blob: d2a47b486ca329c4dbdd6e345019178d0fde8e18 [file] [log] [blame]
Sean Silvaee47edf2012-12-05 00:26:32 +00001========================================
2Kaleidoscope: Code generation to LLVM IR
3========================================
4
5.. contents::
6 :local:
7
8Written by `Chris Lattner <mailto:sabre@nondot.org>`_ and `Erick
9Tryzelaar <mailto:idadesub@users.sourceforge.net>`_
10
11Chapter 3 Introduction
12======================
13
14Welcome to Chapter 3 of the "`Implementing a language with
15LLVM <index.html>`_" tutorial. This chapter shows you how to transform
16the `Abstract Syntax Tree <OCamlLangImpl2.html>`_, built in Chapter 2,
17into LLVM IR. This will teach you a little bit about how LLVM does
18things, as well as demonstrate how easy it is to use. It's much more
19work to build a lexer and parser than it is to generate LLVM IR code. :)
20
21**Please note**: the code in this chapter and later require LLVM 2.3 or
22LLVM SVN to work. LLVM 2.2 and before will not work with it.
23
24Code Generation Setup
25=====================
26
27In order to generate LLVM IR, we want some simple setup to get started.
28First we define virtual code generation (codegen) methods in each AST
29class:
30
31.. code-block:: ocaml
32
33 let rec codegen_expr = function
34 | Ast.Number n -> ...
35 | Ast.Variable name -> ...
36
37The ``Codegen.codegen_expr`` function says to emit IR for that AST node
38along with all the things it depends on, and they all return an LLVM
39Value object. "Value" is the class used to represent a "`Static Single
40Assignment
41(SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
42register" or "SSA value" in LLVM. The most distinct aspect of SSA values
43is that their value is computed as the related instruction executes, and
44it does not get a new value until (and if) the instruction re-executes.
45In other words, there is no way to "change" an SSA value. For more
46information, please read up on `Static Single
47Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
48- the concepts are really quite natural once you grok them.
49
50The second thing we want is an "Error" exception like we used for the
51parser, which will be used to report errors found during code generation
52(for example, use of an undeclared parameter):
53
54.. code-block:: ocaml
55
56 exception Error of string
57
58 let context = global_context ()
59 let the_module = create_module context "my cool jit"
60 let builder = builder context
61 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
62 let double_type = double_type context
63
64The static variables will be used during code generation.
65``Codgen.the_module`` is the LLVM construct that contains all of the
66functions and global variables in a chunk of code. In many ways, it is
67the top-level structure that the LLVM IR uses to contain code.
68
69The ``Codegen.builder`` object is a helper object that makes it easy to
70generate LLVM instructions. Instances of the
71```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_
72class keep track of the current place to insert instructions and has
73methods to create new instructions.
74
75The ``Codegen.named_values`` map keeps track of which values are defined
76in the current scope and what their LLVM representation is. (In other
77words, it is a symbol table for the code). In this form of Kaleidoscope,
78the only things that can be referenced are function parameters. As such,
79function parameters will be in this map when generating code for their
80function body.
81
82With these basics in place, we can start talking about how to generate
83code for each expression. Note that this assumes that the
84``Codgen.builder`` has been set up to generate code *into* something.
85For now, we'll assume that this has already been done, and we'll just
86use it to emit code.
87
88Expression Code Generation
89==========================
90
91Generating LLVM code for expression nodes is very straightforward: less
92than 30 lines of commented code for all four of our expression nodes.
93First we'll do numeric literals:
94
95.. code-block:: ocaml
96
97 | Ast.Number n -> const_float double_type n
98
99In the LLVM IR, numeric constants are represented with the
100``ConstantFP`` class, which holds the numeric value in an ``APFloat``
101internally (``APFloat`` has the capability of holding floating point
102constants of Arbitrary Precision). This code basically just creates
103and returns a ``ConstantFP``. Note that in the LLVM IR that constants
104are all uniqued together and shared. For this reason, the API uses "the
105foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".
