Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame] | 1 | ============================================================ |
| 2 | Kaleidoscope: Extending the Language: User-defined Operators |
| 3 | ============================================================ |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | |
| 8 | Written by `Chris Lattner <mailto:sabre@nondot.org>`_ |
| 9 | |
| 10 | Chapter 6 Introduction |
| 11 | ====================== |
| 12 | |
| 13 | Welcome to Chapter 6 of the "`Implementing a language with |
| 14 | LLVM <index.html>`_" tutorial. At this point in our tutorial, we now |
| 15 | have a fully functional language that is fairly minimal, but also |
| 16 | useful. There is still one big problem with it, however. Our language |
| 17 | doesn't have many useful operators (like division, logical negation, or |
| 18 | even any comparisons besides less-than). |
| 19 | |
| 20 | This chapter of the tutorial takes a wild digression into adding |
| 21 | user-defined operators to the simple and beautiful Kaleidoscope |
| 22 | language. This digression now gives us a simple and ugly language in |
| 23 | some ways, but also a powerful one at the same time. One of the great |
| 24 | things about creating your own language is that you get to decide what |
| 25 | is good or bad. In this tutorial we'll assume that it is okay to use |
| 26 | this as a way to show some interesting parsing techniques. |
| 27 | |
| 28 | At the end of this tutorial, we'll run through an example Kaleidoscope |
| 29 | application that `renders the Mandelbrot set <#example>`_. This gives an |
| 30 | example of what you can build with Kaleidoscope and its feature set. |
| 31 | |
| 32 | User-defined Operators: the Idea |
| 33 | ================================ |
| 34 | |
| 35 | The "operator overloading" that we will add to Kaleidoscope is more |
| 36 | general than languages like C++. In C++, you are only allowed to |
| 37 | redefine existing operators: you can't programatically change the |
| 38 | grammar, introduce new operators, change precedence levels, etc. In this |
| 39 | chapter, we will add this capability to Kaleidoscope, which will let the |
| 40 | user round out the set of operators that are supported. |
| 41 | |
| 42 | The point of going into user-defined operators in a tutorial like this |
| 43 | is to show the power and flexibility of using a hand-written parser. |
| 44 | Thus far, the parser we have been implementing uses recursive descent |
| 45 | for most parts of the grammar and operator precedence parsing for the |
| 46 | expressions. See `Chapter 2 <LangImpl2.html>`_ for details. Without |
| 47 | using operator precedence parsing, it would be very difficult to allow |
| 48 | the programmer to introduce new operators into the grammar: the grammar |
| 49 | is dynamically extensible as the JIT runs. |
| 50 | |
| 51 | The two specific features we'll add are programmable unary operators |
| 52 | (right now, Kaleidoscope has no unary operators at all) as well as |
| 53 | binary operators. An example of this is: |
| 54 | |
| 55 | :: |
| 56 | |
| 57 | # Logical unary not. |
| 58 | def unary!(v) |
| 59 | if v then |
| 60 | 0 |
| 61 | else |
| 62 | 1; |
| 63 | |
| 64 | # Define > with the same precedence as <. |
| 65 | def binary> 10 (LHS RHS) |
| 66 | RHS < LHS; |
| 67 | |
| 68 | # Binary "logical or", (note that it does not "short circuit") |
| 69 | def binary| 5 (LHS RHS) |
| 70 | if LHS then |
| 71 | 1 |
| 72 | else if RHS then |
| 73 | 1 |
| 74 | else |
| 75 | 0; |
| 76 | |
| 77 | # Define = with slightly lower precedence than relationals. |
| 78 | def binary= 9 (LHS RHS) |
| 79 | !(LHS < RHS | LHS > RHS); |
| 80 | |
| 81 | Many languages aspire to being able to implement their standard runtime |
| 82 | library in the language itself. In Kaleidoscope, we can implement |
| 83 | significant parts of the language in the library! |
| 84 | |
| 85 | We will break down implementation of these features into two parts: |
| 86 | implementing support for user-defined binary operators and adding unary |
| 87 | operators. |
| 88 | |
| 89 | User-defined Binary Operators |
| 90 | ============================= |
| 91 | |
| 92 | Adding support for user-defined binary operators is pretty simple with |
| 93 | our current framework. We'll first add support for the unary/binary |
| 94 | keywords: |
| 95 | |
| 96 | .. code-block:: c++ |
| 97 | |
| 98 | enum Token { |
| 99 | ... |
| 100 | // operators |
| 101 | tok_binary = -11, tok_unary = -12 |
| 102 | }; |
| 103 | ... |
| 104 | static int gettok() { |
| 105 | ... |
| 106 | if (IdentifierStr == "for") return tok_for; |
| 107 | if (IdentifierStr == "in") return tok_in; |
| 108 | if (IdentifierStr == "binary") return tok_binary; |
| 109 | if (IdentifierStr == "unary") return tok_unary; |
| 110 | return tok_identifier; |
| 111 | |
| 112 | This just adds lexer support for the unary and binary keywords, like we |
| 113 | did in `previous chapters <LangImpl5.html#iflexer>`_. One nice thing |
| 114 | about our current AST, is that we represent binary operators with full |
| 115 | generalisation by using their ASCII code as the opcode. For our extended |
| 116 | operators, we'll use this same representation, so we don't need any new |
| 117 | AST or parser support. |
| 118 | |
| 119 | On the other hand, we have to be able to represent the definitions of |
| 120 | these new operators, in the "def binary\| 5" part of the function |
| 121 | definition. In our grammar so far, the "name" for the function |
| 122 | definition is parsed as the "prototype" production and into the |
| 123 | ``PrototypeAST`` AST node. To represent our new user-defined operators |
| 124 | as prototypes, we have to extend the ``PrototypeAST`` AST node like |
| 125 | this: |
| 126 | |
| 127 | .. code-block:: c++ |
| 128 | |
| 129 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 130 | /// which captures its argument names as well as if it is an operator. |
| 131 | class PrototypeAST { |
| 132 | std::string Name; |
| 133 | std::vector<std::string> Args; |
| 134 | bool isOperator; |
| 135 | unsigned Precedence; // Precedence if a binary op. |
| 136 | public: |
| 137 | PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| 138 | bool isoperator = false, unsigned prec = 0) |
| 139 | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| 140 | |
| 141 | bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| 142 | bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| 143 | |
| 144 | char getOperatorName() const { |
| 145 | assert(isUnaryOp() || isBinaryOp()); |
| 146 | return Name[Name.size()-1]; |
| 147 | } |
| 148 | |
| 149 | unsigned getBinaryPrecedence() const { return Precedence; } |
| 150 | |
| 151 | Function *Codegen(); |
| 152 | }; |
| 153 | |
| 154 | Basically, in addition to knowing a name for the prototype, we now keep |
| 155 | track of whether it was an operator, and if it was, what precedence |
| 156 | level the operator is at. The precedence is only used for binary |
| 157 | operators (as you'll see below, it just doesn't apply for unary |
| 158 | operators). Now that we have a way to represent the prototype for a |
| 159 | user-defined operator, we need to parse it: |
| 160 | |
| 161 | .. code-block:: c++ |
| 162 | |
| 163 | /// prototype |
| 164 | /// ::= id '(' id* ')' |
| 165 | /// ::= binary LETTER number? (id, id) |
| 166 | static PrototypeAST *ParsePrototype() { |
| 167 | std::string FnName; |
| 168 | |
| 169 | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| 170 | unsigned BinaryPrecedence = 30; |
| 171 | |
| 172 | switch (CurTok) { |
| 173 | default: |
| 174 | return ErrorP("Expected function name in prototype"); |
| 175 | case tok_identifier: |
| 176 | FnName = IdentifierStr; |
| 177 | Kind = 0; |
| 178 | getNextToken(); |
| 179 | break; |
| 180 | case tok_binary: |
| 181 | getNextToken(); |
| 182 | if (!isascii(CurTok)) |
| 183 | return ErrorP("Expected binary operator"); |
| 184 | FnName = "binary"; |
| 185 | FnName += (char)CurTok; |
| 186 | Kind = 2; |
| 187 | getNextToken(); |
| 188 | |
| 189 | // Read the precedence if present. |
| 190 | if (CurTok == tok_number) { |
| 191 | if (NumVal < 1 || NumVal > 100) |
| 192 | return ErrorP("Invalid precedecnce: must be 1..100"); |
| 193 | BinaryPrecedence = (unsigned)NumVal; |
| 194 | getNextToken(); |
| 195 | } |
| 196 | break; |
| 197 | } |
| 198 | |
| 199 | if (CurTok != '(') |
| 200 | return ErrorP("Expected '(' in prototype"); |
| 201 | |
| 202 | std::vector<std::string> ArgNames; |
