Sean Silva | ee47edf | 2012-12-05 00:26:32 +0000 | [diff] [blame^] | 1 | ============================================== |
| 2 | Kaleidoscope: Adding JIT and Optimizer Support |
| 3 | ============================================== |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | |
| 8 | Written by `Chris Lattner <mailto:sabre@nondot.org>`_ |
| 9 | |
| 10 | Chapter 4 Introduction |
| 11 | ====================== |
| 12 | |
| 13 | Welcome to Chapter 4 of the "`Implementing a language with |
| 14 | LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation |
| 15 | of a simple language and added support for generating LLVM IR. This |
| 16 | chapter describes two new techniques: adding optimizer support to your |
| 17 | language, and adding JIT compiler support. These additions will |
| 18 | demonstrate how to get nice, efficient code for the Kaleidoscope |
| 19 | language. |
| 20 | |
| 21 | Trivial Constant Folding |
| 22 | ======================== |
| 23 | |
| 24 | Our demonstration for Chapter 3 is elegant and easy to extend. |
| 25 | Unfortunately, it does not produce wonderful code. The IRBuilder, |
| 26 | however, does give us obvious optimizations when compiling simple code: |
| 27 | |
| 28 | :: |
| 29 | |
| 30 | ready> def test(x) 1+2+x; |
| 31 | Read function definition: |
| 32 | define double @test(double %x) { |
| 33 | entry: |
| 34 | %addtmp = fadd double 3.000000e+00, %x |
| 35 | ret double %addtmp |
| 36 | } |
| 37 | |
| 38 | This code is not a literal transcription of the AST built by parsing the |
| 39 | input. That would be: |
| 40 | |
| 41 | :: |
| 42 | |
| 43 | ready> def test(x) 1+2+x; |
| 44 | Read function definition: |
| 45 | define double @test(double %x) { |
| 46 | entry: |
| 47 | %addtmp = fadd double 2.000000e+00, 1.000000e+00 |
| 48 | %addtmp1 = fadd double %addtmp, %x |
| 49 | ret double %addtmp1 |
| 50 | } |
| 51 | |
| 52 | Constant folding, as seen above, in particular, is a very common and |
| 53 | very important optimization: so much so that many language implementors |
| 54 | implement constant folding support in their AST representation. |
| 55 | |
| 56 | With LLVM, you don't need this support in the AST. Since all calls to |
| 57 | build LLVM IR go through the LLVM IR builder, the builder itself checked |
| 58 | to see if there was a constant folding opportunity when you call it. If |
| 59 | so, it just does the constant fold and return the constant instead of |
| 60 | creating an instruction. |
| 61 | |
| 62 | Well, that was easy :). In practice, we recommend always using |
| 63 | ``IRBuilder`` when generating code like this. It has no "syntactic |
| 64 | overhead" for its use (you don't have to uglify your compiler with |
| 65 | constant checks everywhere) and it can dramatically reduce the amount of |
| 66 | LLVM IR that is generated in some cases (particular for languages with a |
| 67 | macro preprocessor or that use a lot of constants). |
| 68 | |
| 69 | On the other hand, the ``IRBuilder`` is limited by the fact that it does |
| 70 | all of its analysis inline with the code as it is built. If you take a |
| 71 | slightly more complex example: |
| 72 | |
| 73 | :: |
| 74 | |
| 75 | ready> def test(x) (1+2+x)*(x+(1+2)); |
| 76 | ready> Read function definition: |
| 77 | define double @test(double %x) { |
| 78 | entry: |
| 79 | %addtmp = fadd double 3.000000e+00, %x |
| 80 | %addtmp1 = fadd double %x, 3.000000e+00 |
| 81 | %multmp = fmul double %addtmp, %addtmp1 |
| 82 | ret double %multmp |
| 83 | } |
| 84 | |
| 85 | In this case, the LHS and RHS of the multiplication are the same value. |
| 86 | We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``" |
| 87 | instead of computing "``x+3``" twice. |
| 88 | |
| 89 | Unfortunately, no amount of local analysis will be able to detect and |
| 90 | correct this. This requires two transformations: reassociation of |
| 91 | expressions (to make the add's lexically identical) and Common |
| 92 | Subexpression Elimination (CSE) to delete the redundant add instruction. |
| 93 | Fortunately, LLVM provides a broad range of optimizations that you can |
| 94 | use, in the form of "passes". |
| 95 | |
| 96 | LLVM Optimization Passes |
| 97 | ======================== |
| 98 | |
| 99 | LLVM provides many optimization passes, which do many different sorts of |
| 100 | things and have different tradeoffs. Unlike other systems, LLVM doesn't |
| 101 | hold to the mistaken notion that one set of optimizations is right for |
| 102 | all languages and for all situations. LLVM allows a compiler implementor |
| 103 | to make complete decisions about what optimizations to use, in which |
| 104 | order, and in what situation. |
| 105 | |
| 106 | As a concrete example, LLVM supports both "whole module" passes, which |
| 107 | look across as large of body of code as they can (often a whole file, |
| 108 | but if run at link time, this can be a substantial portion of the whole |
| 109 | program). It also supports and includes "per-function" passes which just |
| 110 | operate on a single function at a time, without looking at other |
| 111 | functions. For more information on passes and how they are run, see the |
| 112 | `How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the |
