Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame^] | 1 | //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the LoopInfo class that is used to identify natural loops |
| 11 | // and determine the loop depth of various nodes of the CFG. Note that the |
| 12 | // loops identified may actually be several natural loops that share the same |
| 13 | // header node... not just a single natural loop. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "llvm/Analysis/LoopInfo.h" |
| 18 | #include "llvm/Constants.h" |
| 19 | #include "llvm/Instructions.h" |
| 20 | #include "llvm/Analysis/Dominators.h" |
| 21 | #include "llvm/Assembly/Writer.h" |
| 22 | #include "llvm/Support/CFG.h" |
| 23 | #include "llvm/Support/Streams.h" |
| 24 | #include "llvm/ADT/DepthFirstIterator.h" |
| 25 | #include "llvm/ADT/SmallPtrSet.h" |
| 26 | #include <algorithm> |
| 27 | #include <ostream> |
| 28 | using namespace llvm; |
| 29 | |
| 30 | char LoopInfo::ID = 0; |
| 31 | static RegisterPass<LoopInfo> |
| 32 | X("loops", "Natural Loop Construction", true); |
| 33 | |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | // Loop implementation |
| 36 | // |
| 37 | bool Loop::contains(const BasicBlock *BB) const { |
| 38 | return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); |
| 39 | } |
| 40 | |
| 41 | bool Loop::isLoopExit(const BasicBlock *BB) const { |
| 42 | for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| 43 | SI != SE; ++SI) { |
| 44 | if (!contains(*SI)) |
| 45 | return true; |
| 46 | } |
| 47 | return false; |
| 48 | } |
| 49 | |
| 50 | /// getNumBackEdges - Calculate the number of back edges to the loop header. |
| 51 | /// |
| 52 | unsigned Loop::getNumBackEdges() const { |
| 53 | unsigned NumBackEdges = 0; |
| 54 | BasicBlock *H = getHeader(); |
| 55 | |
| 56 | for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I) |
| 57 | if (contains(*I)) |
| 58 | ++NumBackEdges; |
| 59 | |
| 60 | return NumBackEdges; |
| 61 | } |
| 62 | |
| 63 | /// isLoopInvariant - Return true if the specified value is loop invariant |
| 64 | /// |
| 65 | bool Loop::isLoopInvariant(Value *V) const { |
| 66 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 67 | return !contains(I->getParent()); |
| 68 | return true; // All non-instructions are loop invariant |
| 69 | } |
| 70 | |
| 71 | void Loop::print(std::ostream &OS, unsigned Depth) const { |
| 72 | OS << std::string(Depth*2, ' ') << "Loop Containing: "; |
| 73 | |
| 74 | for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| 75 | if (i) OS << ","; |
| 76 | WriteAsOperand(OS, getBlocks()[i], false); |
| 77 | } |
| 78 | OS << "\n"; |
| 79 | |
| 80 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 81 | (*I)->print(OS, Depth+2); |
| 82 | } |
| 83 | |
| 84 | void Loop::dump() const { |
| 85 | print(cerr); |
| 86 | } |
| 87 | |
| 88 | |
| 89 | //===----------------------------------------------------------------------===// |
| 90 | // LoopInfo implementation |
| 91 | // |
| 92 | bool LoopInfo::runOnFunction(Function &) { |
| 93 | releaseMemory(); |
| 94 | Calculate(getAnalysis<DominatorTree>()); // Update |
| 95 | return false; |
| 96 | } |
| 97 | |
| 98 | void LoopInfo::releaseMemory() { |
| 99 | for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(), |
| 100 | E = TopLevelLoops.end(); I != E; ++I) |
| 101 | delete *I; // Delete all of the loops... |
| 102 | |
| 103 | BBMap.clear(); // Reset internal state of analysis |
| 104 | TopLevelLoops.clear(); |
| 105 | } |
| 106 | |
| 107 | |
| 108 | void LoopInfo::Calculate(DominatorTree &DT) { |
| 109 | BasicBlock *RootNode = DT.getRootNode()->getBlock(); |
| 110 | |
| 111 | for (df_iterator<BasicBlock*> NI = df_begin(RootNode), |
| 112 | NE = df_end(RootNode); NI != NE; ++NI) |
| 113 | if (Loop *L = ConsiderForLoop(*NI, DT)) |
| 114 | TopLevelLoops.push_back(L); |
| 115 | } |
| 116 | |
| 117 | void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| 118 | AU.setPreservesAll(); |
| 119 | AU.addRequired<DominatorTree>(); |
| 120 | } |
| 121 | |
| 122 | void LoopInfo::print(std::ostream &OS, const Module* ) const { |
| 123 | for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| 124 | TopLevelLoops[i]->print(OS); |
| 125 | #if 0 |