106
107.. code-block:: ocaml
108
109 | Ast.Variable name ->
110 (try Hashtbl.find named_values name with
111 | Not_found -> raise (Error "unknown variable name"))
112
113References to variables are also quite simple using LLVM. In the simple
114version of Kaleidoscope, we assume that the variable has already been
115emitted somewhere and its value is available. In practice, the only
116values that can be in the ``Codegen.named_values`` map are function
117arguments. This code simply checks to see that the specified name is in
118the map (if not, an unknown variable is being referenced) and returns
119the value for it. In future chapters, we'll add support for `loop
120induction variables <LangImpl5.html#for>`_ in the symbol table, and for
121`local variables <LangImpl7.html#localvars>`_.
122
123.. code-block:: ocaml
124
125 | Ast.Binary (op, lhs, rhs) ->
126 let lhs_val = codegen_expr lhs in
127 let rhs_val = codegen_expr rhs in
128 begin
129 match op with
130 | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
131 | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
132 | '*' -> build_fmul lhs_val rhs_val "multmp" builder
133 | '<' ->
134 (* Convert bool 0/1 to double 0.0 or 1.0 *)
135 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
136 build_uitofp i double_type "booltmp" builder
137 | _ -> raise (Error "invalid binary operator")
138 end
139
140Binary operators start to get more interesting. The basic idea here is
141that we recursively emit code for the left-hand side of the expression,
142then the right-hand side, then we compute the result of the binary
143expression. In this code, we do a simple switch on the opcode to create
144the right LLVM instruction.
145
146In the example above, the LLVM builder class is starting to show its
147value. IRBuilder knows where to insert the newly created instruction,
148all you have to do is specify what instruction to create (e.g. with
149``Llvm.create_add``), which operands to use (``lhs`` and ``rhs`` here)
150and optionally provide a name for the generated instruction.
151
152One nice thing about LLVM is that the name is just a hint. For instance,
153if the code above emits multiple "addtmp" variables, LLVM will
154automatically provide each one with an increasing, unique numeric
155suffix. Local value names for instructions are purely optional, but it
156makes it much easier to read the IR dumps.
157
158`LLVM instructions <../LangRef.html#instref>`_ are constrained by strict
159rules: for example, the Left and Right operators of an `add
160instruction <../LangRef.html#i_add>`_ must have the same type, and the
161result type of the add must match the operand types. Because all values
162in Kaleidoscope are doubles, this makes for very simple code for add,
163sub and mul.
164
165On the other hand, LLVM specifies that the `fcmp
166instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a
167one bit integer). The problem with this is that Kaleidoscope wants the
168value to be a 0.0 or 1.0 value. In order to get these semantics, we
169combine the fcmp instruction with a `uitofp
170instruction <../LangRef.html#i_uitofp>`_. This instruction converts its
171input integer into a floating point value by treating the input as an
172unsigned value. In contrast, if we used the `sitofp
173instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator
174would return 0.0 and -1.0, depending on the input value.
175
176.. code-block:: ocaml
177
178 | Ast.Call (callee, args) ->
179 (* Look up the name in the module table. *)
180 let callee =
181 match lookup_function callee the_module with
182 | Some callee -> callee
183 | None -> raise (Error "unknown function referenced")
184 in
185 let params = params callee in
186
187 (* If argument mismatch error. *)
188 if Array.length params == Array.length args then () else
189 raise (Error "incorrect # arguments passed");
190 let args = Array.map codegen_expr args in
191 build_call callee args "calltmp" builder
192
193Code generation for function calls is quite straightforward with LLVM.
194The code above initially does a function name lookup in the LLVM
195Module's symbol table. Recall that the LLVM Module is the container that
196holds all of the functions we are JIT'ing. By giving each function the
197same name as what the user specifies, we can use the LLVM symbol table
198to resolve function names for us.
199
200Once we have the function to call, we recursively codegen each argument
201that is to be passed in, and create an LLVM `call
202instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C
203calling conventions by default, allowing these calls to also call into
204standard library functions like "sin" and "cos", with no additional
205effort.
206
207This wraps up our handling of the four basic expressions that we have so
208far in Kaleidoscope. Feel free to go in and add some more. For example,
209by browsing the `LLVM language reference <../LangRef.html>`_ you'll find
210several other interesting instructions that are really easy to plug into
211our basic framework.