| 113 | `List of LLVM Passes <../Passes.html>`_. |
| 114 | |
| 115 | For Kaleidoscope, we are currently generating functions on the fly, one |
| 116 | at a time, as the user types them in. We aren't shooting for the |
| 117 | ultimate optimization experience in this setting, but we also want to |
| 118 | catch the easy and quick stuff where possible. As such, we will choose |
| 119 | to run a few per-function optimizations as the user types the function |
| 120 | in. If we wanted to make a "static Kaleidoscope compiler", we would use |
| 121 | exactly the code we have now, except that we would defer running the |
| 122 | optimizer until the entire file has been parsed. |
| 123 | |
| 124 | In order to get per-function optimizations going, we need to set up a |
| 125 | `FunctionPassManager <../WritingAnLLVMPass.html#passmanager>`_ to hold |
| 126 | and organize the LLVM optimizations that we want to run. Once we have |
| 127 | that, we can add a set of optimizations to run. The code looks like |
| 128 | this: |
| 129 | |
| 130 | .. code-block:: c++ |
| 131 | |
| 132 | FunctionPassManager OurFPM(TheModule); |
| 133 | |
| 134 | // Set up the optimizer pipeline. Start with registering info about how the |
| 135 | // target lays out data structures. |
| 136 | OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| 137 | // Provide basic AliasAnalysis support for GVN. |
| 138 | OurFPM.add(createBasicAliasAnalysisPass()); |
| 139 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 140 | OurFPM.add(createInstructionCombiningPass()); |
| 141 | // Reassociate expressions. |
| 142 | OurFPM.add(createReassociatePass()); |
| 143 | // Eliminate Common SubExpressions. |
| 144 | OurFPM.add(createGVNPass()); |
| 145 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 146 | OurFPM.add(createCFGSimplificationPass()); |
| 147 | |
| 148 | OurFPM.doInitialization(); |
| 149 | |
| 150 | // Set the global so the code gen can use this. |
| 151 | TheFPM = &OurFPM; |
| 152 | |
| 153 | // Run the main "interpreter loop" now. |
| 154 | MainLoop(); |
| 155 | |
| 156 | This code defines a ``FunctionPassManager``, "``OurFPM``". It requires a |
| 157 | pointer to the ``Module`` to construct itself. Once it is set up, we use |
| 158 | a series of "add" calls to add a bunch of LLVM passes. The first pass is |
| 159 | basically boilerplate, it adds a pass so that later optimizations know |
| 160 | how the data structures in the program are laid out. The |
| 161 | "``TheExecutionEngine``" variable is related to the JIT, which we will |
| 162 | get to in the next section. |
| 163 | |
| 164 | In this case, we choose to add 4 optimization passes. The passes we |
| 165 | chose here are a pretty standard set of "cleanup" optimizations that are |
| 166 | useful for a wide variety of code. I won't delve into what they do but, |
| 167 | believe me, they are a good starting place :). |
| 168 | |
| 169 | Once the PassManager is set up, we need to make use of it. We do this by |
| 170 | running it after our newly created function is constructed (in |
| 171 | ``FunctionAST::Codegen``), but before it is returned to the client: |
| 172 | |
| 173 | .. code-block:: c++ |
| 174 | |
| 175 | if (Value *RetVal = Body->Codegen()) { |
| 176 | // Finish off the function. |
| 177 | Builder.CreateRet(RetVal); |
| 178 | |
| 179 | // Validate the generated code, checking for consistency. |
| 180 | verifyFunction(*TheFunction); |
| 181 | |
| 182 | // Optimize the function. |
| 183 | TheFPM->run(*TheFunction); |
| 184 | |
| 185 | return TheFunction; |
| 186 | } |
| 187 | |
| 188 | As you can see, this is pretty straightforward. The |
| 189 | ``FunctionPassManager`` optimizes and updates the LLVM Function\* in |
| 190 | place, improving (hopefully) its body. With this in place, we can try |
| 191 | our test above again: |
| 192 | |
| 193 | :: |
| 194 | |
| 195 | ready> def test(x) (1+2+x)*(x+(1+2)); |
| 196 | ready> Read function definition: |
| 197 | define double @test(double %x) { |
| 198 | entry: |
| 199 | %addtmp = fadd double %x, 3.000000e+00 |
| 200 | %multmp = fmul double %addtmp, %addtmp |
| 201 | ret double %multmp |
| 202 | } |
| 203 | |
| 204 | As expected, we now get our nicely optimized code, saving a floating |
| 205 | point add instruction from every execution of this function. |
| 206 | |
| 207 | LLVM provides a wide variety of optimizations that can be used in |
| 208 | certain circumstances. Some `documentation about the various |
| 209 | passes <../Passes.html>`_ is available, but it isn't very complete. |
| 210 | Another good source of ideas can come from looking at the passes that |
| 211 | ``Clang`` runs to get started. The "``opt``" tool allows you to |
| 212 | experiment with passes from the command line, so you can see if they do |
| 213 | anything. |
| 214 | |
| 215 | Now that we have reasonable code coming out of our front-end, lets talk |
| 216 | about executing it! |
| 217 | |
| 218 | Adding a JIT Compiler |
| 219 | ===================== |
| 220 | |
| 221 | Code that is available in LLVM IR can have a wide variety of tools |
| 222 | applied to it. For example, you can run optimizations on it (as we did |
| 223 | above), you can dump it out in textual or binary forms, you can compile |
