blob: 395db2567c517e5071f3535a8e83122e90fafa74 [file] [log] [blame]
Chris Lattnercf3056d2003-10-13 03:32:08 +00001//===- Expressions.cpp - Expression Analysis Utilities --------------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner369bbeb2001-07-20 19:17:55 +00009//
10// This file defines a package of expression analysis utilties:
11//
12// ClassifyExpression: Analyze an expression to determine the complexity of the
13// expression, and which other variables it depends on.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/Expressions.h"
Chris Lattner968ddc92002-04-08 20:18:09 +000018#include "llvm/ConstantHandling.h"
Chris Lattnere590ff22002-03-26 17:55:33 +000019#include "llvm/Function.h"
Chris Lattner790462c2003-12-23 06:44:41 +000020using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000021
Chris Lattner69f8ce02001-09-11 04:27:34 +000022ExprType::ExprType(Value *Val) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000023 if (Val)
Chris Lattnere9bb2df2001-12-03 22:26:30 +000024 if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) {
Chris Lattner1d87bcf2001-10-01 20:11:19 +000025 Offset = CPI;
26 Var = 0;
27 ExprTy = Constant;
28 Scale = 0;
29 return;
30 }
31
32 Var = Val; Offset = 0;
33 ExprTy = Var ? Linear : Constant;
Chris Lattner69f8ce02001-09-11 04:27:34 +000034 Scale = 0;
35}
36
Chris Lattnere9bb2df2001-12-03 22:26:30 +000037ExprType::ExprType(const ConstantInt *scale, Value *var,
38 const ConstantInt *offset) {
Chris Lattner50020222001-11-26 18:53:07 +000039 Scale = var ? scale : 0; Var = var; Offset = offset;
Chris Lattner69f8ce02001-09-11 04:27:34 +000040 ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant);
Chris Lattnerce8a1492002-09-03 01:05:48 +000041 if (Scale && Scale->isNullValue()) { // Simplify 0*Var + const
Chris Lattner69f8ce02001-09-11 04:27:34 +000042 Scale = 0; Var = 0;
43 ExprTy = Constant;
44 }
45}
46
47
48const Type *ExprType::getExprType(const Type *Default) const {
49 if (Offset) return Offset->getType();
50 if (Scale) return Scale->getType();
51 return Var ? Var->getType() : Default;
52}
53
54
Chris Lattner790462c2003-12-23 06:44:41 +000055namespace {
56 class DefVal {
57 const ConstantInt * const Val;
58 const Type * const Ty;
59 protected:
60 inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {}
61 public:
62 inline const Type *getType() const { return Ty; }
63 inline const ConstantInt *getVal() const { return Val; }
64 inline operator const ConstantInt * () const { return Val; }
65 inline const ConstantInt *operator->() const { return Val; }
66 };
67
68 struct DefZero : public DefVal {
69 inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
70 inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {}
71 };
72
73 struct DefOne : public DefVal {
74 inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {}
75 };
76}
Chris Lattner19f31f22001-07-21 19:07:19 +000077
Chris Lattner369bbeb2001-07-20 19:17:55 +000078
Chris Lattner9b534262002-03-14 22:35:50 +000079// getUnsignedConstant - Return a constant value of the specified type. If the
80// constant value is not valid for the specified type, return null. This cannot
81// happen for values in the range of 0 to 127.
82//
Chris Lattnere9bb2df2001-12-03 22:26:30 +000083static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) {
Chris Lattner9b625032002-05-06 16:15:30 +000084 if (isa<PointerType>(Ty)) Ty = Type::ULongTy;
Chris Lattner9b534262002-03-14 22:35:50 +000085 if (Ty->isSigned()) {
86 // If this value is not a valid unsigned value for this type, return null!
87 if (V > 127 && ((int64_t)V < 0 ||
88 !ConstantSInt::isValueValidForType(Ty, (int64_t)V)))
89 return 0;
90 return ConstantSInt::get(Ty, V);
91 } else {
92 // If this value is not a valid unsigned value for this type, return null!
