroDirective = "\t.skip\t";
1485 CommentString = "!";
1486 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1487 }
1488
1489The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1490where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1491``ExpandInlineAsm``.
1492
1493A target-specific implementation of ``AsmPrinter`` is written in
1494``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1495the LLVM to printable assembly. The implementation must include the following
1496headers that have declarations for the ``AsmPrinter`` and
1497``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of
1498``FunctionPass``.
1499
1500.. code-block:: c++
1501
1502 #include "llvm/CodeGen/AsmPrinter.h"
1503 #include "llvm/CodeGen/MachineFunctionPass.h"
1504
1505As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1506up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is
1507instantiated to process variable names.
1508
1509In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1510``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In
1511``MachineFunctionPass``, the ``runOnFunction`` method invokes
1512``runOnMachineFunction``. Target-specific implementations of
1513``runOnMachineFunction`` differ, but generally do the following to process each
1514machine function:
1515
1516* Call ``SetupMachineFunction`` to perform initialization.
1517
1518* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1519 have been spilled to memory.
1520
1521* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1522 function.
1523
1524* Print out the label for the current function.
1525
1526* Print out the code for the function, including basic block labels and the
1527 assembly for the instruction (using ``printInstruction``)
1528
1529The ``XXXAsmPrinter`` implementation must also include the code generated by
1530TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in
1531``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1532method that may call these methods:
1533
1534* ``printOperand``
1535* ``printMemOperand``
1536* ``printCCOperand`` (for conditional statements)
1537* ``printDataDirective``
1538* ``printDeclare``
1539* ``printImplicitDef``
1540* ``printInlineAsm``
1541
1542The implementations of ``printDeclare``, ``printImplicitDef``,
1543``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1544adequate for printing assembly and do not need to be overridden.
1545
1546The ``printOperand`` method is implemented with a long ``switch``/``case``
1547statement for the type of operand: register, immediate, basic block, external
1548symbol, global address, constant pool index, or jump table index. For an
1549instruction with a memory address operand, the ``printMemOperand`` method
1550should be implemented to generate the proper output. Similarly,
1551``printCCOperand`` should be used to print a conditional operand.
1552
1553``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1554called to shut down the assembly printer. During ``doFinalization``, global
1555variables and constants are printed to output.
1556
1557Subtarget Support
1558=================
1559
1560Subtarget support is used to inform the code generation process of instruction
1561set variations for a given chip set. For example, the LLVM SPARC
1562implementation provided covers three major versions of the SPARC microprocessor
1563architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
156464-bit architecture), and the UltraSPARC architecture. V8 has 16
1565double-precision floating-point registers that are also usable as either 32
1566single-precision or 8 quad-precision registers. V8 is also purely big-endian.
1567V9 has 32 double-precision floating-point registers that are also usable as 16
1568quad-precision registers, but cannot be used as single-precision registers.
1569The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1570extensions.
1571
1572If subtarget support is needed, you should implement a target-specific
1573``XXXSubtarget`` class for your architecture. This class should process the
1574command-line options ``-mcpu=`` and ``-mattr=``.
1575
1576TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1577generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the
1578``SubtargetFeature`` interface is defined. The first 4 string parameters of
1579the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1580feature, the value of the attribute, and a description of the feature. (The
1581fifth parameter is a list of features whose presence is implied, and its
1582default value is an empty array.)
1583
1584.. code-block:: llvm
1585
1586 class SubtargetFeature<string n, string a, string v, string d,
1587 list<SubtargetFeature> i = []> {
1588 string Name = n;
1589 string Attribute = a;
1590 string Value = v;
1591 string Desc = d;
1592 list<SubtargetFeature> Implies = i;
1593 }
1594
1595In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1596following features.
1597
1598.. code-block:: llvm
1599
1600 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1601 "Enable SPARC-V9 instructions">;
1602 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1603 "V8DeprecatedInsts", "true",
1604 "Enable deprecated V8 instructions in V9 mode">;
1605 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1606 "Enable UltraSPARC Visual Instruction Set extensions">;
1607
1608Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1609define particular SPARC processor subtypes that may have the previously
1610described features.
1611
1612.. code-block:: llvm
1613
1614 class Proc<string Name, list<SubtargetFeature> Features>
1615 : Processor<Name, NoItineraries, Features>;
1616
1617 def : Proc<"generic", []>;
1618 def : Proc<"v8", []>;
1619 def : Proc<"supersparc", []>;
1620 def : Proc<"sparclite", []>;
1621 def : Proc<"f934", []>;
1622 def : Proc<"hypersparc", []>;
1623 def : Proc<"sparclite86x", []>;
1624 def : Proc<"sparclet", []>;
1625 def : Proc<"tsc701", []>;
1626 def : Proc<"v9", [FeatureV9]>;
1627 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>;
1628 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>;
1629 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1630
1631From ``Target.td`` and ``Sparc.td`` files, the resulting
1632``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1633arrays of constants to represent the CPU features and CPU subtypes, and the
1634``ParseSubtargetFeatures`` method that parses the features string that sets
1635specified subtarget options. The generated ``SparcGenSubtarget.inc`` file
1636should be included in the ``SparcSubtarget.cpp``. The target-specific
1637implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1638
1639.. code-block:: c++
1640
1641 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1642 // Set the default features
1643 // Determine default and user specified characteristics of the CPU
1644 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1645 // Perform any additional operations
1646 }
1647
1648JIT Support
1649===========
1650
1651The implementation of a target machine optionally includes a Just-In-Time (JIT)
1652code generator that emits machine code and auxiliary structures as binary
1653output that can be written directly to memory. To do this, implement JIT code
1654generation by performing the following steps:
1655
1656* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1657 that transforms target-machine instructions into relocatable machine
1658 code.