212
213Function Code Generation
214========================
215
216Code generation for prototypes and functions must handle a number of
217details, which make their code less beautiful than expression code
218generation, but allows us to illustrate some important points. First,
219lets talk about code generation for prototypes: they are used both for
220function bodies and external function declarations. The code starts
221with:
222
223.. code-block:: ocaml
224
225 let codegen_proto = function
226 | Ast.Prototype (name, args) ->
227 (* Make the function type: double(double,double) etc. *)
228 let doubles = Array.make (Array.length args) double_type in
229 let ft = function_type double_type doubles in
230 let f =
231 match lookup_function name the_module with
232
233This code packs a lot of power into a few lines. Note first that this
234function returns a "Function\*" instead of a "Value\*" (although at the
235moment they both are modeled by ``llvalue`` in ocaml). Because a
236"prototype" really talks about the external interface for a function
237(not the value computed by an expression), it makes sense for it to
238return the LLVM Function it corresponds to when codegen'd.
239
240The call to ``Llvm.function_type`` creates the ``Llvm.llvalue`` that
241should be used for a given Prototype. Since all function arguments in
242Kaleidoscope are of type double, the first line creates a vector of "N"
243LLVM double types. It then uses the ``Llvm.function_type`` method to
244create a function type that takes "N" doubles as arguments, returns one
245double as a result, and that is not vararg (that uses the function
246``Llvm.var_arg_function_type``). Note that Types in LLVM are uniqued
247just like ``Constant``'s are, so you don't "new" a type, you "get" it.
248
249The final line above checks if the function has already been defined in
250``Codegen.the_module``. If not, we will create it.
251
252.. code-block:: ocaml
253
254 | None -> declare_function name ft the_module
255
256This indicates the type and name to use, as well as which module to
257insert into. By default we assume a function has
258``Llvm.Linkage.ExternalLinkage``. "`external
259linkage <LangRef.html#linkage>`_" means that the function may be defined
260outside the current module and/or that it is callable by functions
261outside the module. The "``name``" passed in is the name the user
262specified: this name is registered in "``Codegen.the_module``"s symbol
263table, which is used by the function call code above.
264
265In Kaleidoscope, I choose to allow redefinitions of functions in two
266cases: first, we want to allow 'extern'ing a function more than once, as
267long as the prototypes for the externs match (since all arguments have
268the same type, we just have to check that the number of arguments
269match). Second, we want to allow 'extern'ing a function and then
270defining a body for it. This is useful when defining mutually recursive
271functions.
272
273.. code-block:: ocaml
274
275 (* If 'f' conflicted, there was already something named 'name'. If it
276 * has a body, don't allow redefinition or reextern. *)
277 | Some f ->
278 (* If 'f' already has a body, reject this. *)
279 if Array.length (basic_blocks f) == 0 then () else
280 raise (Error "redefinition of function");
281
282 (* If 'f' took a different number of arguments, reject. *)
283 if Array.length (params f) == Array.length args then () else
284 raise (Error "redefinition of function with different # args");
285 f
286 in
287
288In order to verify the logic above, we first check to see if the
289pre-existing function is "empty". In this case, empty means that it has
290no basic blocks in it, which means it has no body. If it has no body, it
291is a forward declaration. Since we don't allow anything after a full
292definition of the function, the code rejects this case. If the previous
293reference to a function was an 'extern', we simply verify that the
294number of arguments for that definition and this one match up. If not,
295we emit an error.
296
297.. code-block:: ocaml
298
299 (* Set names for all arguments. *)
300 Array.iteri (fun i a ->
301 let n = args.(i) in
302 set_value_name n a;
303 Hashtbl.add named_values n a;
304 ) (params f);
305 f
306
307The last bit of code for prototypes loops over all of the arguments in
308the function, setting the name of the LLVM Argument objects to match,
309and registering the arguments in the ``Codegen.named_values`` map for
310future use by the ``Ast.Variable`` variant. Once this is set up, it
311returns the Function object to the caller. Note that we don't check for
312conflicting argument names here (e.g. "extern foo(a b a)"). Doing so
313would be very straight-forward with the mechanics we have already used
314above.