| 224 | the code to an assembly file (.s) for some target, or you can JIT |
| 225 | compile it. The nice thing about the LLVM IR representation is that it |
| 226 | is the "common currency" between many different parts of the compiler. |
| 227 | |
| 228 | In this section, we'll add JIT compiler support to our interpreter. The |
| 229 | basic idea that we want for Kaleidoscope is to have the user enter |
| 230 | function bodies as they do now, but immediately evaluate the top-level |
| 231 | expressions they type in. For example, if they type in "1 + 2;", we |
| 232 | should evaluate and print out 3. If they define a function, they should |
| 233 | be able to call it from the command line. |
| 234 | |
| 235 | In order to do this, we first declare and initialize the JIT. This is |
| 236 | done by adding a global variable and a call in ``main``: |
| 237 | |
| 238 | .. code-block:: c++ |
| 239 | |
| 240 | static ExecutionEngine *TheExecutionEngine; |
| 241 | ... |
| 242 | int main() { |
| 243 | .. |
| 244 | // Create the JIT. This takes ownership of the module. |
| 245 | TheExecutionEngine = EngineBuilder(TheModule).create(); |
| 246 | .. |
| 247 | } |
| 248 | |
| 249 | This creates an abstract "Execution Engine" which can be either a JIT |
| 250 | compiler or the LLVM interpreter. LLVM will automatically pick a JIT |
| 251 | compiler for you if one is available for your platform, otherwise it |
| 252 | will fall back to the interpreter. |
| 253 | |
| 254 | Once the ``ExecutionEngine`` is created, the JIT is ready to be used. |
| 255 | There are a variety of APIs that are useful, but the simplest one is the |
| 256 | "``getPointerToFunction(F)``" method. This method JIT compiles the |
| 257 | specified LLVM Function and returns a function pointer to the generated |
| 258 | machine code. In our case, this means that we can change the code that |
| 259 | parses a top-level expression to look like this: |
| 260 | |
| 261 | .. code-block:: c++ |
| 262 | |
| 263 | static void HandleTopLevelExpression() { |
| 264 | // Evaluate a top-level expression into an anonymous function. |
| 265 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 266 | if (Function *LF = F->Codegen()) { |
| 267 | LF->dump(); // Dump the function for exposition purposes. |
| 268 | |
| 269 | // JIT the function, returning a function pointer. |
| 270 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 271 | |
| 272 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 273 | // can call it as a native function. |
| 274 | double (*FP)() = (double (*)())(intptr_t)FPtr; |
| 275 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 276 | } |
| 277 | |
| 278 | Recall that we compile top-level expressions into a self-contained LLVM |
| 279 | function that takes no arguments and returns the computed double. |
| 280 | Because the LLVM JIT compiler matches the native platform ABI, this |
| 281 | means that you can just cast the result pointer to a function pointer of |
| 282 | that type and call it directly. This means, there is no difference |
| 283 | between JIT compiled code and native machine code that is statically |
| 284 | linked into your application. |
| 285 | |
| 286 | With just these two changes, lets see how Kaleidoscope works now! |
| 287 | |
| 288 | :: |
| 289 | |
| 290 | ready> 4+5; |
| 291 | Read top-level expression: |
| 292 | define double @0() { |
| 293 | entry: |
| 294 | ret double 9.000000e+00 |
| 295 | } |
| 296 | |
| 297 | Evaluated to 9.000000 |
| 298 | |
| 299 | Well this looks like it is basically working. The dump of the function |
| 300 | shows the "no argument function that always returns double" that we |
| 301 | synthesize for each top-level expression that is typed in. This |
| 302 | demonstrates very basic functionality, but can we do more? |
| 303 | |
| 304 | :: |
| 305 | |
| 306 | ready> def testfunc(x y) x + y*2; |
| 307 | Read function definition: |
| 308 | define double @testfunc(double %x, double %y) { |
| 309 | entry: |
| 310 | %multmp = fmul double %y, 2.000000e+00 |
| 311 | %addtmp = fadd double %multmp, %x |
| 312 | ret double %addtmp |
| 313 | } |
| 314 | |
| 315 | ready> testfunc(4, 10); |
| 316 | Read top-level expression: |
| 317 | define double @1() { |
| 318 | entry: |
| 319 | %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) |
| 320 | ret double %calltmp |
| 321 | } |
| 322 | |
| 323 | Evaluated to 24.000000 |
| 324 | |
| 325 | This illustrates that we can now call user code, but there is something |
| 326 | a bit subtle going on here. Note that we only invoke the JIT on the |
| 327 | anonymous functions that *call testfunc*, but we never invoked it on |
| 328 | *testfunc* itself. What actually happened here is that the JIT scanned |
| 329 | for all non-JIT'd functions transitively called from the anonymous |
| 330 | function and compiled all of them before returning from |
| 331 | ``getPointerToFunction()``. |
| 332 | |
| 333 | The JIT provides a number of other more advanced interfaces for things |
| 334 | like freeing allocated machine code, rejit'ing functions to update them, |
| 335 | etc. However, even with this simple code, we get some surprisingly |
| 336 | powerful capabilities - check this out (I removed the dump of the |