1659
1660* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1661 target-specific code-generation activities, such as emitting machine code and
1662 stubs.
1663
1664* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1665 through its ``getJITInfo`` method.
1666
1667There are several different approaches to writing the JIT support code. For
1668instance, TableGen and target descriptor files may be used for creating a JIT
1669code generator, but are not mandatory. For the Alpha and PowerPC target
1670machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1671contains the binary coding of machine instructions and the
1672``getBinaryCodeForInstr`` method to access those codes. Other JIT
1673implementations do not.
1674
1675Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1676``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1677``MachineCodeEmitter`` class containing code for several callback functions
1678that write data (in bytes, words, strings, etc.) to the output stream.
1679
1680Machine Code Emitter
1681--------------------
1682
1683In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1684implemented as a function pass (subclass of ``MachineFunctionPass``). The
1685target-specific implementation of ``runOnMachineFunction`` (invoked by
1686``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1687``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1688emit binary code. ``emitInstruction`` is largely implemented with case
1689statements on the instruction types defined in ``XXXInstrInfo.h``. For
1690example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1691around the following ``switch``/``case`` statements:
1692
1693.. code-block:: c++
1694
1695 switch (Desc->TSFlags & X86::FormMask) {
1696 case X86II::Pseudo: // for not yet implemented instructions
1697 ... // or pseudo-instructions
1698 break;
1699 case X86II::RawFrm: // for instructions with a fixed opcode value
1700 ...
1701 break;
1702 case X86II::AddRegFrm: // for instructions that have one register operand
1703 ... // added to their opcode
1704 break;
1705 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1706 ... // to specify a destination (register)
1707 break;
1708 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1709 ... // to specify a destination (memory)
1710 break;
1711 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1712 ... // to specify a source (register)
1713 break;
1714 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1715 ... // to specify a source (memory)
1716 break;
1717 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
1718 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
1719 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
1720 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
1721 ...
1722 break;
1723 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
1724 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
1725 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
1726 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
1727 ...
1728 break;
1729 case X86II::MRMInitReg: // for instructions whose source and
1730 ... // destination are the same register
1731 break;
1732 }
1733
1734The implementations of these case statements often first emit the opcode and
1735then get the operand(s). Then depending upon the operand, helper methods may
1736be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``,
1737for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1738the opcode added to the register operand. Then an object representing the
1739machine operand, ``MO1``, is extracted. The helper methods such as
1740``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1741``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1742(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1743``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1744and ``emitJumpTableAddress`` that emit the data into the output stream.)
1745
1746.. code-block:: c++
1747
1748 case X86II::AddRegFrm:
1749 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1750
1751 if (CurOp != NumOps) {
1752 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1753 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1754 if (MO1.isImmediate())
1755 emitConstant(MO1.getImm(), Size);
1756 else {
1757 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1758 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1759 if (Opcode == X86::MOV64ri)
1760 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
1761 if (MO1.isGlobalAddress()) {
1762 bool NeedStub = isa<Function>(MO1.getGlobal());
1763 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1764 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1765 NeedStub, isLazy);
1766 } else if (MO1.isExternalSymbol())
1767 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1768 else if (MO1.isConstantPoolIndex())
1769 emitConstPoolAddress(MO1.getIndex(), rt);
1770 else if (MO1.isJumpTableIndex())
1771 emitJumpTableAddress(MO1.getIndex(), rt);
1772 }
1773 }
1774 break;
1775
1776In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1777is a ``RelocationType`` enum that may be used to relocate addresses (for
1778example, a global address with a PIC base offset). The ``RelocationType`` enum
1779for that target is defined in the short target-specific ``XXXRelocations.h``
1780file. The ``RelocationType`` is used by the ``relocate`` method defined in
1781``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1782
1783For example, ``X86Relocations.h`` specifies the following relocation types for
1784the X86 addresses. In all four cases, the relocated value is added to the
1785value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1786there is an additional initial adjustment.
1787
1788.. code-block:: c++
1789
1790 enum RelocationType {
1791 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
1792 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
1793 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1794 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1795 };
1796
1797Target JIT Info
1798---------------
1799
1800``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1801code-generation activities, such as emitting machine code and stubs. At
1802minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1803
1804* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1805 function that is used for compilation.
1806
1807* ``emitFunctionStub`` --- Returns a native function with a specified address
1808 for a callback function.
1809
1810* ``relocate`` --- Changes the addresses of referenced globals, based on
1811 relocation types.
1812
1813* Callback function that are wrappers to a function stub that is used when the
1814 real target is not initially known.
1815
1816``getLazyResolverFunction`` is generally trivial to implement. It makes the
1817incoming parameter as the global ``JITCompilerFunction`` and returns the
1818callback function that will be used a function wrapper. For the Alpha target
1819(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1820simply:
1821
1822.. code-block:: c++
1823
1824 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1825 JITCompilerFn F) {
1826 JITCompilerFunction = F;
1827 return AlphaCompilationCallback;
1828 }
1829
1830For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1831more complicated, because it returns a different callback function for
1832processors with SSE instructions and XMM registers.
1833
1834The callback function initially saves and later restores the callee register
1835values, incoming arguments, and frame and return address. The callback
1836function needs low-level access to the registers or stack, so it is typically
1837implemented with assembler.
1838