315
316.. code-block:: ocaml
317
318 let codegen_func = function
319 | Ast.Function (proto, body) ->
320 Hashtbl.clear named_values;
321 let the_function = codegen_proto proto in
322
323Code generation for function definitions starts out simply enough: we
324just codegen the prototype (Proto) and verify that it is ok. We then
325clear out the ``Codegen.named_values`` map to make sure that there isn't
326anything in it from the last function we compiled. Code generation of
327the prototype ensures that there is an LLVM Function object that is
328ready to go for us.
329
330.. code-block:: ocaml
331
332 (* Create a new basic block to start insertion into. *)
333 let bb = append_block context "entry" the_function in
334 position_at_end bb builder;
335
336 try
337 let ret_val = codegen_expr body in
338
339Now we get to the point where the ``Codegen.builder`` is set up. The
340first line creates a new `basic
341block <http://en.wikipedia.org/wiki/Basic_block>`_ (named "entry"),
342which is inserted into ``the_function``. The second line then tells the
343builder that new instructions should be inserted into the end of the new
344basic block. Basic blocks in LLVM are an important part of functions
345that define the `Control Flow
346Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we
347don't have any control flow, our functions will only contain one block
348at this point. We'll fix this in `Chapter 5 <OCamlLangImpl5.html>`_ :).
349
350.. code-block:: ocaml
351
352 let ret_val = codegen_expr body in
353
354 (* Finish off the function. *)
355 let _ = build_ret ret_val builder in
356
357 (* Validate the generated code, checking for consistency. *)
358 Llvm_analysis.assert_valid_function the_function;
359
360 the_function
361
362Once the insertion point is set up, we call the ``Codegen.codegen_func``
363method for the root expression of the function. If no error happens,
364this emits code to compute the expression into the entry block and
365returns the value that was computed. Assuming no error, we then create
366an LLVM `ret instruction <../LangRef.html#i_ret>`_, which completes the
367function. Once the function is built, we call
368``Llvm_analysis.assert_valid_function``, which is provided by LLVM. This
369function does a variety of consistency checks on the generated code, to
370determine if our compiler is doing everything right. Using this is
371important: it can catch a lot of bugs. Once the function is finished and
372validated, we return it.
373
374.. code-block:: ocaml
375
376 with e ->
377 delete_function the_function;
378 raise e
379
380The only piece left here is handling of the error case. For simplicity,
381we handle this by merely deleting the function we produced with the
382``Llvm.delete_function`` method. This allows the user to redefine a
383function that they incorrectly typed in before: if we didn't delete it,
384it would live in the symbol table, with a body, preventing future
385redefinition.
386
387This code does have a bug, though. Since the ``Codegen.codegen_proto``
388can return a previously defined forward declaration, our code can
389actually delete a forward declaration. There are a number of ways to fix
390this bug, see what you can come up with! Here is a testcase:
391
392::
393
394 extern foo(a b); # ok, defines foo.
395 def foo(a b) c; # error, 'c' is invalid.
396 def bar() foo(1, 2); # error, unknown function "foo"
397
398Driver Changes and Closing Thoughts
399===================================
400
401For now, code generation to LLVM doesn't really get us much, except that
402we can look at the pretty IR calls. The sample code inserts calls to
403Codegen into the "``Toplevel.main_loop``", and then dumps out the LLVM
404IR. This gives a nice way to look at the LLVM IR for simple functions.
405For example:
406
407::
408
409 ready> 4+5;
410 Read top-level expression:
411 define double @""() {
412 entry:
413 %addtmp = fadd double 4.000000e+00, 5.000000e+00
414 ret double %addtmp
415 }
416
417Note how the parser turns the top-level expression into anonymous
418functions for us. This will be handy when we add `JIT
419support <OCamlLangImpl4.html#jit>`_ in the next chapter. Also note that
420the code is very literally transcribed, no optimizations are being
421performed. We will `add
422optimizations <OCamlLangImpl4.html#trivialconstfold>`_ explicitly in the
423next chapter.