| 203 | while (getNextToken() == tok_identifier) |
| 204 | ArgNames.push_back(IdentifierStr); |
| 205 | if (CurTok != ')') |
| 206 | return ErrorP("Expected ')' in prototype"); |
| 207 | |
| 208 | // success. |
| 209 | getNextToken(); // eat ')'. |
| 210 | |
| 211 | // Verify right number of names for operator. |
| 212 | if (Kind && ArgNames.size() != Kind) |
| 213 | return ErrorP("Invalid number of operands for operator"); |
| 214 | |
| 215 | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| 216 | } |
| 217 | |
| 218 | This is all fairly straightforward parsing code, and we have already |
| 219 | seen a lot of similar code in the past. One interesting part about the |
| 220 | code above is the couple lines that set up ``FnName`` for binary |
| 221 | operators. This builds names like "binary@" for a newly defined "@" |
| 222 | operator. This then takes advantage of the fact that symbol names in the |
| 223 | LLVM symbol table are allowed to have any character in them, including |
| 224 | embedded nul characters. |
| 225 | |
| 226 | The next interesting thing to add, is codegen support for these binary |
| 227 | operators. Given our current structure, this is a simple addition of a |
| 228 | default case for our existing binary operator node: |
| 229 | |
| 230 | .. code-block:: c++ |
| 231 | |
| 232 | Value *BinaryExprAST::Codegen() { |
| 233 | Value *L = LHS->Codegen(); |
| 234 | Value *R = RHS->Codegen(); |
| 235 | if (L == 0 || R == 0) return 0; |
| 236 | |
| 237 | switch (Op) { |
| 238 | case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| 239 | case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| 240 | case '*': return Builder.CreateFMul(L, R, "multmp"); |
| 241 | case '<': |
| 242 | L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| 243 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 244 | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| 245 | "booltmp"); |
| 246 | default: break; |
| 247 | } |
| 248 | |
| 249 | // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| 250 | // a call to it. |
| 251 | Function *F = TheModule->getFunction(std::string("binary")+Op); |
| 252 | assert(F && "binary operator not found!"); |
| 253 | |
| 254 | Value *Ops[2] = { L, R }; |
| 255 | return Builder.CreateCall(F, Ops, "binop"); |
| 256 | } |
| 257 | |
| 258 | As you can see above, the new code is actually really simple. It just |
| 259 | does a lookup for the appropriate operator in the symbol table and |
| 260 | generates a function call to it. Since user-defined operators are just |
| 261 | built as normal functions (because the "prototype" boils down to a |
| 262 | function with the right name) everything falls into place. |
| 263 | |
| 264 | The final piece of code we are missing, is a bit of top-level magic: |
| 265 | |
| 266 | .. code-block:: c++ |
| 267 | |
| 268 | Function *FunctionAST::Codegen() { |
| 269 | NamedValues.clear(); |
| 270 | |
| 271 | Function *TheFunction = Proto->Codegen(); |
| 272 | if (TheFunction == 0) |
| 273 | return 0; |
| 274 | |
| 275 | // If this is an operator, install it. |
| 276 | if (Proto->isBinaryOp()) |
| 277 | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| 278 | |
| 279 | // Create a new basic block to start insertion into. |
| 280 | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| 281 | Builder.SetInsertPoint(BB); |
| 282 | |
| 283 | if (Value *RetVal = Body->Codegen()) { |
| 284 | ... |
| 285 | |
| 286 | Basically, before codegening a function, if it is a user-defined |
| 287 | operator, we register it in the precedence table. This allows the binary |
| 288 | operator parsing logic we already have in place to handle it. Since we |
| 289 | are working on a fully-general operator precedence parser, this is all |
| 290 | we need to do to "extend the grammar". |
| 291 | |
| 292 | Now we have useful user-defined binary operators. This builds a lot on |
| 293 | the previous framework we built for other operators. Adding unary |
| 294 | operators is a bit more challenging, because we don't have any framework |
| 295 | for it yet - lets see what it takes. |
| 296 | |
| 297 | User-defined Unary Operators |
| 298 | ============================ |
| 299 | |
| 300 | Since we don't currently support unary operators in the Kaleidoscope |
| 301 | language, we'll need to add everything to support them. Above, we added |
| 302 | simple support for the 'unary' keyword to the lexer. In addition to |
| 303 | that, we need an AST node: |
| 304 | |
| 305 | .. code-block:: c++ |
| 306 | |
| 307 | /// UnaryExprAST - Expression class for a unary operator. |
| 308 | class UnaryExprAST : public ExprAST { |
| 309 | char Opcode; |
| 310 | ExprAST *Operand; |
| 311 | public: |
| 312 | UnaryExprAST(char opcode, ExprAST *operand) |
| 313 | : Opcode(opcode), Operand(operand) {} |
| 314 | virtual Value *Codegen(); |
| 315 | }; |
| 316 | |
| 317 | This AST node is very simple and obvious by now. It directly mirrors the |
| 318 | binary operator AST node, except that it only has one child. With this, |
| 319 | we need to add the parsing logic. Parsing a unary operator is pretty |
| 320 | simple: we'll add a new function to do it: |
| 321 | |
| 322 | .. code-block:: c++ |
| 323 | |
| 324 | /// unary |
| 325 | /// ::= primary |
| 326 | /// ::= '!' unary |
| 327 | static ExprAST *ParseUnary() { |
| 328 | // If the current token is not an operator, it must be a primary expr. |
| 329 | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| 330 | return ParsePrimary(); |
| 331 | |
| 332 | // If this is a unary operator, read it. |
| 333 | int Opc = CurTok; |
| 334 | getNextToken(); |
| 335 | if (ExprAST *Operand = ParseUnary()) |
| 336 | return new UnaryExprAST(Opc, Operand); |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | The grammar we add is pretty straightforward here. If we see a unary |
| 341 | operator when parsing a primary operator, we eat the operator as a |
| 342 | prefix and parse the remaining piece as another unary operator. This |
| 343 | allows us to handle multiple unary operators (e.g. "!!x"). Note that |
| 344 | unary operators can't have ambiguous parses like binary operators can, |
| 345 | so there is no need for precedence information. |
| 346 | |
| 347 | The problem with this function, is that we need to call ParseUnary from |
| 348 | somewhere. To do this, we change previous callers of ParsePrimary to |
| 349 | call ParseUnary instead: |
| 350 | |
| 351 | .. code-block:: c++ |
| 352 | |
| 353 | /// binoprhs |
| 354 | /// ::= ('+' unary)* |
| 355 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 356 | ... |
| 357 | // Parse the unary expression after the binary operator. |
| 358 | ExprAST *RHS = ParseUnary(); |
| 359 | if (!RHS) return 0; |
| 360 | ... |
| 361 | } |
| 362 | /// expression |
| 363 | /// ::= unary binoprhs |
| 364 | /// |
| 365 | static ExprAST *ParseExpression() { |
| 366 | ExprAST *LHS = ParseUnary(); |
| 367 | if (!LHS) return 0; |
| 368 | |
| 369 | return ParseBinOpRHS(0, LHS); |
| 370 | } |
| 371 | |
| 372 | With these two simple changes, we are now able to parse unary operators |
| 373 | and build the AST for them. Next up, we need to add parser support for |
| 374 | prototypes, to parse the unary operator prototype. We extend the binary |
| 375 | operator code above with: |
| 376 | |
| 377 | .. code-block:: c++ |
| 378 | |
| 379 | /// prototype |
| 380 | /// ::= id '(' id* ')' |
| 381 | /// ::= binary LETTER number? (id, id) |
| 382 | /// ::= unary LETTER (id) |
| 383 | static PrototypeAST *ParsePrototype() { |
| 384 | std::string FnName; |
| 385 | |
| 386 | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| 387 | unsigned BinaryPrecedence = 30; |
| 388 | |
| 389 | switch (CurTok) { |
| 390 | default: |
| 391 | return ErrorP("Expected function name in prototype"); |
| 392 | case tok_identifier: |
| 393 | FnName = IdentifierStr; |
| 394 | Kind = 0; |
| 395 | getNextToken(); |
| 396 | break; |
| 397 | case tok_unary: |
| 398 | getNextToken(); |
| 399 | if (!isascii(CurTok)) |
| 400 | return ErrorP("Expected unary operator"); |
| 401 | FnName = "unary"; |
| 402 | FnName += (char)CurTok; |
| 403 | Kind = 1; |
| 404 | getNextToken(); |
| 405 | break; |
| 406 | case tok_binary: |
| 407 | ... |
| 408 | |
| 409 | As with binary operators, we name unary operators with a name that |
| 410 | includes the operator character. This assists us at code generation |
| 411 | time. Speaking of, the final piece we need to add is codegen support for |
| 412 | unary operators. It looks like this: |
| 413 | |
| 414 | .. code-block:: c++ |
