Reid Spencer | e784fa4 | 2004-08-19 20:10:04 +0000 | [diff] [blame^] | 1 | //===--- fibonacci.cpp - An example use of the JIT ----------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Valery A. Khamenya and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This small program provides an example of how to build quickly a small |
| 11 | // module with function Fibonacci and execute it with the JIT. |
| 12 | // |
| 13 | // This simple example shows as well 30% speed up with LLVM 1.3 |
| 14 | // in comparison to gcc 3.3.3 at AMD Athlon XP 1500+ . |
| 15 | // |
| 16 | // (Modified from HowToUseJIT.cpp and Stacker/lib/compiler/StackerCompiler.cpp) |
| 17 | // |
| 18 | //===------------------------------------------------------------------------=== |
| 19 | // Goal: |
| 20 | // The goal of this snippet is to create in the memory |
| 21 | // the LLVM module consisting of one function as follow: |
| 22 | // |
| 23 | // int fib(int x) { |
| 24 | // if(x<=2) return 1; |
| 25 | // return fib(x-1)+fib(x-2); |
| 26 | // } |
| 27 | // |
| 28 | // then compile the module via JIT, then execute the `fib' |
| 29 | // function and return result to a driver, i.e. to a "host program". |
| 30 | // |
| 31 | |
| 32 | #include <iostream> |
| 33 | |
| 34 | #include <llvm/Module.h> |
| 35 | #include <llvm/DerivedTypes.h> |
| 36 | #include <llvm/Constants.h> |
| 37 | #include <llvm/Instructions.h> |
| 38 | #include <llvm/ModuleProvider.h> |
| 39 | #include <llvm/Analysis/Verifier.h> |
| 40 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 41 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 42 | |
| 43 | |
| 44 | using namespace llvm; |
| 45 | |
| 46 | int main(int argc, char**argv) { |
| 47 | |
| 48 | int n = argc > 1 ? atol(argv[1]) : 44; |
| 49 | |
| 50 | // Create some module to put our function into it. |
| 51 | Module *M = new Module("test"); |
| 52 | |
| 53 | |
| 54 | // We are about to create the "fib" function: |
| 55 | Function *FibF; |
| 56 | |
| 57 | { |
| 58 | // first create type for the single argument of fib function: |
| 59 | // the type is 'int ()' |
| 60 | std::vector<const Type*> ArgT(1); |
| 61 | ArgT[0] = Type::IntTy; |
| 62 | |
| 63 | // now create full type of the "fib" function: |
| 64 | FunctionType *FibT = FunctionType::get(Type::IntTy, // type of result |
| 65 | ArgT, |
| 66 | /*not vararg*/false); |
| 67 | |
| 68 | // Now create the fib function entry and |
| 69 | // insert this entry into module M |
| 70 | // (By passing a module as the last parameter to the Function constructor, |
| 71 | // it automatically gets appended to the Module.) |
| 72 | FibF = new Function(FibT, |
| 73 | Function::ExternalLinkage, // maybe too much |
| 74 | "fib", M); |
| 75 | |
| 76 | // Add a basic block to the function... (again, it automatically inserts |
| 77 | // because of the last argument.) |
| 78 | BasicBlock *BB = new BasicBlock("EntryBlock of fib function", FibF); |
| 79 | |
| 80 | // Get pointers to the constants ... |
| 81 | Value *One = ConstantSInt::get(Type::IntTy, 1); |
| 82 | Value *Two = ConstantSInt::get(Type::IntTy, 2); |
| 83 | |
| 84 | // Get pointers to the integer argument of the add1 function... |
| 85 | assert(FibF->abegin() != FibF->aend()); // Make sure there's an arg |
| 86 | |
| 87 | Argument &ArgX = FibF->afront(); // Get the arg |
| 88 | ArgX.setName("AnArg"); // Give it a nice symbolic name for fun. |