93 if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V))
94 return 0;
95 return ConstantUInt::get(Ty, V);
96 }
Chris Lattner369bbeb2001-07-20 19:17:55 +000097}
98
Chris Lattner369bbeb2001-07-20 19:17:55 +000099// Add - Helper function to make later code simpler. Basically it just adds
100// the two constants together, inserts the result into the constant pool, and
101// returns it. Of course life is not simple, and this is no exception. Factors
102// that complicate matters:
103// 1. Either argument may be null. If this is the case, the null argument is
104// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
105// 2. Types get in the way. We want to do arithmetic operations without
106// regard for the underlying types. It is assumed that the constants are
107// integral constants. The new value takes the type of the left argument.
108// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
109// is false, a null return value indicates a value of 0.
110//
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000111static const ConstantInt *Add(const ConstantInt *Arg1,
112 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000113 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000114 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000115
116 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000117 Constant *Result = *Arg1 + *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000118 assert(Result && Result->getType() == Arg1->getType() &&
119 "Couldn't perform addition!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000120 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000121
122 // Check to see if the result is one of the special cases that we want to
123 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000124 if (ResultI->equalsInt(DefOne ? 1 : 0))
125 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000126
Chris Lattner369bbeb2001-07-20 19:17:55 +0000127 return ResultI;
128}
129
Chris Lattner790462c2003-12-23 06:44:41 +0000130static inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000131 if (L == 0) return R;
132 if (R == 0) return L;
Chris Lattner8e195e02001-09-07 16:31:04 +0000133 return Add(L, R, false);
Chris Lattner19f31f22001-07-21 19:07:19 +0000134}
Chris Lattner369bbeb2001-07-20 19:17:55 +0000135
Chris Lattner790462c2003-12-23 06:44:41 +0000136static inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) {
Chris Lattner19f31f22001-07-21 19:07:19 +0000137 if (L == 0) {
138 if (R == 0)
Chris Lattner69f8ce02001-09-11 04:27:34 +0000139 return getUnsignedConstant(2, L.getType());
Chris Lattner19f31f22001-07-21 19:07:19 +0000140 else
Chris Lattner69f8ce02001-09-11 04:27:34 +0000141 return Add(getUnsignedConstant(1, L.getType()), R, true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000142 } else if (R == 0) {
Chris Lattner69f8ce02001-09-11 04:27:34 +0000143 return Add(L, getUnsignedConstant(1, L.getType()), true);
Chris Lattner19f31f22001-07-21 19:07:19 +0000144 }
Chris Lattner8e195e02001-09-07 16:31:04 +0000145 return Add(L, R, true);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000146}
147
148
Chris Lattner19f31f22001-07-21 19:07:19 +0000149// Mul - Helper function to make later code simpler. Basically it just
Chris Lattner369bbeb2001-07-20 19:17:55 +0000150// multiplies the two constants together, inserts the result into the constant
151// pool, and returns it. Of course life is not simple, and this is no
152// exception. Factors that complicate matters:
153// 1. Either argument may be null. If this is the case, the null argument is
154// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
155// 2. Types get in the way. We want to do arithmetic operations without
156// regard for the underlying types. It is assumed that the constants are
157// integral constants.
158// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
159// is false, a null return value indicates a value of 0.
160//
Chris Lattner790462c2003-12-23 06:44:41 +0000161static inline const ConstantInt *Mul(const ConstantInt *Arg1,
162 const ConstantInt *Arg2, bool DefOne) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000163 assert(Arg1 && Arg2 && "No null arguments should exist now!");
Chris Lattner19f31f22001-07-21 19:07:19 +0000164 assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
Chris Lattner369bbeb2001-07-20 19:17:55 +0000165
166 // Actually perform the computation now!