| 415 | |
| 416 | Value *UnaryExprAST::Codegen() { |
| 417 | Value *OperandV = Operand->Codegen(); |
| 418 | if (OperandV == 0) return 0; |
| 419 | |
| 420 | Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| 421 | if (F == 0) |
| 422 | return ErrorV("Unknown unary operator"); |
| 423 | |
| 424 | return Builder.CreateCall(F, OperandV, "unop"); |
| 425 | } |
| 426 | |
| 427 | This code is similar to, but simpler than, the code for binary |
| 428 | operators. It is simpler primarily because it doesn't need to handle any |
| 429 | predefined operators. |
| 430 | |
| 431 | Kicking the Tires |
| 432 | ================= |
| 433 | |
| 434 | It is somewhat hard to believe, but with a few simple extensions we've |
| 435 | covered in the last chapters, we have grown a real-ish language. With |
| 436 | this, we can do a lot of interesting things, including I/O, math, and a |
| 437 | bunch of other things. For example, we can now add a nice sequencing |
| 438 | operator (printd is defined to print out the specified value and a |
| 439 | newline): |
| 440 | |
| 441 | :: |
| 442 | |
| 443 | ready> extern printd(x); |
| 444 | Read extern: |
| 445 | declare double @printd(double) |
| 446 | |
| 447 | ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands. |
| 448 | .. |
| 449 | ready> printd(123) : printd(456) : printd(789); |
| 450 | 123.000000 |
| 451 | 456.000000 |
| 452 | 789.000000 |
| 453 | Evaluated to 0.000000 |
| 454 | |
| 455 | We can also define a bunch of other "primitive" operations, such as: |
| 456 | |
| 457 | :: |
| 458 | |
| 459 | # Logical unary not. |
| 460 | def unary!(v) |
| 461 | if v then |
| 462 | 0 |
| 463 | else |
| 464 | 1; |
| 465 | |
| 466 | # Unary negate. |
| 467 | def unary-(v) |
| 468 | 0-v; |
| 469 | |
| 470 | # Define > with the same precedence as <. |
| 471 | def binary> 10 (LHS RHS) |
| 472 | RHS < LHS; |
| 473 | |
| 474 | # Binary logical or, which does not short circuit. |
| 475 | def binary| 5 (LHS RHS) |
| 476 | if LHS then |
| 477 | 1 |
| 478 | else if RHS then |
| 479 | 1 |
| 480 | else |
| 481 | 0; |
| 482 | |
| 483 | # Binary logical and, which does not short circuit. |
| 484 | def binary& 6 (LHS RHS) |
| 485 | if !LHS then |
| 486 | 0 |
| 487 | else |
| 488 | !!RHS; |
| 489 | |
| 490 | # Define = with slightly lower precedence than relationals. |
| 491 | def binary = 9 (LHS RHS) |
| 492 | !(LHS < RHS | LHS > RHS); |
| 493 | |
| 494 | # Define ':' for sequencing: as a low-precedence operator that ignores operands |
| 495 | # and just returns the RHS. |
| 496 | def binary : 1 (x y) y; |
| 497 | |
| 498 | Given the previous if/then/else support, we can also define interesting |
| 499 | functions for I/O. For example, the following prints out a character |
| 500 | whose "density" reflects the value passed in: the lower the value, the |
| 501 | denser the character: |
| 502 | |
| 503 | :: |
| 504 | |
| 505 | ready> |
| 506 | |
| 507 | extern putchard(char) |
| 508 | def printdensity(d) |
| 509 | if d > 8 then |
| 510 | putchard(32) # ' ' |
| 511 | else if d > 4 then |
| 512 | putchard(46) # '.' |
| 513 | else if d > 2 then |
| 514 | putchard(43) # '+' |
| 515 | else |
| 516 | putchard(42); # '*' |
| 517 | ... |
| 518 | ready> printdensity(1): printdensity(2): printdensity(3): |
| 519 | printdensity(4): printdensity(5): printdensity(9): |
| 520 | putchard(10); |
| 521 | **++. |
| 522 | Evaluated to 0.000000 |
| 523 | |
| 524 | Based on these simple primitive operations, we can start to define more |
| 525 | interesting things. For example, here's a little function that solves |
| 526 | for the number of iterations it takes a function in the complex plane to |
| 527 | converge: |
| 528 | |
| 529 | :: |
| 530 | |
| 531 | # Determine whether the specific location diverges. |
| 532 | # Solve for z = z^2 + c in the complex plane. |
| 533 | def mandleconverger(real imag iters creal cimag) |
| 534 | if iters > 255 | (real*real + imag*imag > 4) then |
| 535 | iters |
| 536 | else |
| 537 | mandleconverger(real*real - imag*imag + creal, |
| 538 | 2*real*imag + cimag, |
| 539 | iters+1, creal, cimag); |
| 540 | |
| 541 | # Return the number of iterations required for the iteration to escape |
| 542 | def mandleconverge(real imag) |
| 543 | mandleconverger(real, imag, 0, real, imag); |
| 544 | |
| 545 | This "``z = z2 + c``" function is a beautiful little creature that is |
| 546 | the basis for computation of the `Mandelbrot |
| 547 | Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our |
| 548 | ``mandelconverge`` function returns the number of iterations that it |
| 549 | takes for a complex orbit to escape, saturating to 255. This is not a |
| 550 | very useful function by itself, but if you plot its value over a |
| 551 | two-dimensional plane, you can see the Mandelbrot set. Given that we are |
| 552 | limited to using putchard here, our amazing graphical output is limited, |
| 553 | but we can whip together something using the density plotter above: |
| 554 | |
| 555 | :: |
| 556 | |
| 557 | # Compute and plot the mandlebrot set with the specified 2 dimensional range |
| 558 | # info. |
| 559 | def mandelhelp(xmin xmax xstep ymin ymax ystep) |
| 560 | for y = ymin, y < ymax, ystep in ( |
| 561 | (for x = xmin, x < xmax, xstep in |
| 562 | printdensity(mandleconverge(x,y))) |
| 563 | : putchard(10) |
| 564 | ) |
| 565 | |
| 566 | # mandel - This is a convenient helper function for plotting the mandelbrot set |
| 567 | # from the specified position with the specified Magnification. |
| 568 | def mandel(realstart imagstart realmag imagmag) |
| 569 | mandelhelp(realstart, realstart+realmag*78, realmag, |
| 570 | imagstart, imagstart+imagmag*40, imagmag); |
| 571 | |
| 572 | Given this, we can try plotting out the mandlebrot set! Lets try it out: |
| 573 | |
| 574 | :: |
| 575 | |
| 576 | ready> mandel(-2.3, -1.3, 0.05, 0.07); |
| 577 | *******************************+++++++++++************************************* |
| 578 | *************************+++++++++++++++++++++++******************************* |
| 579 | **********************+++++++++++++++++++++++++++++**************************** |
| 580 | *******************+++++++++++++++++++++.. ...++++++++************************* |
| 581 | *****************++++++++++++++++++++++.... ...+++++++++*********************** |
| 582 | ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| 583 | **************+++++++++++++++++++++++.... ....+++++++++******************** |
| 584 | *************++++++++++++++++++++++...... .....++++++++******************* |
| 585 | ************+++++++++++++++++++++....... .......+++++++****************** |
| 586 | ***********+++++++++++++++++++.... ... .+++++++***************** |
| 587 | **********+++++++++++++++++....... .+++++++**************** |
| 588 | *********++++++++++++++........... ...+++++++*************** |
| 589 | ********++++++++++++............ ...++++++++************** |
| 590 | ********++++++++++... .......... .++++++++************** |
| 591 | *******+++++++++..... .+++++++++************* |
| 592 | *******++++++++...... ..+++++++++************* |
| 593 | *******++++++....... ..+++++++++************* |
| 594 | *******+++++...... ..+++++++++************* |
| 595 | *******.... .... ...+++++++++************* |
| 596 | *******.... . ...+++++++++************* |
| 597 | *******+++++...... ...+++++++++************* |
| 598 | *******++++++....... ..+++++++++************* |
| 599 | *******++++++++...... .+++++++++************* |
| 600 | *******+++++++++..... ..+++++++++************* |
| 601 | ********++++++++++... .......... .++++++++************** |
| 602 | ********++++++++++++............ ...++++++++************** |
| 603 | *********++++++++++++++.......... ...+++++++*************** |
| 604 | **********++++++++++++++++........ .+++++++**************** |
| 605 | **********++++++++++++++++++++.... ... ..+++++++**************** |
| 606 | ***********++++++++++++++++++++++....... .......++++++++***************** |
| 607 | ************+++++++++++++++++++++++...... ......++++++++****************** |
| 608 | **************+++++++++++++++++++++++.... ....++++++++******************** |
| 609 | ***************+++++++++++++++++++++++..... ...+++++++++********************* |
| 610 | *****************++++++++++++++++++++++.... ...++++++++*********************** |
| 611 | *******************+++++++++++++++++++++......++++++++************************* |
| 612 | *********************++++++++++++++++++++++.++++++++*************************** |