| 337 | anonymous functions, you should get the idea by now :) : |
| 338 | |
| 339 | :: |
| 340 | |
| 341 | ready> extern sin(x); |
| 342 | Read extern: |
| 343 | declare double @sin(double) |
| 344 | |
| 345 | ready> extern cos(x); |
| 346 | Read extern: |
| 347 | declare double @cos(double) |
| 348 | |
| 349 | ready> sin(1.0); |
| 350 | Read top-level expression: |
| 351 | define double @2() { |
| 352 | entry: |
| 353 | ret double 0x3FEAED548F090CEE |
| 354 | } |
| 355 | |
| 356 | Evaluated to 0.841471 |
| 357 | |
| 358 | ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x); |
| 359 | Read function definition: |
| 360 | define double @foo(double %x) { |
| 361 | entry: |
| 362 | %calltmp = call double @sin(double %x) |
| 363 | %multmp = fmul double %calltmp, %calltmp |
| 364 | %calltmp2 = call double @cos(double %x) |
| 365 | %multmp4 = fmul double %calltmp2, %calltmp2 |
| 366 | %addtmp = fadd double %multmp, %multmp4 |
| 367 | ret double %addtmp |
| 368 | } |
| 369 | |
| 370 | ready> foo(4.0); |
| 371 | Read top-level expression: |
| 372 | define double @3() { |
| 373 | entry: |
| 374 | %calltmp = call double @foo(double 4.000000e+00) |
| 375 | ret double %calltmp |
| 376 | } |
| 377 | |
| 378 | Evaluated to 1.000000 |
| 379 | |
| 380 | Whoa, how does the JIT know about sin and cos? The answer is |
| 381 | surprisingly simple: in this example, the JIT started execution of a |
| 382 | function and got to a function call. It realized that the function was |
| 383 | not yet JIT compiled and invoked the standard set of routines to resolve |
| 384 | the function. In this case, there is no body defined for the function, |
| 385 | so the JIT ended up calling "``dlsym("sin")``" on the Kaleidoscope |
| 386 | process itself. Since "``sin``" is defined within the JIT's address |
| 387 | space, it simply patches up calls in the module to call the libm version |
| 388 | of ``sin`` directly. |
| 389 | |
| 390 | The LLVM JIT provides a number of interfaces (look in the |
| 391 | ``ExecutionEngine.h`` file) for controlling how unknown functions get |
| 392 | resolved. It allows you to establish explicit mappings between IR |
| 393 | objects and addresses (useful for LLVM global variables that you want to |
| 394 | map to static tables, for example), allows you to dynamically decide on |
| 395 | the fly based on the function name, and even allows you to have the JIT |
| 396 | compile functions lazily the first time they're called. |
| 397 | |
| 398 | One interesting application of this is that we can now extend the |
| 399 | language by writing arbitrary C++ code to implement operations. For |
| 400 | example, if we add: |
| 401 | |
| 402 | .. code-block:: c++ |
| 403 | |
| 404 | /// putchard - putchar that takes a double and returns 0. |
| 405 | extern "C" |
| 406 | double putchard(double X) { |
| 407 | putchar((char)X); |
| 408 | return 0; |
| 409 | } |
| 410 | |
| 411 | Now we can produce simple output to the console by using things like: |
| 412 | "``extern putchard(x); putchard(120);``", which prints a lowercase 'x' |
| 413 | on the console (120 is the ASCII code for 'x'). Similar code could be |
| 414 | used to implement file I/O, console input, and many other capabilities |
| 415 | in Kaleidoscope. |
| 416 | |
| 417 | This completes the JIT and optimizer chapter of the Kaleidoscope |
| 418 | tutorial. At this point, we can compile a non-Turing-complete |
| 419 | programming language, optimize and JIT compile it in a user-driven way. |
| 420 | Next up we'll look into `extending the language with control flow |
| 421 | constructs <LangImpl5.html>`_, tackling some interesting LLVM IR issues |
| 422 | along the way. |
| 423 | |
| 424 | Full Code Listing |
| 425 | ================= |
| 426 | |
| 427 | Here is the complete code listing for our running example, enhanced with |
| 428 | the LLVM JIT and optimizer. To build this example, use: |
| 429 | |
| 430 | .. code-block:: bash |
| 431 | |
| 432 | # Compile |
| 433 | clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| 434 | # Run |
| 435 | ./toy |
| 436 | |
| 437 | If you are compiling this on Linux, make sure to add the "-rdynamic" |
| 438 | option as well. This makes sure that the external functions are resolved |
| 439 | properly at runtime. |
| 440 | |
| 441 | Here is the code: |
| 442 | |
| 443 | .. code-block:: c++ |
| 444 | |
| 445 | #include "llvm/DerivedTypes.h" |
| 446 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| 447 | #include "llvm/ExecutionEngine/JIT.h" |
| 448 | #include "llvm/IRBuilder.h" |
| 449 | #include "llvm/LLVMContext.h" |
| 450 | #include "llvm/Module.h" |
| 451 | #include "llvm/PassManager.h" |
| 452 | #include "llvm/Analysis/Verifier.h" |
| 453 | #include "llvm/Analysis/Passes.h" |
| 454 | #include "llvm/DataLayout.h" |
| 455 | #include "llvm/Transforms/Scalar.h" |
| 456 | #include "llvm/Support/TargetSelect.h" |
| 457 | #include <cstdio> |
| 458 | #include <string> |
| 459 | #include <map> |
| 460 | #include <vector> |
| 461 | using namespace llvm; |
| 462 | |
| 463 | //===----------------------------------------------------------------------===// |
| 464 | // Lexer |
| 465 | //===----------------------------------------------------------------------===// |
| 466 | |