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000167 Constant *Result = *Arg1 * *Arg2;
Chris Lattner19f31f22001-07-21 19:07:19 +0000168 assert(Result && Result->getType() == Arg1->getType() &&
Chris Lattner50020222001-11-26 18:53:07 +0000169 "Couldn't perform multiplication!");
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000170 ConstantInt *ResultI = cast<ConstantInt>(Result);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000171
172 // Check to see if the result is one of the special cases that we want to
173 // recognize...
Chris Lattner69f8ce02001-09-11 04:27:34 +0000174 if (ResultI->equalsInt(DefOne ? 1 : 0))
175 return 0; // Yes it is, simply return null.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000176
Chris Lattner369bbeb2001-07-20 19:17:55 +0000177 return ResultI;
178}
179
Chris Lattner790462c2003-12-23 06:44:41 +0000180namespace {
181 inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) {
182 if (L == 0 || R == 0) return 0;
183 return Mul(L, R, false);
184 }
185 inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) {
186 if (R == 0) return getUnsignedConstant(0, L.getType());
187 if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
188 return Mul(L, R, true);
189 }
190 inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) {
191 if (L == 0 || R == 0) return L.getVal();
192 return Mul(R, L, false);
193 }
Chris Lattner19f31f22001-07-21 19:07:19 +0000194}
195
Chris Lattner69f8ce02001-09-11 04:27:34 +0000196// handleAddition - Add two expressions together, creating a new expression that
197// represents the composite of the two...
198//
199static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) {
200 const Type *Ty = V->getType();
201 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000202 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner69f8ce02001-09-11 04:27:34 +0000203
204 switch (Left.ExprTy) {
205 case ExprType::Constant:
Chris Lattner50020222001-11-26 18:53:07 +0000206 return ExprType(Right.Scale, Right.Var,
207 DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000208 case ExprType::Linear: // RHS side must be linear or scaled
209 case ExprType::ScaledLinear: // RHS must be scaled
210 if (Left.Var != Right.Var) // Are they the same variables?
Chris Lattner50020222001-11-26 18:53:07 +0000211 return V; // if not, we don't know anything!
Chris Lattner69f8ce02001-09-11 04:27:34 +0000212
213 return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty),
Chris Lattner50020222001-11-26 18:53:07 +0000214 Right.Var,
Chris Lattner69f8ce02001-09-11 04:27:34 +0000215 DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty));
216 default:
217 assert(0 && "Dont' know how to handle this case!");
218 return ExprType();
219 }
220}
221
222// negate - Negate the value of the specified expression...
223//
224static inline ExprType negate(const ExprType &E, Value *V) {
225 const Type *Ty = V->getType();
Chris Lattnercb05e782002-03-11 20:50:24 +0000226 ConstantInt *Zero = getUnsignedConstant(0, Ty);
227 ConstantInt *One = getUnsignedConstant(1, Ty);
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000228 ConstantInt *NegOne = cast<ConstantInt>(*Zero - *One);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000229 if (NegOne == 0) return V; // Couldn't subtract values...
230
231 return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var,
232 DefZero(E.Offset, Ty) * NegOne);
233}
Chris Lattner19f31f22001-07-21 19:07:19 +0000234
Chris Lattner369bbeb2001-07-20 19:17:55 +0000235
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000236// ClassifyExpr: Analyze an expression to determine the complexity of the
237// expression, and which other values it depends on.
Chris Lattner369bbeb2001-07-20 19:17:55 +0000238//
239// Note that this analysis cannot get into infinite loops because it treats PHI
240// nodes as being an unknown linear expression.
241//
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000242ExprType llvm::ClassifyExpr(Value *Expr) {
Chris Lattner369bbeb2001-07-20 19:17:55 +0000243 assert(Expr != 0 && "Can't classify a null expression!");
Chris Lattner0da29c82001-12-05 19:38:29 +0000244 if (Expr->getType() == Type::FloatTy || Expr->getType() == Type::DoubleTy)
245 return Expr; // FIXME: Can't handle FP expressions
246
Chris Lattner369bbeb2001-07-20 19:17:55 +0000247 switch (Expr->getValueType()) {
248 case Value::InstructionVal: break; // Instruction... hmmm... investigate.