| 126 | for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(), |
| 127 | E = BBMap.end(); I != E; ++I) |
| 128 | OS << "BB '" << I->first->getName() << "' level = " |
| 129 | << I->second->getLoopDepth() << "\n"; |
| 130 | #endif |
| 131 | } |
| 132 | |
| 133 | static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) { |
| 134 | if (SubLoop == 0) return true; |
| 135 | if (SubLoop == ParentLoop) return false; |
| 136 | return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
| 137 | } |
| 138 | |
| 139 | Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, DominatorTree &DT) { |
| 140 | if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node? |
| 141 | |
| 142 | std::vector<BasicBlock *> TodoStack; |
| 143 | |
| 144 | // Scan the predecessors of BB, checking to see if BB dominates any of |
| 145 | // them. This identifies backedges which target this node... |
| 146 | for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) |
| 147 | if (DT.dominates(BB, *I)) // If BB dominates it's predecessor... |
| 148 | TodoStack.push_back(*I); |
| 149 | |
| 150 | if (TodoStack.empty()) return 0; // No backedges to this block... |
| 151 | |
| 152 | // Create a new loop to represent this basic block... |
| 153 | Loop *L = new Loop(BB); |
| 154 | BBMap[BB] = L; |
| 155 | |
| 156 | BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock(); |
| 157 | |
| 158 | while (!TodoStack.empty()) { // Process all the nodes in the loop |
| 159 | BasicBlock *X = TodoStack.back(); |
| 160 | TodoStack.pop_back(); |
| 161 | |
| 162 | if (!L->contains(X) && // As of yet unprocessed?? |
| 163 | DT.dominates(EntryBlock, X)) { // X is reachable from entry block? |
| 164 | // Check to see if this block already belongs to a loop. If this occurs |
| 165 | // then we have a case where a loop that is supposed to be a child of the |
| 166 | // current loop was processed before the current loop. When this occurs, |
| 167 | // this child loop gets added to a part of the current loop, making it a |
| 168 | // sibling to the current loop. We have to reparent this loop. |
| 169 | if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X))) |
| 170 | if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) { |
| 171 | // Remove the subloop from it's current parent... |
| 172 | assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); |
| 173 | Loop *SLP = SubLoop->ParentLoop; // SubLoopParent |
| 174 | std::vector<Loop*>::iterator I = |
| 175 | std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); |
| 176 | assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?"); |
| 177 | SLP->SubLoops.erase(I); // Remove from parent... |
| 178 | |
| 179 | // Add the subloop to THIS loop... |
| 180 | SubLoop->ParentLoop = L; |
| 181 | L->SubLoops.push_back(SubLoop); |
| 182 | } |
| 183 | |
| 184 | // Normal case, add the block to our loop... |
| 185 | L->Blocks.push_back(X); |
| 186 | |
| 187 | // Add all of the predecessors of X to the end of the work stack... |
| 188 | TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X)); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | // If there are any loops nested within this loop, create them now! |
| 193 | for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| 194 | E = L->Blocks.end(); I != E; ++I) |
| 195 | if (Loop *NewLoop = ConsiderForLoop(*I, DT)) { |
| 196 | L->SubLoops.push_back(NewLoop); |
| 197 | NewLoop->ParentLoop = L; |
| 198 | } |
| 199 | |
| 200 | // Add the basic blocks that comprise this loop to the BBMap so that this |
| 201 | // loop can be found for them. |
| 202 | // |
| 203 | for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(), |
| 204 | E = L->Blocks.end(); I != E; ++I) { |
| 205 | std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I); |
| 206 | if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet... |
| 207 | BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level |
| 208 | } |
| 209 | |
| 210 | // Now that we have a list of all of the child loops of this loop, check to |
| 211 | // see if any of them should actually be nested inside of each other. We can |
| 212 | // accidentally pull loops our of their parents, so we must make sure to |
| 213 | // organize the loop nests correctly now. |
| 214 | { |