424
425::
426
427 ready> def foo(a b) a*a + 2*a*b + b*b;
428 Read function definition:
429 define double @foo(double %a, double %b) {
430 entry:
431 %multmp = fmul double %a, %a
432 %multmp1 = fmul double 2.000000e+00, %a
433 %multmp2 = fmul double %multmp1, %b
434 %addtmp = fadd double %multmp, %multmp2
435 %multmp3 = fmul double %b, %b
436 %addtmp4 = fadd double %addtmp, %multmp3
437 ret double %addtmp4
438 }
439
440This shows some simple arithmetic. Notice the striking similarity to the
441LLVM builder calls that we use to create the instructions.
442
443::
444
445 ready> def bar(a) foo(a, 4.0) + bar(31337);
446 Read function definition:
447 define double @bar(double %a) {
448 entry:
449 %calltmp = call double @foo(double %a, double 4.000000e+00)
450 %calltmp1 = call double @bar(double 3.133700e+04)
451 %addtmp = fadd double %calltmp, %calltmp1
452 ret double %addtmp
453 }
454
455This shows some function calls. Note that this function will take a long
456time to execute if you call it. In the future we'll add conditional
457control flow to actually make recursion useful :).
458
459::
460
461 ready> extern cos(x);
462 Read extern:
463 declare double @cos(double)
464
465 ready> cos(1.234);
466 Read top-level expression:
467 define double @""() {
468 entry:
469 %calltmp = call double @cos(double 1.234000e+00)
470 ret double %calltmp
471 }
472
473This shows an extern for the libm "cos" function, and a call to it.
474
475::
476
477 ready> ^D
478 ; ModuleID = 'my cool jit'
479
480 define double @""() {
481 entry:
482 %addtmp = fadd double 4.000000e+00, 5.000000e+00
483 ret double %addtmp
484 }
485
486 define double @foo(double %a, double %b) {
487 entry:
488 %multmp = fmul double %a, %a
489 %multmp1 = fmul double 2.000000e+00, %a
490 %multmp2 = fmul double %multmp1, %b
491 %addtmp = fadd double %multmp, %multmp2
492 %multmp3 = fmul double %b, %b
493 %addtmp4 = fadd double %addtmp, %multmp3
494 ret double %addtmp4
495 }
496
497 define double @bar(double %a) {
498 entry:
499 %calltmp = call double @foo(double %a, double 4.000000e+00)
500 %calltmp1 = call double @bar(double 3.133700e+04)
501 %addtmp = fadd double %calltmp, %calltmp1
502 ret double %addtmp
503 }
504
505 declare double @cos(double)
506
507 define double @""() {
508 entry:
509 %calltmp = call double @cos(double 1.234000e+00)
510 ret double %calltmp
511 }
512
513When you quit the current demo, it dumps out the IR for the entire
514module generated. Here you can see the big picture with all the
515functions referencing each other.
516
517This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
518we'll describe how to `add JIT codegen and optimizer
519support <OCamlLangImpl4.html>`_ to this so we can actually start running
520code!