| 467 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| 468 | // of these for known things. |
| 469 | enum Token { |
| 470 | tok_eof = -1, |
| 471 | |
| 472 | // commands |
| 473 | tok_def = -2, tok_extern = -3, |
| 474 | |
| 475 | // primary |
| 476 | tok_identifier = -4, tok_number = -5 |
| 477 | }; |
| 478 | |
| 479 | static std::string IdentifierStr; // Filled in if tok_identifier |
| 480 | static double NumVal; // Filled in if tok_number |
| 481 | |
| 482 | /// gettok - Return the next token from standard input. |
| 483 | static int gettok() { |
| 484 | static int LastChar = ' '; |
| 485 | |
| 486 | // Skip any whitespace. |
| 487 | while (isspace(LastChar)) |
| 488 | LastChar = getchar(); |
| 489 | |
| 490 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| 491 | IdentifierStr = LastChar; |
| 492 | while (isalnum((LastChar = getchar()))) |
| 493 | IdentifierStr += LastChar; |
| 494 | |
| 495 | if (IdentifierStr == "def") return tok_def; |
| 496 | if (IdentifierStr == "extern") return tok_extern; |
| 497 | return tok_identifier; |
| 498 | } |
| 499 | |
| 500 | if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| 501 | std::string NumStr; |
| 502 | do { |
| 503 | NumStr += LastChar; |
| 504 | LastChar = getchar(); |
| 505 | } while (isdigit(LastChar) || LastChar == '.'); |
| 506 | |
| 507 | NumVal = strtod(NumStr.c_str(), 0); |
| 508 | return tok_number; |
| 509 | } |
| 510 | |
| 511 | if (LastChar == '#') { |
| 512 | // Comment until end of line. |
| 513 | do LastChar = getchar(); |
| 514 | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| 515 | |
| 516 | if (LastChar != EOF) |
| 517 | return gettok(); |
| 518 | } |
| 519 | |
| 520 | // Check for end of file. Don't eat the EOF. |
| 521 | if (LastChar == EOF) |
| 522 | return tok_eof; |
| 523 | |
| 524 | // Otherwise, just return the character as its ascii value. |
| 525 | int ThisChar = LastChar; |
| 526 | LastChar = getchar(); |
| 527 | return ThisChar; |
| 528 | } |
| 529 | |
| 530 | //===----------------------------------------------------------------------===// |
| 531 | // Abstract Syntax Tree (aka Parse Tree) |
| 532 | //===----------------------------------------------------------------------===// |
| 533 | |
| 534 | /// ExprAST - Base class for all expression nodes. |
| 535 | class ExprAST { |
| 536 | public: |
| 537 | virtual ~ExprAST() {} |
| 538 | virtual Value *Codegen() = 0; |
| 539 | }; |
| 540 | |
| 541 | /// NumberExprAST - Expression class for numeric literals like "1.0". |
| 542 | class NumberExprAST : public ExprAST { |
| 543 | double Val; |
| 544 | public: |
| 545 | NumberExprAST(double val) : Val(val) {} |
| 546 | virtual Value *Codegen(); |
| 547 | }; |
| 548 | |
| 549 | /// VariableExprAST - Expression class for referencing a variable, like "a". |
| 550 | class VariableExprAST : public ExprAST { |
| 551 | std::string Name; |
| 552 | public: |
| 553 | VariableExprAST(const std::string &name) : Name(name) {} |
| 554 | virtual Value *Codegen(); |
| 555 | }; |
| 556 | |
| 557 | /// BinaryExprAST - Expression class for a binary operator. |
| 558 | class BinaryExprAST : public ExprAST { |
| 559 | char Op; |
| 560 | ExprAST *LHS, *RHS; |
| 561 | public: |
| 562 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| 563 | : Op(op), LHS(lhs), RHS(rhs) {} |
| 564 | virtual Value *Codegen(); |
| 565 | }; |
| 566 | |
| 567 | /// CallExprAST - Expression class for function calls. |
| 568 | class CallExprAST : public ExprAST { |
| 569 | std::string Callee; |
| 570 | std::vector<ExprAST*> Args; |
| 571 | public: |
| 572 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| 573 | : Callee(callee), Args(args) {} |
| 574 | virtual Value *Codegen(); |
| 575 | }; |
| 576 | |
| 577 | /// PrototypeAST - This class represents the "prototype" for a function, |
| 578 | /// which captures its name, and its argument names (thus implicitly the number |
| 579 | /// of arguments the function takes). |
| 580 | class PrototypeAST { |
| 581 | std::string Name; |
| 582 | std::vector<std::string> Args; |
| 583 | public: |
| 584 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| 585 | : Name(name), Args(args) {} |
| 586 | |
| 587 | Function *Codegen(); |
| 588 | }; |
| 589 | |
| 590 | /// FunctionAST - This class represents a function definition itself. |
| 591 | class FunctionAST { |
| 592 | PrototypeAST *Proto; |
| 593 | ExprAST *Body; |
| 594 | public: |
| 595 | FunctionAST(PrototypeAST *proto, ExprAST *body) |
| 596 | : Proto(proto), Body(body) {} |
| 597 | |
| 598 | Function *Codegen(); |
| 599 | }; |
| 600 | |
| 601 | //===----------------------------------------------------------------------===// |
| 602 | // Parser |
| 603 | //===----------------------------------------------------------------------===// |
| 604 | |
| 605 | /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| 606 | /// token the parser is looking at. getNextToken reads another token from the |
| 607 | /// lexer and updates CurTok with its results. |
| 608 | static int CurTok; |
| 609 | static int getNextToken() { |
| 610 | return CurTok = gettok(); |
| 611 | } |
| 612 | |
| 613 | /// BinopPrecedence - This holds the precedence for each binary operator that is |
| 614 | /// defined. |