| 89 | |
| 90 | SetCondInst* CondInst |
| 91 | = new SetCondInst( Instruction::SetLE, |
| 92 | &ArgX, Two ); |
| 93 | |
| 94 | BB->getInstList().push_back(CondInst); |
| 95 | |
| 96 | // Create the true_block |
| 97 | BasicBlock* true_bb = new BasicBlock("arg<=2"); |
| 98 | |
| 99 | |
| 100 | // Create the return instruction and add it |
| 101 | // to the basic block for true case: |
| 102 | true_bb->getInstList().push_back(new ReturnInst(One)); |
| 103 | |
| 104 | // Create an exit block |
| 105 | BasicBlock* exit_bb = new BasicBlock("arg>2"); |
| 106 | |
| 107 | { |
| 108 | |
| 109 | // create fib(x-1) |
| 110 | CallInst* CallFibX1; |
| 111 | { |
| 112 | // Create the sub instruction... does not insert... |
| 113 | Instruction *Sub |
| 114 | = BinaryOperator::create(Instruction::Sub, &ArgX, One, |
| 115 | "arg"); |
| 116 | |
| 117 | exit_bb->getInstList().push_back(Sub); |
| 118 | |
| 119 | CallFibX1 = new CallInst(FibF, Sub, "fib(x-1)"); |
| 120 | exit_bb->getInstList().push_back(CallFibX1); |
| 121 | |
| 122 | } |
| 123 | |
| 124 | // create fib(x-2) |
| 125 | CallInst* CallFibX2; |
| 126 | { |
| 127 | // Create the sub instruction... does not insert... |
| 128 | Instruction * Sub |
| 129 | = BinaryOperator::create(Instruction::Sub, &ArgX, Two, |
| 130 | "arg"); |
| 131 | |
| 132 | exit_bb->getInstList().push_back(Sub); |
| 133 | CallFibX2 = new CallInst(FibF, Sub, "fib(x-2)"); |
| 134 | exit_bb->getInstList().push_back(CallFibX2); |
| 135 | |
| 136 | } |
| 137 | |
| 138 | // Create the add instruction... does not insert... |
| 139 | Instruction *Add = |
| 140 | BinaryOperator::create(Instruction::Add, |
| 141 | CallFibX1, CallFibX2, "addresult"); |
| 142 | |
| 143 | // explicitly insert it into the basic block... |
| 144 | exit_bb->getInstList().push_back(Add); |
| 145 | |
| 146 | // Create the return instruction and add it to the basic block |
| 147 | exit_bb->getInstList().push_back(new ReturnInst(Add)); |
| 148 | } |
| 149 | |
| 150 | // Create a branch on the SetCond |
| 151 | BranchInst* br_inst = |
| 152 | new BranchInst( true_bb, exit_bb, CondInst ); |
| 153 | |
| 154 | BB->getInstList().push_back( br_inst ); |
| 155 | FibF->getBasicBlockList().push_back(true_bb); |
| 156 | FibF->getBasicBlockList().push_back(exit_bb); |
| 157 | } |
| 158 | |
| 159 | // Now we going to create JIT |
| 160 | ExistingModuleProvider* MP = new ExistingModuleProvider(M); |
| 161 | ExecutionEngine* EE = ExecutionEngine::create( MP, false ); |
| 162 | |
| 163 | // Call the `foo' function with argument n: |
| 164 | std::vector<GenericValue> args(1); |
| 165 | args[0].IntVal = n; |
| 166 | |
| 167 | |
| 168 | std::clog << "verifying... "; |
| 169 | if (verifyModule(*M)) { |
| 170 | std::cerr << argv[0] |
| 171 | << ": assembly parsed, but does not verify as correct!\n"; |
| 172 | return 1; |
| 173 | } |
| 174 | else |
| 175 | std::clog << "OK\n"; |
| 176 | |
| 177 | |
| 178 | std::clog << "We just constructed this LLVM module:\n\n---------\n" << *M; |
| 179 | std::clog << "---------\nstarting fibonacci(" |
| 180 | << n << ") with JIT...\n" << std::flush; |
| 181 | |
| 182 | GenericValue gv = EE->runFunction(FibF, args); |
| 183 | |
| 184 | // import result of execution: |
| 185 | std::cout << "Result: " << gv.IntVal << std:: endl; |
| 186 | |
| 187 | return 0; |
| 188 | } |