| 613 | *************************+++++++++++++++++++++++******************************* |
| 614 | ******************************+++++++++++++************************************ |
| 615 | ******************************************************************************* |
| 616 | ******************************************************************************* |
| 617 | ******************************************************************************* |
| 618 | Evaluated to 0.000000 |
| 619 | ready> mandel(-2, -1, 0.02, 0.04); |
| 620 | **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 621 | ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| 622 | *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. |
| 623 | *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... |
| 624 | *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... |
| 625 | ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ |
| 626 | **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... |
| 627 | ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. |
| 628 | ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ . |
| 629 | **********++++++++++++++++++++++++++++++++++++++++++++++............. |
| 630 | ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| 631 | *******+++++++++++++++++++++++++++++++++++++++....................... |
| 632 | ******+++++++++++++++++++++++++++++++++++........................... |
| 633 | *****++++++++++++++++++++++++++++++++............................ |
| 634 | *****++++++++++++++++++++++++++++............................... |
| 635 | ****++++++++++++++++++++++++++...... ......................... |
| 636 | ***++++++++++++++++++++++++......... ...... ........... |
| 637 | ***++++++++++++++++++++++............ |
| 638 | **+++++++++++++++++++++.............. |
| 639 | **+++++++++++++++++++................ |
| 640 | *++++++++++++++++++................. |
| 641 | *++++++++++++++++............ ... |
| 642 | *++++++++++++++.............. |
| 643 | *+++....++++................ |
| 644 | *.......... ........... |
| 645 | * |
| 646 | *.......... ........... |
| 647 | *+++....++++................ |
| 648 | *++++++++++++++.............. |
| 649 | *++++++++++++++++............ ... |
| 650 | *++++++++++++++++++................. |
| 651 | **+++++++++++++++++++................ |
| 652 | **+++++++++++++++++++++.............. |
| 653 | ***++++++++++++++++++++++............ |
| 654 | ***++++++++++++++++++++++++......... ...... ........... |
| 655 | ****++++++++++++++++++++++++++...... ......................... |
| 656 | *****++++++++++++++++++++++++++++............................... |
| 657 | *****++++++++++++++++++++++++++++++++............................ |
| 658 | ******+++++++++++++++++++++++++++++++++++........................... |
| 659 | *******+++++++++++++++++++++++++++++++++++++++....................... |
| 660 | ********+++++++++++++++++++++++++++++++++++++++++++.................. |
| 661 | Evaluated to 0.000000 |
| 662 | ready> mandel(-0.9, -1.4, 0.02, 0.03); |
| 663 | ******************************************************************************* |
| 664 | ******************************************************************************* |
| 665 | ******************************************************************************* |
| 666 | **********+++++++++++++++++++++************************************************ |
| 667 | *+++++++++++++++++++++++++++++++++++++++*************************************** |
| 668 | +++++++++++++++++++++++++++++++++++++++++++++********************************** |
| 669 | ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** |
| 670 | ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* |
| 671 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** |
| 672 | +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* |
| 673 | +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++**************** |
| 674 | +++++++++++++++++++++++++++++....... ........+++++++++++++++++++************** |
| 675 | ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************ |
| 676 | +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++********** |
| 677 | ++++++++++++++++++++++++++........... ....++++++++++++++++++++++******** |
| 678 | ++++++++++++++++++++++++............. .......++++++++++++++++++++++****** |
| 679 | +++++++++++++++++++++++............. ........+++++++++++++++++++++++**** |
| 680 | ++++++++++++++++++++++........... ..........++++++++++++++++++++++*** |
| 681 | ++++++++++++++++++++........... .........++++++++++++++++++++++* |
| 682 | ++++++++++++++++++............ ...........++++++++++++++++++++ |
| 683 | ++++++++++++++++............... .............++++++++++++++++++ |
| 684 | ++++++++++++++................. ...............++++++++++++++++ |
| 685 | ++++++++++++.................. .................++++++++++++++ |
| 686 | +++++++++.................. .................+++++++++++++ |
| 687 | ++++++........ . ......... ..++++++++++++ |
| 688 | ++............ ...... ....++++++++++ |
| 689 | .............. ...++++++++++ |
| 690 | .............. ....+++++++++ |
| 691 | .............. .....++++++++ |
| 692 | ............. ......++++++++ |
| 693 | ........... .......++++++++ |
| 694 | ......... ........+++++++ |
| 695 | ......... ........+++++++ |
| 696 | ......... ....+++++++ |
| 697 | ........ ...+++++++ |
| 698 | ....... ...+++++++ |
| 699 | ....+++++++ |
| 700 | .....+++++++ |
| 701 | ....+++++++ |
| 702 | ....+++++++ |
| 703 | ....+++++++ |
| 704 | Evaluated to 0.000000 |
| 705 | ready> ^D |
| 706 | |
| 707 | At this point, you may be starting to realize that Kaleidoscope is a |
| 708 | real and powerful language. It may not be self-similar :), but it can be |
| 709 | used to plot things that are! |
| 710 | |
| 711 | With this, we conclude the "adding user-defined operators" chapter of |
| 712 | the tutorial. We have successfully augmented our language, adding the |
| 713 | ability to extend the language in the library, and we have shown how |
| 714 | this can be used to build a simple but interesting end-user application |
| 715 | in Kaleidoscope. At this point, Kaleidoscope can build a variety of |
| 716 | applications that are functional and can call functions with |
| 717 | side-effects, but it can't actually define and mutate a variable itself. |
| 718 | |
| 719 | Strikingly, variable mutation is an important feature of some languages, |
| 720 | and it is not at all obvious how to `add support for mutable |
| 721 | variables <LangImpl7.html>`_ without having to add an "SSA construction" |
| 722 | phase to your front-end. In the next chapter, we will describe how you |
| 723 | can add variable mutation without building SSA in your front-end. |
| 724 | |
| 725 | Full Code Listing |
| 726 | ================= |
| 727 | |
| 728 | Here is the complete code listing for our running example, enhanced with |
| 729 | the if/then/else and for expressions.. To build this example, use: |
| 730 | |
| 731 | .. code-block:: bash |
| 732 | |
| 733 | # Compile |
| 734 | clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| 735 | # Run |
| 736 | ./toy |
| 737 | |
| 738 | On some platforms, you will need to specify -rdynamic or |
| 739 | -Wl,--export-dynamic when linking. This ensures that symbols defined in |
| 740 | the main executable are exported to the dynamic linker and so are |
| 741 | available for symbol resolution at run time. This is not needed if you |
| 742 | compile your support code into a shared library, although doing that |
| 743 | will cause problems on Windows. |
| 744 | |
| 745 | Here is the code: |
| 746 | |
| 747 | .. code-block:: c++ |
| 748 | |
| 749 | #include "llvm/DerivedTypes.h" |
| 750 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 751 | #include "llvm/ExecutionEngine/JIT.h" |
| 752 | #include "llvm/IRBuilder.h" |
| 753 | #include "llvm/LLVMContext.h" |
| 754 | #include "llvm/Module.h" |
| 755 | #include "llvm/PassManager.h" |
| 756 | #include "llvm/Analysis/Verifier.h" |
| 757 | #include "llvm/Analysis/Passes.h" |
| 758 | #include "llvm/DataLayout.h" |
| 759 | #include "llvm/Transforms/Scalar.h" |
| 760 | #include "llvm/Support/TargetSelect.h" |
| 761 | #include <cstdio> |
| 762 | #include <string> |
| 763 | #include <map> |
| 764 | #include <vector> |
| 765 | using namespace llvm; |
| 766 | |
| 767 | //===----------------------------------------------------------------------===// |
| 768 | // Lexer |
| 769 | //===----------------------------------------------------------------------===// |
| 770 | |
| 771 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 772 | // of these for known things. |