| 215 | std::map<BasicBlock*, Loop*> ContainingLoops; |
| 216 | for (unsigned i = 0; i != L->SubLoops.size(); ++i) { |
| 217 | Loop *Child = L->SubLoops[i]; |
| 218 | assert(Child->getParentLoop() == L && "Not proper child loop?"); |
| 219 | |
| 220 | if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) { |
| 221 | // If there is already a loop which contains this loop, move this loop |
| 222 | // into the containing loop. |
| 223 | MoveSiblingLoopInto(Child, ContainingLoop); |
| 224 | --i; // The loop got removed from the SubLoops list. |
| 225 | } else { |
| 226 | // This is currently considered to be a top-level loop. Check to see if |
| 227 | // any of the contained blocks are loop headers for subloops we have |
| 228 | // already processed. |
| 229 | for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { |
| 230 | Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]]; |
| 231 | if (BlockLoop == 0) { // Child block not processed yet... |
| 232 | BlockLoop = Child; |
| 233 | } else if (BlockLoop != Child) { |
| 234 | Loop *SubLoop = BlockLoop; |
| 235 | // Reparent all of the blocks which used to belong to BlockLoops |
| 236 | for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j) |
| 237 | ContainingLoops[SubLoop->Blocks[j]] = Child; |
| 238 | |
| 239 | // There is already a loop which contains this block, that means |
| 240 | // that we should reparent the loop which the block is currently |
| 241 | // considered to belong to to be a child of this loop. |
| 242 | MoveSiblingLoopInto(SubLoop, Child); |
| 243 | --i; // We just shrunk the SubLoops list. |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | return L; |
| 251 | } |
| 252 | |
| 253 | /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of |
| 254 | /// the NewParent Loop, instead of being a sibling of it. |
| 255 | void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) { |
| 256 | Loop *OldParent = NewChild->getParentLoop(); |
| 257 | assert(OldParent && OldParent == NewParent->getParentLoop() && |
| 258 | NewChild != NewParent && "Not sibling loops!"); |
| 259 | |
| 260 | // Remove NewChild from being a child of OldParent |
| 261 | std::vector<Loop*>::iterator I = |
| 262 | std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild); |
| 263 | assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); |
| 264 | OldParent->SubLoops.erase(I); // Remove from parent's subloops list |
| 265 | NewChild->ParentLoop = 0; |
| 266 | |
| 267 | InsertLoopInto(NewChild, NewParent); |
| 268 | } |
| 269 | |
| 270 | /// InsertLoopInto - This inserts loop L into the specified parent loop. If the |
| 271 | /// parent loop contains a loop which should contain L, the loop gets inserted |
| 272 | /// into L instead. |
| 273 | void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) { |
| 274 | BasicBlock *LHeader = L->getHeader(); |
| 275 | assert(Parent->contains(LHeader) && "This loop should not be inserted here!"); |
| 276 | |
| 277 | // Check to see if it belongs in a child loop... |
| 278 | for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i) |
| 279 | if (Parent->SubLoops[i]->contains(LHeader)) { |
| 280 | InsertLoopInto(L, Parent->SubLoops[i]); |
| 281 | return; |
| 282 | } |
| 283 | |
| 284 | // If not, insert it here! |
| 285 | Parent->SubLoops.push_back(L); |
| 286 | L->ParentLoop = Parent; |
| 287 | } |
| 288 | |
| 289 | /// changeLoopFor - Change the top-level loop that contains BB to the |
| 290 | /// specified loop. This should be used by transformations that restructure |
| 291 | /// the loop hierarchy tree. |
| 292 | void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) { |
| 293 | Loop *&OldLoop = BBMap[BB]; |
| 294 | assert(OldLoop && "Block not in a loop yet!"); |
| 295 | OldLoop = L; |
| 296 | } |
| 297 | |
| 298 | /// changeTopLevelLoop - Replace the specified loop in the top-level loops |
| 299 | /// list with the indicated loop. |
| 300 | void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { |
| 301 | std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(), |
| 302 | TopLevelLoops.end(), OldLoop); |
| 303 | assert(I != TopLevelLoops.end() && "Old loop not at top level!"); |
| 304 | *I = NewLoop; |
| 305 | assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && |
| 306 | "Loops already embedded into a subloop!"); |
| 307 | } |
| 308 | |
| 309 | /// removeLoop - This removes the specified top-level loop from this loop info |
| 310 | /// object. The loop is not deleted, as it will presumably be inserted into |
| 311 | /// another loop. |
| 312 | Loop *LoopInfo::removeLoop(iterator I) { |
| 313 | assert(I != end() && "Cannot remove end iterator!"); |
| 314 | Loop *L = *I; |
| 315 | assert(L->getParentLoop() == 0 && "Not a top-level loop!"); |
| 316 | TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); |
| 317 | return L; |
| 318 | } |
| 319 | |
| 320 | /// removeBlock - This method completely removes BB from all data structures, |
| 321 | /// including all of the Loop objects it is nested in and our mapping from |
| 322 | /// BasicBlocks to loops. |
| 323 | void LoopInfo::removeBlock(BasicBlock *BB) { |
| 324 | std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB); |
| 325 | if (I != BBMap.end()) { |
| 326 | for (Loop *L = I->second; L; L = L->getParentLoop()) |
| 327 | L->removeBlockFromLoop(BB); |
| 328 | |
| 329 | BBMap.erase(I); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | |
| 334 | //===----------------------------------------------------------------------===// |
| 335 | // APIs for simple analysis of the loop. |
| 336 | // |
| 337 | |
| 338 | /// getExitingBlocks - Return all blocks inside the loop that have successors |
| 339 | /// outside of the loop. These are the blocks _inside of the current loop_ |
| 340 | /// which branch out. The returned list is always unique. |
| 341 | /// |
| 342 | void Loop::getExitingBlocks(std::vector<BasicBlock*> &ExitingBlocks) const { |
| 343 | // Sort the blocks vector so that we can use binary search to do quick |
| 344 | // lookups. |
| 345 | std::vector<BasicBlock*> LoopBBs(block_begin(), block_end()); |
| 346 | std::sort(LoopBBs.begin(), LoopBBs.end()); |
| 347 | |
| 348 | for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(), |
| 349 | BE = Blocks.end(); BI != BE; ++BI) |
| 350 | for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| 351 | if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { |
| 352 | // Not in current loop? It must be an exit block. |
| 353 | ExitingBlocks.push_back(*BI); |
| 354 | break; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | /// getExitBlocks - Return all of the successor blocks of this loop. These |
| 359 | /// are the blocks _outside of the current loop_ which are branched to. |
| 360 | /// |
| 361 | void Loop::getExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const { |
| 362 | // Sort the blocks vector so that we can use binary search to do quick |
| 363 | // lookups. |
| 364 | std::vector<BasicBlock*> LoopBBs(block_begin(), block_end()); |
| 365 | std::sort(LoopBBs.begin(), LoopBBs.end()); |
| 366 | |
| 367 | for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(), |
| 368 | BE = Blocks.end(); BI != BE; ++BI) |
| 369 | for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) |
| 370 | if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| 371 | // Not in current loop? It must be an exit block. |
| 372 | ExitBlocks.push_back(*I); |
| 373 | } |
| 374 | |
| 375 | /// getUniqueExitBlocks - Return all unique successor blocks of this loop. These |
| 376 | /// are the blocks _outside of the current loop_ which are branched to. This |
| 377 | /// assumes that loop is in canonical form. |
| 378 | // |
| 379 | void Loop::getUniqueExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const { |
| 380 | // Sort the blocks vector so that we can use binary search to do quick |
| 381 | // lookups. |
| 382 | std::vector<BasicBlock*> LoopBBs(block_begin(), block_end()); |
| 383 | std::sort(LoopBBs.begin(), LoopBBs.end()); |
| 384 | |
| 385 | std::vector<BasicBlock*> switchExitBlocks; |
| 386 | |
| 387 | for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(), |
| 388 | BE = Blocks.end(); BI != BE; ++BI) { |
| 389 | |
| 390 | BasicBlock *current = *BI; |
| 391 | switchExitBlocks.clear(); |
| 392 | |
| 393 | for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { |
| 394 | if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| 395 | // If block is inside the loop then it is not a exit block. |