249 case Value::TypeVal: case Value::BasicBlockVal:
Chris Lattner96d0f302002-04-28 04:50:00 +0000250 case Value::FunctionVal: default:
Chris Lattner481fafe2001-12-13 00:45:06 +0000251 //assert(0 && "Unexpected expression type to classify!");
Chris Lattner697954c2002-01-20 22:54:45 +0000252 std::cerr << "Bizarre thing to expr classify: " << Expr << "\n";
Chris Lattner481fafe2001-12-13 00:45:06 +0000253 return Expr;
Chris Lattnere590ff22002-03-26 17:55:33 +0000254 case Value::GlobalVariableVal: // Global Variable & Function argument:
Chris Lattner73e21422002-04-09 19:48:49 +0000255 case Value::ArgumentVal: // nothing known, return variable itself
Chris Lattner369bbeb2001-07-20 19:17:55 +0000256 return Expr;
257 case Value::ConstantVal: // Constant value, just return constant
Chris Lattnerac7ad682003-04-16 22:50:19 +0000258 if (ConstantInt *CPI = dyn_cast<ConstantInt>(cast<Constant>(Expr)))
259 // It's an integral constant!
Chris Lattnerce8a1492002-09-03 01:05:48 +0000260 return ExprType(CPI->isNullValue() ? 0 : CPI);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000261 return Expr;
262 }
263
Chris Lattner9636a912001-10-01 16:18:37 +0000264 Instruction *I = cast<Instruction>(Expr);
Chris Lattner19f31f22001-07-21 19:07:19 +0000265 const Type *Ty = I->getType();
Chris Lattner369bbeb2001-07-20 19:17:55 +0000266
Misha Brukman1ba31382003-07-14 17:26:34 +0000267 switch (I->getOpcode()) { // Handle each instruction type separately
Chris Lattner369bbeb2001-07-20 19:17:55 +0000268 case Instruction::Add: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000269 ExprType Left (ClassifyExpr(I->getOperand(0)));
270 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000271 return handleAddition(Left, Right, I);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000272 } // end case Instruction::Add
273
Chris Lattner69f8ce02001-09-11 04:27:34 +0000274 case Instruction::Sub: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000275 ExprType Left (ClassifyExpr(I->getOperand(0)));
276 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner50020222001-11-26 18:53:07 +0000277 ExprType RightNeg = negate(Right, I);
278 if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale)
279 return I; // Could not negate value...
280 return handleAddition(Left, RightNeg, I);
Chris Lattner69f8ce02001-09-11 04:27:34 +0000281 } // end case Instruction::Sub
282
Chris Lattner369bbeb2001-07-20 19:17:55 +0000283 case Instruction::Shl: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000284 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000285 if (Right.ExprTy != ExprType::Constant) break;
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000286 ExprType Left(ClassifyExpr(I->getOperand(0)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000287 if (Right.Offset == 0) return Left; // shl x, 0 = x
288 assert(Right.Offset->getType() == Type::UByteTy &&
Chris Lattner369bbeb2001-07-20 19:17:55 +0000289 "Shift amount must always be a unsigned byte!");
Chris Lattner28a128e2003-07-23 15:16:40 +0000290 uint64_t ShiftAmount = cast<ConstantUInt>(Right.Offset)->getValue();
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000291 ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty);
Chris Lattner9b534262002-03-14 22:35:50 +0000292
293 // We don't know how to classify it if they are shifting by more than what
294 // is reasonable. In most cases, the result will be zero, but there is one
295 // class of cases where it is not, so we cannot optimize without checking
296 // for it. The case is when you are shifting a signed value by 1 less than
297 // the number of bits in the value. For example:
298 // %X = shl sbyte %Y, ubyte 7
299 // will try to form an sbyte multiplier of 128, which will give a null
300 // multiplier, even though the result is not 0. Until we can check for this
301 // case, be conservative. TODO.