521
522Full Code Listing
523=================
524
525Here is the complete code listing for our running example, enhanced with
526the LLVM code generator. Because this uses the LLVM libraries, we need
527to link them in. To do this, we use the
528`llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform
529our makefile/command line about which options to use:
530
531.. code-block:: bash
532
533 # Compile
534 ocamlbuild toy.byte
535 # Run
536 ./toy.byte
537
538Here is the code:
539
540\_tags:
541 ::
542
543 <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
544 <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
545
546myocamlbuild.ml:
547 .. code-block:: ocaml
548
549 open Ocamlbuild_plugin;;
550
551 ocaml_lib ~extern:true "llvm";;
552 ocaml_lib ~extern:true "llvm_analysis";;
553
554 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
555
556token.ml:
557 .. code-block:: ocaml
558
559 (*===----------------------------------------------------------------------===
560 * Lexer Tokens
561 *===----------------------------------------------------------------------===*)
562
563 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
564 * these others for known things. *)
565 type token =
566 (* commands *)
567 | Def | Extern
568
569 (* primary *)
570 | Ident of string | Number of float
571
572 (* unknown *)
573 | Kwd of char
574
575lexer.ml:
576 .. code-block:: ocaml
577
578 (*===----------------------------------------------------------------------===
579 * Lexer
580 *===----------------------------------------------------------------------===*)
581
582 let rec lex = parser
583 (* Skip any whitespace. *)
584 | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
585
586 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
587 | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
588 let buffer = Buffer.create 1 in
589 Buffer.add_char buffer c;
590 lex_ident buffer stream
591
592 (* number: [0-9.]+ *)
593 | [< ' ('0' .. '9' as c); stream >] ->
594 let buffer = Buffer.create 1 in
595 Buffer.add_char buffer c;
596 lex_number buffer stream
597
598 (* Comment until end of line. *)
599 | [< ' ('#'); stream >] ->
600 lex_comment stream
601
602 (* Otherwise, just return the character as its ascii value. *)
603 | [< 'c; stream >] ->
604 [< 'Token.Kwd c; lex stream >]
605
606 (* end of stream. *)
607 | [< >] -> [< >]
608
609 and lex_number buffer = parser
610 | [< ' ('0' .. '9' | '.' as c); stream >] ->
611 Buffer.add_char buffer c;
612 lex_number buffer stream
613 | [< stream=lex >] ->
614 [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
615
616 and lex_ident buffer = parser
617 | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
618 Buffer.add_char buffer c;
619 lex_ident buffer stream
620 | [< stream=lex >] ->
621 match Buffer.contents buffer with
622 | "def" -> [< 'Token.Def; stream >]
623 | "extern" -> [< 'Token.Extern; stream >]
624 | id -> [< 'Token.Ident id; stream >]
625
626 and lex_comment = parser
627 | [< ' ('\n'); stream=lex >] -> stream
628 | [< 'c; e=lex_comment >] -> e
629 | [< >] -> [< >]
630
631ast.ml:
632 .. code-block:: ocaml
633
634 (*===----------------------------------------------------------------------===
635 * Abstract Syntax Tree (aka Parse Tree)
636 *===----------------------------------------------------------------------===*)
637
638 (* expr - Base type for all expression nodes. *)
639 type expr =
640 (* variant for numeric literals like "1.0". *)
641 | Number of float
642
643 (* variant for referencing a variable, like "a". *)
644 | Variable of string
645
646 (* variant for a binary operator. *)
647 | Binary of char * expr * expr
648
649 (* variant for function calls. *)
650 | Call of string * expr array
651
652 (* proto - This type represents the "prototype" for a function, which captures
653 * its name, and its argument names (thus implicitly the number of arguments the
654 * function takes). *)
655 type proto = Prototype of string * string array
656
657 (* func - This type represents a function definition itself. *)
658 type func = Function of proto * expr
659
660parser.ml:
661 .. code-block:: ocaml
662
663 (*===---------------------------------------------------------------------===
664 * Parser
665 *===---------------------------------------------------------------------===*)
666
667 (* binop_precedence - This holds the precedence for each binary operator that is
668 * defined *)
669 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
670
671 (* precedence - Get the precedence of the pending binary operator token. *)