| 615 | static std::map<char, int> BinopPrecedence; |
| 616 | |
| 617 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| 618 | static int GetTokPrecedence() { |
| 619 | if (!isascii(CurTok)) |
| 620 | return -1; |
| 621 | |
| 622 | // Make sure it's a declared binop. |
| 623 | int TokPrec = BinopPrecedence[CurTok]; |
| 624 | if (TokPrec <= 0) return -1; |
| 625 | return TokPrec; |
| 626 | } |
| 627 | |
| 628 | /// Error* - These are little helper functions for error handling. |
| 629 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| 630 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| 631 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| 632 | |
| 633 | static ExprAST *ParseExpression(); |
| 634 | |
| 635 | /// identifierexpr |
| 636 | /// ::= identifier |
| 637 | /// ::= identifier '(' expression* ')' |
| 638 | static ExprAST *ParseIdentifierExpr() { |
| 639 | std::string IdName = IdentifierStr; |
| 640 | |
| 641 | getNextToken(); // eat identifier. |
| 642 | |
| 643 | if (CurTok != '(') // Simple variable ref. |
| 644 | return new VariableExprAST(IdName); |
| 645 | |
| 646 | // Call. |
| 647 | getNextToken(); // eat ( |
| 648 | std::vector<ExprAST*> Args; |
| 649 | if (CurTok != ')') { |
| 650 | while (1) { |
| 651 | ExprAST *Arg = ParseExpression(); |
| 652 | if (!Arg) return 0; |
| 653 | Args.push_back(Arg); |
| 654 | |
| 655 | if (CurTok == ')') break; |
| 656 | |
| 657 | if (CurTok != ',') |
| 658 | return Error("Expected ')' or ',' in argument list"); |
| 659 | getNextToken(); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | // Eat the ')'. |
| 664 | getNextToken(); |
| 665 | |
| 666 | return new CallExprAST(IdName, Args); |
| 667 | } |
| 668 | |
| 669 | /// numberexpr ::= number |
| 670 | static ExprAST *ParseNumberExpr() { |
| 671 | ExprAST *Result = new NumberExprAST(NumVal); |
| 672 | getNextToken(); // consume the number |
| 673 | return Result; |
| 674 | } |
| 675 | |
| 676 | /// parenexpr ::= '(' expression ')' |
| 677 | static ExprAST *ParseParenExpr() { |
| 678 | getNextToken(); // eat (. |
| 679 | ExprAST *V = ParseExpression(); |
| 680 | if (!V) return 0; |
| 681 | |
| 682 | if (CurTok != ')') |
| 683 | return Error("expected ')'"); |
| 684 | getNextToken(); // eat ). |
| 685 | return V; |
| 686 | } |
| 687 | |
| 688 | /// primary |
| 689 | /// ::= identifierexpr |
| 690 | /// ::= numberexpr |
| 691 | /// ::= parenexpr |
| 692 | static ExprAST *ParsePrimary() { |
| 693 | switch (CurTok) { |
| 694 | default: return Error("unknown token when expecting an expression"); |
| 695 | case tok_identifier: return ParseIdentifierExpr(); |
| 696 | case tok_number: return ParseNumberExpr(); |
| 697 | case '(': return ParseParenExpr(); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | /// binoprhs |
| 702 | /// ::= ('+' primary)* |
| 703 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| 704 | // If this is a binop, find its precedence. |
| 705 | while (1) { |
| 706 | int TokPrec = GetTokPrecedence(); |
| 707 | |
| 708 | // If this is a binop that binds at least as tightly as the current binop, |
| 709 | // consume it, otherwise we are done. |
| 710 | if (TokPrec < ExprPrec) |
| 711 | return LHS; |
| 712 | |
| 713 | // Okay, we know this is a binop. |
| 714 | int BinOp = CurTok; |
| 715 | getNextToken(); // eat binop |
| 716 | |
| 717 | // Parse the primary expression after the binary operator. |
| 718 | ExprAST *RHS = ParsePrimary(); |
| 719 | if (!RHS) return 0; |
| 720 | |
| 721 | // If BinOp binds less tightly with RHS than the operator after RHS, let |
| 722 | // the pending operator take RHS as its LHS. |
| 723 | int NextPrec = GetTokPrecedence(); |
| 724 | if (TokPrec < NextPrec) { |
| 725 | RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| 726 | if (RHS == 0) return 0; |
| 727 | } |
| 728 | |
| 729 | // Merge LHS/RHS. |
| 730 | LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /// expression |
| 735 | /// ::= primary binoprhs |
| 736 | /// |
| 737 | static ExprAST *ParseExpression() { |
| 738 | ExprAST *LHS = ParsePrimary(); |
| 739 | if (!LHS) return 0; |
| 740 | |
| 741 | return ParseBinOpRHS(0, LHS); |
| 742 | } |
| 743 | |
| 744 | /// prototype |
| 745 | /// ::= id '(' id* ')' |
| 746 | static PrototypeAST *ParsePrototype() { |
| 747 | if (CurTok != tok_identifier) |
| 748 | return ErrorP("Expected function name in prototype"); |
| 749 | |
| 750 | std::string FnName = IdentifierStr; |
| 751 | getNextToken(); |
| 752 | |
| 753 | if (CurTok != '(') |
| 754 | return ErrorP("Expected '(' in prototype"); |
| 755 | |
| 756 | std::vector<std::string> ArgNames; |
| 757 | while (getNextToken() == tok_identifier) |
| 758 | ArgNames.push_back(IdentifierStr); |
| 759 | if (CurTok != ')') |
| 760 | return ErrorP("Expected ')' in prototype"); |
| 761 | |
| 762 | // success. |
| 763 | getNextToken(); // eat ')'. |
| 764 | |
| 765 | return new PrototypeAST(FnName, ArgNames); |
| 766 | } |
| 767 | |
| 768 | /// definition ::= 'def' prototype expression |
| 769 | static FunctionAST *ParseDefinition() { |
| 770 | getNextToken(); // eat def. |
| 771 | PrototypeAST *Proto = ParsePrototype(); |
| 772 | if (Proto == 0) return 0; |
| 773 | |
| 774 | if (ExprAST *E = ParseExpression()) |
| 775 | return new FunctionAST(Proto, E); |