| 773 | enum Token { |
| 774 | tok_eof = -1, |
| 775 | |
| 776 | // commands |
| 777 | tok_def = -2, tok_extern = -3, |
| 778 | |
| 779 | // primary |
| 780 | tok_identifier = -4, tok_number = -5, |
| 781 | |
| 782 | // control |
| 783 | tok_if = -6, tok_then = -7, tok_else = -8, |
| 784 | tok_for = -9, tok_in = -10, |
| 785 | |
| 786 | // operators |
| 787 | tok_binary = -11, tok_unary = -12 |
| 788 | }; |
| 789 | |
| 790 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 791 | static double NumVal; // Filled in if tok_number |
| 792 | |
| 793 | /// gettok - Return the next token from standard input. |
| 794 | static int gettok() { |
| 795 | static int LastChar = ' '; |
| 796 | |
| 797 | // Skip any whitespace. |
| 798 | while (isspace(LastChar)) |
| 799 | LastChar = getchar(); |
| 800 | |
| 801 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 802 | IdentifierStr = LastChar; |
| 803 | while (isalnum((LastChar = getchar()))) |
| 804 | IdentifierStr += LastChar; |
| 805 | |
| 806 | if (IdentifierStr == "def") return tok_def; |
| 807 | if (IdentifierStr == "extern") return tok_extern; |
| 808 | if (IdentifierStr == "if") return tok_if; |
| 809 | if (IdentifierStr == "then") return tok_then; |
| 810 | if (IdentifierStr == "else") return tok_else; |
| 811 | if (IdentifierStr == "for") return tok_for; |
| 812 | if (IdentifierStr == "in") return tok_in; |
| 813 | if (IdentifierStr == "binary") return tok_binary; |
| 814 | if (IdentifierStr == "unary") return tok_unary; |
| 815 | return tok_identifier; |
| 816 | } |
| 817 | |
| 818 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 819 | std::string NumStr; |
| 820 | do { |
| 821 | NumStr += LastChar; |
| 822 | LastChar = getchar(); |
| 823 | } while (isdigit(LastChar) || LastChar == '.'); |
| 824 | |
| 825 | NumVal = strtod(NumStr.c_str(), 0); |
| 826 | return tok_number; |
| 827 | } |
| 828 | |
| 829 | if (LastChar == '#') { |
| 830 | // Comment until end of line. |
| 831 | do LastChar = getchar(); |
| 832 | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| 833 | |
| 834 | if (LastChar != EOF) |
| 835 | return gettok(); |
| 836 | } |
| 837 | |
| 838 | // Check for end of file. Don't eat the EOF. |
| 839 | if (LastChar == EOF) |
| 840 | return tok_eof; |
| 841 | |
| 842 | // Otherwise, just return the character as its ascii value. |
| 843 | int ThisChar = LastChar; |
| 844 | LastChar = getchar(); |
| 845 | return ThisChar; |
| 846 | } |
| 847 | |
| 848 | //===----------------------------------------------------------------------===// |
| 849 | // Abstract Syntax Tree (aka Parse Tree) |
| 850 | //===----------------------------------------------------------------------===// |
| 851 | |
| 852 | /// ExprAST - Base class for all expression nodes. |
| 853 | class ExprAST { |
| 854 | public: |
| 855 | virtual ~ExprAST() {} |
| 856 | virtual Value *Codegen() = 0; |
| 857 | }; |
| 858 | |
| 859 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 860 | class NumberExprAST : public ExprAST { |
| 861 | double Val; |
| 862 | public: |
| 863 | NumberExprAST(double val) : Val(val) {} |
| 864 | virtual Value *Codegen(); |
| 865 | }; |
| 866 | |
| 867 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 868 | class VariableExprAST : public ExprAST { |
| 869 | std::string Name; |
| 870 | public: |
| 871 | VariableExprAST(const std::string &name) : Name(name) {} |
| 872 | virtual Value *Codegen(); |
| 873 | }; |
| 874 | |
| 875 | /// UnaryExprAST - Expression class for a unary operator. |
| 876 | class UnaryExprAST : public ExprAST { |
| 877 | char Opcode; |
| 878 | ExprAST *Operand; |
| 879 | public: |
| 880 | UnaryExprAST(char opcode, ExprAST *operand) |
| 881 | : Opcode(opcode), Operand(operand) {} |
| 882 | virtual Value *Codegen(); |
| 883 | }; |
| 884 | |
| 885 | /// BinaryExprAST - Expression class for a binary operator. |
| 886 | class BinaryExprAST : public ExprAST { |
| 887 | char Op; |
| 888 | ExprAST *LHS, *RHS; |
| 889 | public: |
| 890 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 891 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 892 | virtual Value *Codegen(); |
| 893 | }; |
| 894 | |
| 895 | /// CallExprAST - Expression class for function calls. |
| 896 | class CallExprAST : public ExprAST { |
| 897 | std::string Callee; |
| 898 | std::vector<ExprAST*> Args; |
| 899 | public: |
| 900 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 901 | : Callee(callee), Args(args) {} |
| 902 | virtual Value *Codegen(); |
| 903 | }; |
| 904 | |
| 905 | /// IfExprAST - Expression class for if/then/else. |
| 906 | class IfExprAST : public ExprAST { |
| 907 | ExprAST *Cond, *Then, *Else; |
| 908 | public: |
| 909 | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| 910 | : Cond(cond), Then(then), Else(_else) {} |
| 911 | virtual Value *Codegen(); |
| 912 | }; |
| 913 | |
| 914 | /// ForExprAST - Expression class for for/in. |
| 915 | class ForExprAST : public ExprAST { |
| 916 | std::string VarName; |
| 917 | ExprAST *Start, *End, *Step, *Body; |
| 918 | public: |
| 919 | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| 920 | ExprAST *step, ExprAST *body) |
| 921 | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| 922 | virtual Value *Codegen(); |
| 923 | }; |
| 924 | |
| 925 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 926 | /// which captures its name, and its argument names (thus implicitly the number |
| 927 | /// of arguments the function takes), as well as if it is an operator. |
| 928 | class PrototypeAST { |
| 929 | std::string Name; |
| 930 | std::vector<std::string> Args; |
| 931 | bool isOperator; |
| 932 | unsigned Precedence; // Precedence if a binary op. |
| 933 | public: |
| 934 | PrototypeAST(const std::string &name, const std::vector<std::string> &args, |
| 935 | bool isoperator = false, unsigned prec = 0) |
| 936 | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} |
| 937 | |
| 938 | bool isUnaryOp() const { return isOperator && Args.size() == 1; } |
| 939 | bool isBinaryOp() const { return isOperator && Args.size() == 2; } |
| 940 | |
| 941 | char getOperatorName() const { |
| 942 | assert(isUnaryOp() || isBinaryOp()); |
| 943 | return Name[Name.size()-1]; |
| 944 | } |
| 945 | |
| 946 | unsigned getBinaryPrecedence() const { return Precedence; } |
| 947 | |
| 948 | Function *Codegen(); |
| 949 | }; |
| 950 | |
| 951 | /// FunctionAST - This class represents a function definition itself. |
| 952 | class FunctionAST { |
| 953 | PrototypeAST *Proto; |
| 954 | ExprAST *Body; |
| 955 | public: |
| 956 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 957 | : Proto(proto), Body(body) {} |
| 958 | |
| 959 | Function *Codegen(); |
| 960 | }; |
| 961 | |
| 962 | //===----------------------------------------------------------------------===// |
| 963 | // Parser |
| 964 | //===----------------------------------------------------------------------===// |
| 965 | |
| 966 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 967 | /// token the parser is looking at. getNextToken reads another token from the |
| 968 | /// lexer and updates CurTok with its results. |
| 969 | static int CurTok; |
| 970 | static int getNextToken() { |
| 971 | return CurTok = gettok(); |
| 972 | } |
| 973 | |
| 974 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 975 | /// defined. |
| 976 | static std::map<char, int> BinopPrecedence; |
| 977 | |
| 978 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 979 | static int GetTokPrecedence() { |
| 980 | if (!isascii(CurTok)) |
| 981 | return -1; |
| 982 | |
| 983 | // Make sure it's a declared binop. |
| 984 | int TokPrec = BinopPrecedence[CurTok]; |
| 985 | if (TokPrec <= 0) return -1; |
| 986 | return TokPrec; |
| 987 | } |
| 988 | |
| 989 | /// Error* - These are little helper functions for error handling. |
| 990 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 991 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 992 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 993 | |
| 994 | static ExprAST *ParseExpression(); |
| 995 | |
| 996 | /// identifierexpr |
| 997 | /// ::= identifier |
| 998 | /// ::= identifier '(' expression* ')' |
| 999 | static ExprAST *ParseIdentifierExpr() { |
| 1000 | std::string IdName = IdentifierStr; |
| 1001 | |
| 1002 | getNextToken(); // eat identifier. |
| 1003 | |
| 1004 | if (CurTok != '(') // Simple variable ref. |
| 1005 | return new VariableExprAST(IdName); |
| 1006 | |
| 1007 | // Call. |
| 1008 | getNextToken(); // eat ( |
| 1009 | std::vector<ExprAST*> Args; |