302 //
303 if (Multiplier == 0)
304 return Expr;
305
Chris Lattner8e195e02001-09-07 16:31:04 +0000306 return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var,
307 DefZero(Left.Offset, Ty) * Multiplier);
Chris Lattner369bbeb2001-07-20 19:17:55 +0000308 } // end case Instruction::Shl
309
Chris Lattner19f31f22001-07-21 19:07:19 +0000310 case Instruction::Mul: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000311 ExprType Left (ClassifyExpr(I->getOperand(0)));
312 ExprType Right(ClassifyExpr(I->getOperand(1)));
Chris Lattner19f31f22001-07-21 19:07:19 +0000313 if (Left.ExprTy > Right.ExprTy)
Chris Lattner697954c2002-01-20 22:54:45 +0000314 std::swap(Left, Right); // Make left be simpler than right
Chris Lattner19f31f22001-07-21 19:07:19 +0000315
316 if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
317 return I; // Quadratic eqn! :(
318
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000319 const ConstantInt *Offs = Left.Offset;
Chris Lattner19f31f22001-07-21 19:07:19 +0000320 if (Offs == 0) return ExprType();
Chris Lattner8e195e02001-09-07 16:31:04 +0000321 return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var,
322 DefZero(Right.Offset, Ty) * Offs);
Chris Lattner19f31f22001-07-21 19:07:19 +0000323 } // end case Instruction::Mul
324
325 case Instruction::Cast: {
Chris Lattner9a0a41f2003-12-23 08:04:08 +0000326 ExprType Src(ClassifyExpr(I->getOperand(0)));
Chris Lattner69f8ce02001-09-11 04:27:34 +0000327 const Type *DestTy = I->getType();
Chris Lattner9b625032002-05-06 16:15:30 +0000328 if (isa<PointerType>(DestTy))
Chris Lattner69f8ce02001-09-11 04:27:34 +0000329 DestTy = Type::ULongTy; // Pointer types are represented as ulong
Chris Lattner19f31f22001-07-21 19:07:19 +0000330
Chris Lattner5fd60912003-07-01 21:08:52 +0000331 const Type *SrcValTy = Src.getExprType(0);
332 if (!SrcValTy) return I;
333 if (!SrcValTy->isLosslesslyConvertibleTo(DestTy)) {
Chris Lattner882572a2001-11-26 16:53:50 +0000334 if (Src.ExprTy != ExprType::Constant)
335 return I; // Converting cast, and not a constant value...
336 }
Chris Lattner19f31f22001-07-21 19:07:19 +0000337
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000338 const ConstantInt *Offset = Src.Offset;
339 const ConstantInt *Scale = Src.Scale;
Chris Lattner882572a2001-11-26 16:53:50 +0000340 if (Offset) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000341 const Constant *CPV = ConstantFoldCastInstruction(Offset, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000342 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000343 Offset = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000344 }
345 if (Scale) {
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000346 const Constant *CPV = ConstantFoldCastInstruction(Scale, DestTy);
Chris Lattner882572a2001-11-26 16:53:50 +0000347 if (!CPV) return I;
Chris Lattnere9bb2df2001-12-03 22:26:30 +0000348 Scale = cast<ConstantInt>(CPV);
Chris Lattner882572a2001-11-26 16:53:50 +0000349 }
350 return ExprType(Scale, Src.Var, Offset);
Chris Lattner19f31f22001-07-21 19:07:19 +0000351 } // end case Instruction::Cast
Chris Lattner793d6782001-07-25 22:47:32 +0000352 // TODO: Handle SUB, SHR?
Chris Lattner369bbeb2001-07-20 19:17:55 +0000353
354 } // end switch
355
356 // Otherwise, I don't know anything about this value!
Chris Lattner19f31f22001-07-21 19:07:19 +0000357 return I;
Chris Lattner369bbeb2001-07-20 19:17:55 +0000358}