| 776 | return 0; |
| 777 | } |
| 778 | |
| 779 | /// toplevelexpr ::= expression |
| 780 | static FunctionAST *ParseTopLevelExpr() { |
| 781 | if (ExprAST *E = ParseExpression()) { |
| 782 | // Make an anonymous proto. |
| 783 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| 784 | return new FunctionAST(Proto, E); |
| 785 | } |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | /// external ::= 'extern' prototype |
| 790 | static PrototypeAST *ParseExtern() { |
| 791 | getNextToken(); // eat extern. |
| 792 | return ParsePrototype(); |
| 793 | } |
| 794 | |
| 795 | //===----------------------------------------------------------------------===// |
| 796 | // Code Generation |
| 797 | //===----------------------------------------------------------------------===// |
| 798 | |
| 799 | static Module *TheModule; |
| 800 | static IRBuilder<> Builder(getGlobalContext()); |
| 801 | static std::map<std::string, Value*> NamedValues; |
| 802 | static FunctionPassManager *TheFPM; |
| 803 | |
| 804 | Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| 805 | |
| 806 | Value *NumberExprAST::Codegen() { |
| 807 | return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| 808 | } |
| 809 | |
| 810 | Value *VariableExprAST::Codegen() { |
| 811 | // Look this variable up in the function. |
| 812 | Value *V = NamedValues[Name]; |
| 813 | return V ? V : ErrorV("Unknown variable name"); |
| 814 | } |
| 815 | |
| 816 | Value *BinaryExprAST::Codegen() { |
| 817 | Value *L = LHS->Codegen(); |
| 818 | Value *R = RHS->Codegen(); |
| 819 | if (L == 0 || R == 0) return 0; |
| 820 | |
| 821 | switch (Op) { |
| 822 | case '+': return Builder.CreateFAdd(L, R, "addtmp"); |
| 823 | case '-': return Builder.CreateFSub(L, R, "subtmp"); |
| 824 | case '*': return Builder.CreateFMul(L, R, "multmp"); |
| 825 | case '<': |
| 826 | L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| 827 | // Convert bool 0/1 to double 0.0 or 1.0 |
| 828 | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| 829 | "booltmp"); |
| 830 | default: return ErrorV("invalid binary operator"); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | Value *CallExprAST::Codegen() { |
| 835 | // Look up the name in the global module table. |
| 836 | Function *CalleeF = TheModule->getFunction(Callee); |
| 837 | if (CalleeF == 0) |
| 838 | return ErrorV("Unknown function referenced"); |
| 839 | |
| 840 | // If argument mismatch error. |
| 841 | if (CalleeF->arg_size() != Args.size()) |
| 842 | return ErrorV("Incorrect # arguments passed"); |
| 843 | |
| 844 | std::vector<Value*> ArgsV; |
| 845 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| 846 | ArgsV.push_back(Args[i]->Codegen()); |
| 847 | if (ArgsV.back() == 0) return 0; |
| 848 | } |
| 849 | |
| 850 | return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); |
| 851 | } |
| 852 | |
| 853 | Function *PrototypeAST::Codegen() { |
| 854 | // Make the function type: double(double,double) etc. |
| 855 | std::vector<Type*> Doubles(Args.size(), |
| 856 | Type::getDoubleTy(getGlobalContext())); |
| 857 | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| 858 | Doubles, false); |
| 859 | |
| 860 | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| 861 | |
| 862 | // If F conflicted, there was already something named 'Name'. If it has a |
| 863 | // body, don't allow redefinition or reextern. |
| 864 | if (F->getName() != Name) { |
| 865 | // Delete the one we just made and get the existing one. |
| 866 | F->eraseFromParent(); |
| 867 | F = TheModule->getFunction(Name); |
| 868 | |
| 869 | // If F already has a body, reject this. |
| 870 | if (!F->empty()) { |
| 871 | ErrorF("redefinition of function"); |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | // If F took a different number of args, reject. |
| 876 | if (F->arg_size() != Args.size()) { |
| 877 | ErrorF("redefinition of function with different # args"); |
| 878 | return 0; |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | // Set names for all arguments. |
| 883 | unsigned Idx = 0; |
| 884 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| 885 | ++AI, ++Idx) { |
| 886 | AI->setName(Args[Idx]); |
| 887 | |
| 888 | // Add arguments to variable symbol table. |
| 889 | NamedValues[Args[Idx]] = AI; |
| 890 | } |
| 891 | |
| 892 | return F; |
| 893 | } |
| 894 | |
| 895 | Function *FunctionAST::Codegen() { |
| 896 | NamedValues.clear(); |
| 897 | |
| 898 | Function *TheFunction = Proto->Codegen(); |
| 899 | if (TheFunction == 0) |
| 900 | return 0; |
| 901 | |
| 902 | // Create a new basic block to start insertion into. |
| 903 | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| 904 | Builder.SetInsertPoint(BB); |
| 905 | |
| 906 | if (Value *RetVal = Body->Codegen()) { |
| 907 | // Finish off the function. |
| 908 | Builder.CreateRet(RetVal); |
| 909 | |
| 910 | // Validate the generated code, checking for consistency. |
| 911 | verifyFunction(*TheFunction); |
| 912 | |
| 913 | // Optimize the function. |
| 914 | TheFPM->run(*TheFunction); |
| 915 | |
| 916 | return TheFunction; |
| 917 | } |
| 918 | |
| 919 | // Error reading body, remove function. |
| 920 | TheFunction->eraseFromParent(); |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | //===----------------------------------------------------------------------===// |