| 1010 | if (CurTok != ')') { |
| 1011 | while (1) { |
| 1012 | ExprAST *Arg = ParseExpression(); |
| 1013 | if (!Arg) return 0; |
| 1014 | Args.push_back(Arg); |
| 1015 | |
| 1016 | if (CurTok == ')') break; |
| 1017 | |
| 1018 | if (CurTok != ',') |
| 1019 | return Error("Expected ')' or ',' in argument list"); |
| 1020 | getNextToken(); |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | // Eat the ')'. |
| 1025 | getNextToken(); |
| 1026 | |
| 1027 | return new CallExprAST(IdName, Args); |
| 1028 | } |
| 1029 | |
| 1030 | /// numberexpr ::= number |
| 1031 | static ExprAST *ParseNumberExpr() { |
| 1032 | ExprAST *Result = new NumberExprAST(NumVal); |
| 1033 | getNextToken(); // consume the number |
| 1034 | return Result; |
| 1035 | } |
| 1036 | |
| 1037 | /// parenexpr ::= '(' expression ')' |
| 1038 | static ExprAST *ParseParenExpr() { |
| 1039 | getNextToken(); // eat (. |
| 1040 | ExprAST *V = ParseExpression(); |
| 1041 | if (!V) return 0; |
| 1042 | |
| 1043 | if (CurTok != ')') |
| 1044 | return Error("expected ')'"); |
| 1045 | getNextToken(); // eat ). |
| 1046 | return V; |
| 1047 | } |
| 1048 | |
| 1049 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| 1050 | static ExprAST *ParseIfExpr() { |
| 1051 | getNextToken(); // eat the if. |
| 1052 | |
| 1053 | // condition. |
| 1054 | ExprAST *Cond = ParseExpression(); |
| 1055 | if (!Cond) return 0; |
| 1056 | |
| 1057 | if (CurTok != tok_then) |
| 1058 | return Error("expected then"); |
| 1059 | getNextToken(); // eat the then |
| 1060 | |
| 1061 | ExprAST *Then = ParseExpression(); |
| 1062 | if (Then == 0) return 0; |
| 1063 | |
| 1064 | if (CurTok != tok_else) |
| 1065 | return Error("expected else"); |
| 1066 | |
| 1067 | getNextToken(); |
| 1068 | |
| 1069 | ExprAST *Else = ParseExpression(); |
| 1070 | if (!Else) return 0; |
| 1071 | |
| 1072 | return new IfExprAST(Cond, Then, Else); |
| 1073 | } |
| 1074 | |
| 1075 | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| 1076 | static ExprAST *ParseForExpr() { |
| 1077 | getNextToken(); // eat the for. |
| 1078 | |
| 1079 | if (CurTok != tok_identifier) |
| 1080 | return Error("expected identifier after for"); |
| 1081 | |
| 1082 | std::string IdName = IdentifierStr; |
| 1083 | getNextToken(); // eat identifier. |
| 1084 | |
| 1085 | if (CurTok != '=') |
| 1086 | return Error("expected '=' after for"); |
| 1087 | getNextToken(); // eat '='. |
| 1088 | |
| 1089 | |
| 1090 | ExprAST *Start = ParseExpression(); |
| 1091 | if (Start == 0) return 0; |
| 1092 | if (CurTok != ',') |
| 1093 | return Error("expected ',' after for start value"); |
| 1094 | getNextToken(); |
| 1095 | |
| 1096 | ExprAST *End = ParseExpression(); |
| 1097 | if (End == 0) return 0; |
| 1098 | |
| 1099 | // The step value is optional. |
| 1100 | ExprAST *Step = 0; |
| 1101 | if (CurTok == ',') { |
| 1102 | getNextToken(); |
| 1103 | Step = ParseExpression(); |
| 1104 | if (Step == 0) return 0; |
| 1105 | } |
| 1106 | |
| 1107 | if (CurTok != tok_in) |
| 1108 | return Error("expected 'in' after for"); |
| 1109 | getNextToken(); // eat 'in'. |
| 1110 | |
| 1111 | ExprAST *Body = ParseExpression(); |
| 1112 | if (Body == 0) return 0; |
| 1113 | |
| 1114 | return new ForExprAST(IdName, Start, End, Step, Body); |
| 1115 | } |
| 1116 | |
| 1117 | /// primary |
| 1118 | /// ::= identifierexpr |
| 1119 | /// ::= numberexpr |
| 1120 | /// ::= parenexpr |
| 1121 | /// ::= ifexpr |
| 1122 | /// ::= forexpr |
| 1123 | static ExprAST *ParsePrimary() { |
| 1124 | switch (CurTok) { |
| 1125 | default: return Error("unknown token when expecting an expression"); |
| 1126 | case tok_identifier: return ParseIdentifierExpr(); |
| 1127 | case tok_number: return ParseNumberExpr(); |
| 1128 | case '(': return ParseParenExpr(); |
| 1129 | case tok_if: return ParseIfExpr(); |
| 1130 | case tok_for: return ParseForExpr(); |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | /// unary |
| 1135 | /// ::= primary |
| 1136 | /// ::= '!' unary |
| 1137 | static ExprAST *ParseUnary() { |
| 1138 | // If the current token is not an operator, it must be a primary expr. |
| 1139 | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') |
| 1140 | return ParsePrimary(); |
| 1141 | |
| 1142 | // If this is a unary operator, read it. |
| 1143 | int Opc = CurTok; |
| 1144 | getNextToken(); |
| 1145 | if (ExprAST *Operand = ParseUnary()) |
| 1146 | return new UnaryExprAST(Opc, Operand); |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | /// binoprhs |
| 1151 | /// ::= ('+' unary)* |
| 1152 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 1153 | // If this is a binop, find its precedence. |
| 1154 | while (1) { |
| 1155 | int TokPrec = GetTokPrecedence(); |
| 1156 | |
| 1157 | // If this is a binop that binds at least as tightly as the current binop, |
| 1158 | // consume it, otherwise we are done. |
| 1159 | if (TokPrec < ExprPrec) |
| 1160 | return LHS; |
| 1161 | |
| 1162 | // Okay, we know this is a binop. |
| 1163 | int BinOp = CurTok; |
| 1164 | getNextToken(); // eat binop |
| 1165 | |
| 1166 | // Parse the unary expression after the binary operator. |
| 1167 | ExprAST *RHS = ParseUnary(); |
| 1168 | if (!RHS) return 0; |
| 1169 | |
| 1170 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 1171 | // the pending operator take RHS as its LHS. |
| 1172 | int NextPrec = GetTokPrecedence(); |
| 1173 | if (TokPrec < NextPrec) { |
| 1174 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 1175 | if (RHS == 0) return 0; |
| 1176 | } |
| 1177 | |
| 1178 | // Merge LHS/RHS. |
| 1179 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | /// expression |
| 1184 | /// ::= unary binoprhs |
| 1185 | /// |
| 1186 | static ExprAST *ParseExpression() { |
| 1187 | ExprAST *LHS = ParseUnary(); |
| 1188 | if (!LHS) return 0; |
| 1189 | |
| 1190 | return ParseBinOpRHS(0, LHS); |
| 1191 | } |
| 1192 | |
| 1193 | /// prototype |
| 1194 | /// ::= id '(' id* ')' |
| 1195 | /// ::= binary LETTER number? (id, id) |
| 1196 | /// ::= unary LETTER (id) |
| 1197 | static PrototypeAST *ParsePrototype() { |
| 1198 | std::string FnName; |
| 1199 | |
| 1200 | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. |
| 1201 | unsigned BinaryPrecedence = 30; |
| 1202 | |
| 1203 | switch (CurTok) { |
| 1204 | default: |
| 1205 | return ErrorP("Expected function name in prototype"); |
| 1206 | case tok_identifier: |
| 1207 | FnName = IdentifierStr; |
| 1208 | Kind = 0; |
| 1209 | getNextToken(); |
| 1210 | break; |
| 1211 | case tok_unary: |
| 1212 | getNextToken(); |
| 1213 | if (!isascii(CurTok)) |
| 1214 | return ErrorP("Expected unary operator"); |
| 1215 | FnName = "unary"; |
| 1216 | FnName += (char)CurTok; |
| 1217 | Kind = 1; |
| 1218 | getNextToken(); |
| 1219 | break; |
| 1220 | case tok_binary: |
| 1221 | getNextToken(); |
| 1222 | if (!isascii(CurTok)) |
| 1223 | return ErrorP("Expected binary operator"); |
| 1224 | FnName = "binary"; |
| 1225 | FnName += (char)CurTok; |
| 1226 | Kind = 2; |
| 1227 | getNextToken(); |
| 1228 | |
| 1229 | // Read the precedence if present. |
| 1230 | if (CurTok == tok_number) { |
| 1231 | if (NumVal < 1 || NumVal > 100) |
| 1232 | return ErrorP("Invalid precedecnce: must be 1..100"); |
| 1233 | BinaryPrecedence = (unsigned)NumVal; |
| 1234 | getNextToken(); |
| 1235 | } |
| 1236 | break; |
| 1237 | } |
| 1238 | |
| 1239 | if (CurTok != '(') |
| 1240 | return ErrorP("Expected '(' in prototype"); |
| 1241 | |
| 1242 | std::vector<std::string> ArgNames; |
| 1243 | while (getNextToken() == tok_identifier) |
| 1244 | ArgNames.push_back(IdentifierStr); |
| 1245 | if (CurTok != ')') |
| 1246 | return ErrorP("Expected ')' in prototype"); |
| 1247 | |
| 1248 | // success. |
| 1249 | getNextToken(); // eat ')'. |
| 1250 | |
| 1251 | // Verify right number of names for operator. |
| 1252 | if (Kind && ArgNames.size() != Kind) |
| 1253 | return ErrorP("Invalid number of operands for operator"); |
| 1254 | |
| 1255 | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); |
| 1256 | } |
| 1257 | |
| 1258 | /// definition ::= 'def' prototype expression |
| 1259 | static FunctionAST *ParseDefinition() { |
| 1260 | getNextToken(); // eat def. |
| 1261 | PrototypeAST *Proto = ParsePrototype(); |
| 1262 | if (Proto == 0) return 0; |
| 1263 | |
| 1264 | if (ExprAST *E = ParseExpression()) |
| 1265 | return new FunctionAST(Proto, E); |
| 1266 | return 0; |
| 1267 | } |
| 1268 | |
| 1269 | /// toplevelexpr ::= expression |
| 1270 | static FunctionAST *ParseTopLevelExpr() { |
| 1271 | if (ExprAST *E = ParseExpression()) { |