672 let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
673
674 (* primary
675 * ::= identifier
676 * ::= numberexpr
677 * ::= parenexpr *)
678 let rec parse_primary = parser
679 (* numberexpr ::= number *)
680 | [< 'Token.Number n >] -> Ast.Number n
681
682 (* parenexpr ::= '(' expression ')' *)
683 | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
684
685 (* identifierexpr
686 * ::= identifier
687 * ::= identifier '(' argumentexpr ')' *)
688 | [< 'Token.Ident id; stream >] ->
689 let rec parse_args accumulator = parser
690 | [< e=parse_expr; stream >] ->
691 begin parser
692 | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
693 | [< >] -> e :: accumulator
694 end stream
695 | [< >] -> accumulator
696 in
697 let rec parse_ident id = parser
698 (* Call. *)
699 | [< 'Token.Kwd '(';
700 args=parse_args [];
701 'Token.Kwd ')' ?? "expected ')'">] ->
702 Ast.Call (id, Array.of_list (List.rev args))
703
704 (* Simple variable ref. *)
705 | [< >] -> Ast.Variable id
706 in
707 parse_ident id stream
708
709 | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
710
711 (* binoprhs
712 * ::= ('+' primary)* *)
713 and parse_bin_rhs expr_prec lhs stream =
714 match Stream.peek stream with
715 (* If this is a binop, find its precedence. *)
716 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
717 let token_prec = precedence c in
718
719 (* If this is a binop that binds at least as tightly as the current binop,
720 * consume it, otherwise we are done. *)
721 if token_prec < expr_prec then lhs else begin
722 (* Eat the binop. *)
723 Stream.junk stream;
724
725 (* Parse the primary expression after the binary operator. *)
726 let rhs = parse_primary stream in
727
728 (* Okay, we know this is a binop. *)
729 let rhs =
730 match Stream.peek stream with
731 | Some (Token.Kwd c2) ->
732 (* If BinOp binds less tightly with rhs than the operator after
733 * rhs, let the pending operator take rhs as its lhs. *)
734 let next_prec = precedence c2 in
735 if token_prec < next_prec
736 then parse_bin_rhs (token_prec + 1) rhs stream
737 else rhs
738 | _ -> rhs
739 in
740
741 (* Merge lhs/rhs. *)
742 let lhs = Ast.Binary (c, lhs, rhs) in
743 parse_bin_rhs expr_prec lhs stream
744 end
745 | _ -> lhs
746
747 (* expression
748 * ::= primary binoprhs *)
749 and parse_expr = parser
750 | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
751
752 (* prototype
753 * ::= id '(' id* ')' *)
754 let parse_prototype =
755 let rec parse_args accumulator = parser
756 | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
757 | [< >] -> accumulator
758 in
759
760 parser
761 | [< 'Token.Ident id;
762 'Token.Kwd '(' ?? "expected '(' in prototype";
763 args=parse_args [];
764 'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
765 (* success. *)
766 Ast.Prototype (id, Array.of_list (List.rev args))
767
768 | [< >] ->
769 raise (Stream.Error "expected function name in prototype")
770
771 (* definition ::= 'def' prototype expression *)
772 let parse_definition = parser
773 | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
774 Ast.Function (p, e)
775
776 (* toplevelexpr ::= expression *)
777 let parse_toplevel = parser
778 | [< e=parse_expr >] ->
779 (* Make an anonymous proto. *)
780 Ast.Function (Ast.Prototype ("", [||]), e)
781
782 (* external ::= 'extern' prototype *)
783 let parse_extern = parser
784 | [< 'Token.Extern; e=parse_prototype >] -> e
785
786codegen.ml:
787 .. code-block:: ocaml
788
789 (*===----------------------------------------------------------------------===
790 * Code Generation
791 *===----------------------------------------------------------------------===*)
792
793 open Llvm
794
795 exception Error of string
796
797 let context = global_context ()
798 let the_module = create_module context "my cool jit"
799 let builder = builder context
800 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
801 let double_type = double_type context
802
803 let rec codegen_expr = function
804 | Ast.Number n -> const_float double_type n
805 | Ast.Variable name ->
806 (try Hashtbl.find named_values name with
807 | Not_found -> raise (Error "unknown variable name"))
808 | Ast.Binary (op, lhs, rhs) ->
809 let lhs_val = codegen_expr lhs in
810 let rhs_val = codegen_expr rhs in
811 begin
812 match op with
813 | '+' -> build_add lhs_val rhs_val "addtmp" builder
814 | '-' -> build_sub lhs_val rhs_val "subtmp" builder
815 | '*' -> build_mul lhs_val rhs_val "multmp" builder
816 | '<' ->
817 (* Convert bool 0/1 to double 0.0 or 1.0 *)
818 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