| 925 | // Top-Level parsing and JIT Driver |
| 926 | //===----------------------------------------------------------------------===// |
| 927 | |
| 928 | static ExecutionEngine *TheExecutionEngine; |
| 929 | |
| 930 | static void HandleDefinition() { |
| 931 | if (FunctionAST *F = ParseDefinition()) { |
| 932 | if (Function *LF = F->Codegen()) { |
| 933 | fprintf(stderr, "Read function definition:"); |
| 934 | LF->dump(); |
| 935 | } |
| 936 | } else { |
| 937 | // Skip token for error recovery. |
| 938 | getNextToken(); |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | static void HandleExtern() { |
| 943 | if (PrototypeAST *P = ParseExtern()) { |
| 944 | if (Function *F = P->Codegen()) { |
| 945 | fprintf(stderr, "Read extern: "); |
| 946 | F->dump(); |
| 947 | } |
| 948 | } else { |
| 949 | // Skip token for error recovery. |
| 950 | getNextToken(); |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | static void HandleTopLevelExpression() { |
| 955 | // Evaluate a top-level expression into an anonymous function. |
| 956 | if (FunctionAST *F = ParseTopLevelExpr()) { |
| 957 | if (Function *LF = F->Codegen()) { |
| 958 | fprintf(stderr, "Read top-level expression:"); |
| 959 | LF->dump(); |
| 960 | |
| 961 | // JIT the function, returning a function pointer. |
| 962 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| 963 | |
| 964 | // Cast it to the right type (takes no arguments, returns a double) so we |
| 965 | // can call it as a native function. |
| 966 | double (*FP)() = (double (*)())(intptr_t)FPtr; |
| 967 | fprintf(stderr, "Evaluated to %f\n", FP()); |
| 968 | } |
| 969 | } else { |
| 970 | // Skip token for error recovery. |
| 971 | getNextToken(); |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | /// top ::= definition | external | expression | ';' |
| 976 | static void MainLoop() { |
| 977 | while (1) { |
| 978 | fprintf(stderr, "ready> "); |
| 979 | switch (CurTok) { |
| 980 | case tok_eof: return; |
| 981 | case ';': getNextToken(); break; // ignore top-level semicolons. |
| 982 | case tok_def: HandleDefinition(); break; |
| 983 | case tok_extern: HandleExtern(); break; |
| 984 | default: HandleTopLevelExpression(); break; |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | //===----------------------------------------------------------------------===// |
| 990 | // "Library" functions that can be "extern'd" from user code. |
| 991 | //===----------------------------------------------------------------------===// |
| 992 | |
| 993 | /// putchard - putchar that takes a double and returns 0. |
| 994 | extern "C" |
| 995 | double putchard(double X) { |
| 996 | putchar((char)X); |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | //===----------------------------------------------------------------------===// |
| 1001 | // Main driver code. |
| 1002 | //===----------------------------------------------------------------------===// |
| 1003 | |
| 1004 | int main() { |
| 1005 | InitializeNativeTarget(); |
| 1006 | LLVMContext &Context = getGlobalContext(); |
| 1007 | |
| 1008 | // Install standard binary operators. |
| 1009 | // 1 is lowest precedence. |
| 1010 | BinopPrecedence['<'] = 10; |
| 1011 | BinopPrecedence['+'] = 20; |
| 1012 | BinopPrecedence['-'] = 20; |
| 1013 | BinopPrecedence['*'] = 40; // highest. |
| 1014 | |
| 1015 | // Prime the first token. |
| 1016 | fprintf(stderr, "ready> "); |
| 1017 | getNextToken(); |
| 1018 | |
| 1019 | // Make the module, which holds all the code. |
| 1020 | TheModule = new Module("my cool jit", Context); |
| 1021 | |
| 1022 | // Create the JIT. This takes ownership of the module. |
| 1023 | std::string ErrStr; |
| 1024 | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); |
| 1025 | if (!TheExecutionEngine) { |
| 1026 | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); |
| 1027 | exit(1); |
| 1028 | } |
| 1029 | |
| 1030 | FunctionPassManager OurFPM(TheModule); |
| 1031 | |
| 1032 | // Set up the optimizer pipeline. Start with registering info about how the |
| 1033 | // target lays out data structures. |
| 1034 | OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); |
| 1035 | // Provide basic AliasAnalysis support for GVN. |
| 1036 | OurFPM.add(createBasicAliasAnalysisPass()); |
| 1037 | // Do simple "peephole" optimizations and bit-twiddling optzns. |
| 1038 | OurFPM.add(createInstructionCombiningPass()); |
| 1039 | // Reassociate expressions. |
| 1040 | OurFPM.add(createReassociatePass()); |
| 1041 | // Eliminate Common SubExpressions. |
| 1042 | OurFPM.add(createGVNPass()); |
| 1043 | // Simplify the control flow graph (deleting unreachable blocks, etc). |
| 1044 | OurFPM.add(createCFGSimplificationPass()); |
| 1045 | |
| 1046 | OurFPM.doInitialization(); |
| 1047 | |
| 1048 | // Set the global so the code gen can use this. |
| 1049 | TheFPM = &OurFPM; |
| 1050 | |
| 1051 | // Run the main "interpreter loop" now. |
| 1052 | MainLoop(); |
| 1053 | |
| 1054 | TheFPM = 0; |
| 1055 | |
| 1056 | // Print out all of the generated code. |
| 1057 | TheModule->dump(); |
| 1058 | |
| 1059 | return 0; |
| 1060 | } |
| 1061 | |
| 1062 | `Next: Extending the language: control flow <LangImpl5.html>`_ |
| 1063 | |