| 1272 | // Make an anonymous proto. |
| 1273 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 1274 | return new FunctionAST(Proto, E); |
| 1275 | } |
| 1276 | return 0; |
| 1277 | } |
| 1278 | |
| 1279 | /// external ::= 'extern' prototype |
| 1280 | static PrototypeAST *ParseExtern() { |
| 1281 | getNextToken(); // eat extern. |
| 1282 | return ParsePrototype(); |
| 1283 | } |
| 1284 | |
| 1285 | //===----------------------------------------------------------------------===// |
| 1286 | // Code Generation |
| 1287 | //===----------------------------------------------------------------------===// |
| 1288 | |
| 1289 | static Module *TheModule; |
| 1290 | static IRBuilder<> Builder(getGlobalContext()); |
| 1291 | static std::map<std::string, Value*> NamedValues; |
| 1292 | static FunctionPassManager *TheFPM; |
| 1293 | |
| 1294 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 1295 | |
| 1296 | Value *NumberExprAST::Codegen() { |
| 1297 | return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| 1298 | } |
| 1299 | |
| 1300 | Value *VariableExprAST::Codegen() { |
| 1301 | // Look this variable up in the function. |
| 1302 | Value *V = NamedValues[Name]; |
| 1303 | return V ? V : ErrorV("Unknown variable name"); |
| 1304 | } |
| 1305 | |
| 1306 | Value *UnaryExprAST::Codegen() { |
| 1307 | Value *OperandV = Operand->Codegen(); |
| 1308 | if (OperandV == 0) return 0; |
| 1309 | |
| 1310 | Function *F = TheModule->getFunction(std::string("unary")+Opcode); |
| 1311 | if (F == 0) |
| 1312 | return ErrorV("Unknown unary operator"); |
| 1313 | |
| 1314 | return Builder.CreateCall(F, OperandV, "unop"); |
| 1315 | } |
| 1316 | |
| 1317 | Value *BinaryExprAST::Codegen() { |
| 1318 | Value *L = LHS->Codegen(); |
| 1319 | Value *R = RHS->Codegen(); |
| 1320 | if (L == 0 || R == 0) return 0; |
| 1321 | |
| 1322 | switch (Op) { |
| 1323 | case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| 1324 | case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| 1325 | case '*': return Builder.CreateFMul(L, R, "multmp"); |
| 1326 | case '<': |
| 1327 | L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| 1328 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 1329 | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| 1330 | "booltmp"); |
| 1331 | default: break; |
| 1332 | } |
| 1333 | |
| 1334 | // If it wasn't a builtin binary operator, it must be a user defined one. Emit |
| 1335 | // a call to it. |
| 1336 | Function *F = TheModule->getFunction(std::string("binary")+Op); |
| 1337 | assert(F && "binary operator not found!"); |
| 1338 | |
| 1339 | Value *Ops[2] = { L, R }; |
| 1340 | return Builder.CreateCall(F, Ops, "binop"); |
| 1341 | } |
| 1342 | |
| 1343 | Value *CallExprAST::Codegen() { |
| 1344 | // Look up the name in the global module table. |
| 1345 | Function *CalleeF = TheModule->getFunction(Callee); |
| 1346 | if (CalleeF == 0) |
| 1347 | return ErrorV("Unknown function referenced"); |
| 1348 | |
| 1349 | // If argument mismatch error. |
| 1350 | if (CalleeF->arg_size() != Args.size()) |
| 1351 | return ErrorV("Incorrect # arguments passed"); |
| 1352 | |
| 1353 | std::vector<Value*> ArgsV; |
| 1354 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 1355 | ArgsV.push_back(Args[i]->Codegen()); |
| 1356 | if (ArgsV.back() == 0) return 0; |
| 1357 | } |
| 1358 | |
| 1359 | return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| 1360 | } |
| 1361 | |
| 1362 | Value *IfExprAST::Codegen() { |
| 1363 | Value *CondV = Cond->Codegen(); |
| 1364 | if (CondV == 0) return 0; |
| 1365 | |
| 1366 | // Convert condition to a bool by comparing equal to 0.0. |
| 1367 | CondV = Builder.CreateFCmpONE(CondV, |
| 1368 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 1369 | "ifcond"); |
| 1370 | |
| 1371 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1372 | |
| 1373 | // Create blocks for the then and else cases. Insert the 'then' block at the |
| 1374 | // end of the function. |
| 1375 | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); |
| 1376 | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); |
| 1377 | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); |
| 1378 | |
| 1379 | Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| 1380 | |
| 1381 | // Emit then value. |
| 1382 | Builder.SetInsertPoint(ThenBB); |
| 1383 | |
| 1384 | Value *ThenV = Then->Codegen(); |
| 1385 | if (ThenV == 0) return 0; |
| 1386 | |
| 1387 | Builder.CreateBr(MergeBB); |
| 1388 | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| 1389 | ThenBB = Builder.GetInsertBlock(); |
| 1390 | |
| 1391 | // Emit else block. |
| 1392 | TheFunction->getBasicBlockList().push_back(ElseBB); |
| 1393 | Builder.SetInsertPoint(ElseBB); |
| 1394 | |
| 1395 | Value *ElseV = Else->Codegen(); |
| 1396 | if (ElseV == 0) return 0; |
| 1397 | |
| 1398 | Builder.CreateBr(MergeBB); |
| 1399 | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| 1400 | ElseBB = Builder.GetInsertBlock(); |
| 1401 | |
| 1402 | // Emit merge block. |
| 1403 | TheFunction->getBasicBlockList().push_back(MergeBB); |
| 1404 | Builder.SetInsertPoint(MergeBB); |
| 1405 | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, |
| 1406 | "iftmp"); |
| 1407 | |
| 1408 | PN->addIncoming(ThenV, ThenBB); |
| 1409 | PN->addIncoming(ElseV, ElseBB); |
| 1410 | return PN; |
| 1411 | } |
| 1412 | |
| 1413 | Value *ForExprAST::Codegen() { |
| 1414 | // Output this as: |
| 1415 | // ... |
| 1416 | // start = startexpr |
| 1417 | // goto loop |
| 1418 | // loop: |
| 1419 | // variable = phi [start, loopheader], [nextvariable, loopend] |
| 1420 | // ... |
| 1421 | // bodyexpr |
| 1422 | // ... |
| 1423 | // loopend: |
| 1424 | // step = stepexpr |
| 1425 | // nextvariable = variable + step |
| 1426 | // endcond = endexpr |
| 1427 | // br endcond, loop, endloop |
| 1428 | // outloop: |
| 1429 | |
| 1430 | // Emit the start code first, without 'variable' in scope. |
| 1431 | Value *StartVal = Start->Codegen(); |
| 1432 | if (StartVal == 0) return 0; |
| 1433 | |
| 1434 | // Make the new basic block for the loop header, inserting after current |
| 1435 | // block. |
| 1436 | Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| 1437 | BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| 1438 | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); |
| 1439 | |
| 1440 | // Insert an explicit fall through from the current block to the LoopBB. |
| 1441 | Builder.CreateBr(LoopBB); |
| 1442 | |
| 1443 | // Start insertion in LoopBB. |
| 1444 | Builder.SetInsertPoint(LoopBB); |
| 1445 | |
| 1446 | // Start the PHI node with an entry for Start. |
| 1447 | PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); |
| 1448 | Variable->addIncoming(StartVal, PreheaderBB); |
| 1449 | |
| 1450 | // Within the loop, the variable is defined equal to the PHI node. If it |
| 1451 | // shadows an existing variable, we have to restore it, so save it now. |
| 1452 | Value *OldVal = NamedValues[VarName]; |
| 1453 | NamedValues[VarName] = Variable; |
| 1454 | |
| 1455 | // Emit the body of the loop. This, like any other expr, can change the |
| 1456 | // current BB. Note that we ignore the value computed by the body, but don't |
| 1457 | // allow an error. |
| 1458 | if (Body->Codegen() == 0) |
| 1459 | return 0; |
| 1460 | |
| 1461 | // Emit the step value. |
| 1462 | Value *StepVal; |
| 1463 | if (Step) { |
| 1464 | StepVal = Step->Codegen(); |
| 1465 | if (StepVal == 0) return 0; |
| 1466 | } else { |
| 1467 | // If not specified, use 1.0. |
| 1468 | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); |
| 1469 | } |
| 1470 | |
| 1471 | Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); |
| 1472 | |
| 1473 | // Compute the end condition. |
| 1474 | Value *EndCond = End->Codegen(); |
| 1475 | if (EndCond == 0) return EndCond; |
| 1476 | |
| 1477 | // Convert condition to a bool by comparing equal to 0.0. |
| 1478 | EndCond = Builder.CreateFCmpONE(EndCond, |
| 1479 | ConstantFP::get(getGlobalContext(), APFloat(0.0)), |
| 1480 | "loopcond"); |
| 1481 | |
| 1482 | // Create the "after loop" block and insert it. |
| 1483 | BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| 1484 | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); |
| 1485 | |
| 1486 | // Insert the conditional branch into the end of LoopEndBB. |
| 1487 | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| 1488 | |
| 1489 | // Any new code will be inserted in AfterBB. |
| 1490 | Builder.SetInsertPoint(AfterBB); |
| 1491 | |
| 1492 | // Add a new entry to the PHI node for the backedge. |