819 build_uitofp i double_type "booltmp" builder
820 | _ -> raise (Error "invalid binary operator")
821 end
822 | Ast.Call (callee, args) ->
823 (* Look up the name in the module table. *)
824 let callee =
825 match lookup_function callee the_module with
826 | Some callee -> callee
827 | None -> raise (Error "unknown function referenced")
828 in
829 let params = params callee in
830
831 (* If argument mismatch error. *)
832 if Array.length params == Array.length args then () else
833 raise (Error "incorrect # arguments passed");
834 let args = Array.map codegen_expr args in
835 build_call callee args "calltmp" builder
836
837 let codegen_proto = function
838 | Ast.Prototype (name, args) ->
839 (* Make the function type: double(double,double) etc. *)
840 let doubles = Array.make (Array.length args) double_type in
841 let ft = function_type double_type doubles in
842 let f =
843 match lookup_function name the_module with
844 | None -> declare_function name ft the_module
845
846 (* If 'f' conflicted, there was already something named 'name'. If it
847 * has a body, don't allow redefinition or reextern. *)
848 | Some f ->
849 (* If 'f' already has a body, reject this. *)
850 if block_begin f <> At_end f then
851 raise (Error "redefinition of function");
852
853 (* If 'f' took a different number of arguments, reject. *)
854 if element_type (type_of f) <> ft then
855 raise (Error "redefinition of function with different # args");
856 f
857 in
858
859 (* Set names for all arguments. *)
860 Array.iteri (fun i a ->
861 let n = args.(i) in
862 set_value_name n a;
863 Hashtbl.add named_values n a;
864 ) (params f);
865 f
866
867 let codegen_func = function
868 | Ast.Function (proto, body) ->
869 Hashtbl.clear named_values;
870 let the_function = codegen_proto proto in
871
872 (* Create a new basic block to start insertion into. *)
873 let bb = append_block context "entry" the_function in
874 position_at_end bb builder;
875
876 try
877 let ret_val = codegen_expr body in
878
879 (* Finish off the function. *)
880 let _ = build_ret ret_val builder in
881
882 (* Validate the generated code, checking for consistency. *)
883 Llvm_analysis.assert_valid_function the_function;
884
885 the_function
886 with e ->
887 delete_function the_function;
888 raise e
889
890toplevel.ml:
891 .. code-block:: ocaml
892
893 (*===----------------------------------------------------------------------===
894 * Top-Level parsing and JIT Driver
895 *===----------------------------------------------------------------------===*)
896
897 open Llvm
898
899 (* top ::= definition | external | expression | ';' *)
900 let rec main_loop stream =
901 match Stream.peek stream with
902 | None -> ()
903
904 (* ignore top-level semicolons. *)
905 | Some (Token.Kwd ';') ->
906 Stream.junk stream;
907 main_loop stream
908
909 | Some token ->
910 begin
911 try match token with
912 | Token.Def ->
913 let e = Parser.parse_definition stream in
914 print_endline "parsed a function definition.";
915 dump_value (Codegen.codegen_func e);
916 | Token.Extern ->
917 let e = Parser.parse_extern stream in
918 print_endline "parsed an extern.";
919 dump_value (Codegen.codegen_proto e);
920 | _ ->
921 (* Evaluate a top-level expression into an anonymous function. *)
922 let e = Parser.parse_toplevel stream in
923 print_endline "parsed a top-level expr";
924 dump_value (Codegen.codegen_func e);
925 with Stream.Error s | Codegen.Error s ->
926 (* Skip token for error recovery. *)
927 Stream.junk stream;
928 print_endline s;
929 end;
930 print_string "ready> "; flush stdout;
931 main_loop stream
932
933toy.ml:
934 .. code-block:: ocaml
935
936 (*===----------------------------------------------------------------------===
937 * Main driver code.
938 *===----------------------------------------------------------------------===*)
939
940 open Llvm
941
942 let main () =
943 (* Install standard binary operators.
944 * 1 is the lowest precedence. *)
945 Hashtbl.add Parser.binop_precedence '<' 10;
946 Hashtbl.add Parser.binop_precedence '+' 20;
947 Hashtbl.add Parser.binop_precedence '-' 20;
948 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
949
950 (* Prime the first token. *)
951 print_string "ready> "; flush stdout;
952 let stream = Lexer.lex (Stream.of_channel stdin) in
953
954 (* Run the main "interpreter loop" now. *)
955 Toplevel.main_loop stream;
956
957 (* Print out all the generated code. *)
958 dump_module Codegen.the_module
959 ;;
960
961 main ()
962
963`Next: Adding JIT and Optimizer Support <OCamlLangImpl4.html>`_
964