| 1493 | Variable->addIncoming(NextVar, LoopEndBB); |
| 1494 | |
| 1495 | // Restore the unshadowed variable. |
| 1496 | if (OldVal) |
| 1497 | NamedValues[VarName] = OldVal; |
| 1498 | else |
| 1499 | NamedValues.erase(VarName); |
| 1500 | |
| 1501 | |
| 1502 | // for expr always returns 0.0. |
| 1503 | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); |
| 1504 | } |
| 1505 | |
| 1506 | Function *PrototypeAST::Codegen() { |
| 1507 | // Make the function type: double(double,double) etc. |
| 1508 | std::vector<Type*> Doubles(Args.size(), |
| 1509 | Type::getDoubleTy(getGlobalContext())); |
| 1510 | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| 1511 | Doubles, false); |
| 1512 | |
| 1513 | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| 1514 | |
| 1515 | // If F conflicted, there was already something named 'Name'. If it has a |
| 1516 | // body, don't allow redefinition or reextern. |
| 1517 | if (F->getName() != Name) { |
| 1518 | // Delete the one we just made and get the existing one. |
| 1519 | F->eraseFromParent(); |
| 1520 | F = TheModule->getFunction(Name); |
| 1521 | |
| 1522 | // If F already has a body, reject this. |
| 1523 | if (!F->empty()) { |
| 1524 | ErrorF("redefinition of function"); |
| 1525 | return 0; |
| 1526 | } |
| 1527 | |
| 1528 | // If F took a different number of args, reject. |
| 1529 | if (F->arg_size() != Args.size()) { |
| 1530 | ErrorF("redefinition of function with different # args"); |
| 1531 | return 0; |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | // Set names for all arguments. |
| 1536 | unsigned Idx = 0; |
| 1537 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 1538 | ++AI, ++Idx) { |
| 1539 | AI->setName(Args[Idx]); |
| 1540 | |
| 1541 | // Add arguments to variable symbol table. |
| 1542 | NamedValues[Args[Idx]] = AI; |
| 1543 | } |
| 1544 | |
| 1545 | return F; |
| 1546 | } |
| 1547 | |
| 1548 | Function *FunctionAST::Codegen() { |
| 1549 | NamedValues.clear(); |
| 1550 | |
| 1551 | Function *TheFunction = Proto->Codegen(); |
| 1552 | if (TheFunction == 0) |
| 1553 | return 0; |
| 1554 | |
| 1555 | // If this is an operator, install it. |
| 1556 | if (Proto->isBinaryOp()) |
| 1557 | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); |
| 1558 | |
| 1559 | // Create a new basic block to start insertion into. |
| 1560 | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| 1561 | Builder.SetInsertPoint(BB); |
| 1562 | |
| 1563 | if (Value *RetVal = Body->Codegen()) { |
| 1564 | // Finish off the function. |
| 1565 | Builder.CreateRet(RetVal); |
| 1566 | |
| 1567 | // Validate the generated code, checking for consistency. |
| 1568 | verifyFunction(*TheFunction); |
| 1569 | |
| 1570 | // Optimize the function. |
| 1571 | TheFPM->run(*TheFunction); |
| 1572 | |
| 1573 | return TheFunction; |
| 1574 | } |
| 1575 | |
| 1576 | // Error reading body, remove function. |
| 1577 | TheFunction->eraseFromParent(); |
| 1578 | |
| 1579 | if (Proto->isBinaryOp()) |
| 1580 | BinopPrecedence.erase(Proto->getOperatorName()); |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | //===----------------------------------------------------------------------===// |
| 1585 | // Top-Level parsing and JIT Driver |
| 1586 | //===----------------------------------------------------------------------===// |
| 1587 | |
| 1588 | static ExecutionEngine *TheExecutionEngine; |
| 1589 | |
| 1590 | static void HandleDefinition() { |
| 1591 | if (FunctionAST *F = ParseDefinition()) { |
| 1592 | if (Function *LF = F->Codegen()) { |
| 1593 | fprintf(stderr, "Read function definition:"); |
| 1594 | LF->dump(); |
| 1595 | } |
| 1596 | } else { |
| 1597 | // Skip token for error recovery. |
| 1598 | getNextToken(); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | static void HandleExtern() { |
| 1603 | if (PrototypeAST *P = ParseExtern()) { |
| 1604 | if (Function *F = P->Codegen()) { |
| 1605 | fprintf(stderr, "Read extern: "); |
| 1606 | F->dump(); |
| 1607 | } |
| 1608 | } else { |
| 1609 | // Skip token for error recovery. |
| 1610 | getNextToken(); |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | static void HandleTopLevelExpression() { |
| 1615 | // Evaluate a top-level expression into an anonymous function. |
| 1616 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 1617 | if (Function *LF = F->Codegen()) { |
| 1618 | // JIT the function, returning a function pointer. |
| 1619 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 1620 | |
| 1621 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 1622 | // can call it as a native function. |
| 1623 | double (*FP)() = (double (*)())(intptr_t)FPtr; |
| 1624 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 1625 | } |
| 1626 | } else { |
| 1627 | // Skip token for error recovery. |
| 1628 | getNextToken(); |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | /// top ::= definition | external | expression | ';' |
| 1633 | static void MainLoop() { |
| 1634 | while (1) { |
| 1635 | fprintf(stderr, "ready> "); |
| 1636 | switch (CurTok) { |
| 1637 | case tok_eof: return; |
| 1638 | case ';': getNextToken(); break; // ignore top-level semicolons. |
| 1639 | case tok_def: HandleDefinition(); break; |
| 1640 | case tok_extern: HandleExtern(); break; |
| 1641 | default: HandleTopLevelExpression(); break; |
| 1642 | } |
| 1643 | } |
| 1644 | } |
| 1645 | |
| 1646 | //===----------------------------------------------------------------------===// |
| 1647 | // "Library" functions that can be "extern'd" from user code. |
| 1648 | //===----------------------------------------------------------------------===// |
| 1649 | |
| 1650 | /// putchard - putchar that takes a double and returns 0. |
| 1651 | extern "C" |
| 1652 | double putchard(double X) { |
| 1653 | putchar((char)X); |
| 1654 | return 0; |
| 1655 | } |
| 1656 | |
| 1657 | /// printd - printf that takes a double prints it as "%f\n", returning 0. |
| 1658 | extern "C" |
| 1659 | double printd(double X) { |
| 1660 | printf("%f\n", X); |
| 1661 | return 0; |
| 1662 | } |
| 1663 | |
| 1664 | //===----------------------------------------------------------------------===// |
| 1665 | // Main driver code. |
| 1666 | //===----------------------------------------------------------------------===// |
| 1667 | |
| 1668 | int main() { |
| 1669 | InitializeNativeTarget(); |
| 1670 | LLVMContext &Context = getGlobalContext(); |
| 1671 | |
| 1672 | // Install standard binary operators. |
| 1673 | // 1 is lowest precedence. |
| 1674 | BinopPrecedence['<'] = 10; |
| 1675 | BinopPrecedence['+'] = 20; |
| 1676 | BinopPrecedence['-'] = 20; |
| 1677 | BinopPrecedence['*'] = 40; // highest. |
| 1678 | |
| 1679 | // Prime the first token. |
| 1680 | fprintf(stderr, "ready> "); |
| 1681 | getNextToken(); |
| 1682 | |
| 1683 | // Make the module, which holds all the code. |
| 1684 | TheModule = new Module("my cool jit", Context); |
| 1685 | |
| 1686 | // Create the JIT. This takes ownership of the module. |
| 1687 | std::string ErrStr; |
| 1688 | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| 1689 | if (!TheExecutionEngine) { |
| 1690 | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| 1691 | exit(1); |
| 1692 | } |
| 1693 | |
| 1694 | FunctionPassManager OurFPM(TheModule); |
| 1695 | |
| 1696 | // Set up the optimizer pipeline. Start with registering info about how the |
| 1697 | // target lays out data structures. |
| 1698 | OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| 1699 | // Provide basic AliasAnalysis support for GVN. |
| 1700 | OurFPM.add(createBasicAliasAnalysisPass()); |
| 1701 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 1702 | OurFPM.add(createInstructionCombiningPass()); |
| 1703 | // Reassociate expressions. |
| 1704 | OurFPM.add(createReassociatePass()); |
| 1705 | // Eliminate Common SubExpressions. |
| 1706 | OurFPM.add(createGVNPass()); |
| 1707 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 1708 | OurFPM.add(createCFGSimplificationPass()); |
| 1709 | |
| 1710 | OurFPM.doInitialization(); |
| 1711 | |
| 1712 | // Set the global so the code gen can use this. |
| 1713 | TheFPM = &OurFPM; |
| 1714 | |
| 1715 | // Run the main "interpreter loop" now. |
| 1716 | MainLoop(); |
| 1717 | |
| 1718 | TheFPM = 0; |
| 1719 | |
| 1720 | // Print out all of the generated code. |
| 1721 | TheModule->dump(); |
| 1722 | |
| 1723 | return 0; |
| 1724 | } |
| 1725 | |
| 1726 | `Next: Extending the language: mutable variables / SSA |
| 1727 | construction <LangImpl7.html>`_ |
| 1728 | |