| 396 | continue; |
| 397 | |
| 398 | pred_iterator PI = pred_begin(*I); |
| 399 | BasicBlock *firstPred = *PI; |
| 400 | |
| 401 | // If current basic block is this exit block's first predecessor |
| 402 | // then only insert exit block in to the output ExitBlocks vector. |
| 403 | // This ensures that same exit block is not inserted twice into |
| 404 | // ExitBlocks vector. |
| 405 | if (current != firstPred) |
| 406 | continue; |
| 407 | |
| 408 | // If a terminator has more then two successors, for example SwitchInst, |
| 409 | // then it is possible that there are multiple edges from current block |
| 410 | // to one exit block. |
| 411 | if (current->getTerminator()->getNumSuccessors() <= 2) { |
| 412 | ExitBlocks.push_back(*I); |
| 413 | continue; |
| 414 | } |
| 415 | |
| 416 | // In case of multiple edges from current block to exit block, collect |
| 417 | // only one edge in ExitBlocks. Use switchExitBlocks to keep track of |
| 418 | // duplicate edges. |
| 419 | if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) |
| 420 | == switchExitBlocks.end()) { |
| 421 | switchExitBlocks.push_back(*I); |
| 422 | ExitBlocks.push_back(*I); |
| 423 | } |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | |
| 429 | /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| 430 | /// loop has a preheader if there is only one edge to the header of the loop |
| 431 | /// from outside of the loop. If this is the case, the block branching to the |
| 432 | /// header of the loop is the preheader node. |
| 433 | /// |
| 434 | /// This method returns null if there is no preheader for the loop. |
| 435 | /// |
| 436 | BasicBlock *Loop::getLoopPreheader() const { |
| 437 | // Keep track of nodes outside the loop branching to the header... |
| 438 | BasicBlock *Out = 0; |
| 439 | |
| 440 | // Loop over the predecessors of the header node... |
| 441 | BasicBlock *Header = getHeader(); |
| 442 | for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| 443 | PI != PE; ++PI) |
| 444 | if (!contains(*PI)) { // If the block is not in the loop... |
| 445 | if (Out && Out != *PI) |
| 446 | return 0; // Multiple predecessors outside the loop |
| 447 | Out = *PI; |
| 448 | } |
| 449 | |
| 450 | // Make sure there is only one exit out of the preheader. |
| 451 | assert(Out && "Header of loop has no predecessors from outside loop?"); |
| 452 | succ_iterator SI = succ_begin(Out); |
| 453 | ++SI; |
| 454 | if (SI != succ_end(Out)) |
| 455 | return 0; // Multiple exits from the block, must not be a preheader. |
| 456 | |
| 457 | // If there is exactly one preheader, return it. If there was zero, then Out |
| 458 | // is still null. |
| 459 | return Out; |
| 460 | } |
| 461 | |
| 462 | /// getLoopLatch - If there is a latch block for this loop, return it. A |
| 463 | /// latch block is the canonical backedge for a loop. A loop header in normal |
| 464 | /// form has two edges into it: one from a preheader and one from a latch |
| 465 | /// block. |
| 466 | BasicBlock *Loop::getLoopLatch() const { |
| 467 | BasicBlock *Header = getHeader(); |
| 468 | pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| 469 | if (PI == PE) return 0; // no preds? |
| 470 | |
| 471 | BasicBlock *Latch = 0; |
| 472 | if (contains(*PI)) |
| 473 | Latch = *PI; |
| 474 | ++PI; |
| 475 | if (PI == PE) return 0; // only one pred? |
| 476 | |
| 477 | if (contains(*PI)) { |
| 478 | if (Latch) return 0; // multiple backedges |
| 479 | Latch = *PI; |
| 480 | } |
| 481 | ++PI; |
| 482 | if (PI != PE) return 0; // more than two preds |
| 483 | |
| 484 | return Latch; |
| 485 | } |
| 486 | |
| 487 | /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| 488 | /// induction variable: an integer recurrence that starts at 0 and increments by |
| 489 | /// one each time through the loop. If so, return the phi node that corresponds |
| 490 | /// to it. |
| 491 | /// |
| 492 | PHINode *Loop::getCanonicalInductionVariable() const { |
| 493 | BasicBlock *H = getHeader(); |
| 494 | |
| 495 | BasicBlock *Incoming = 0, *Backedge = 0; |
| 496 | pred_iterator PI = pred_begin(H); |
| 497 | assert(PI != pred_end(H) && "Loop must have at least one backedge!"); |
| 498 | Backedge = *PI++; |
| 499 | if (PI == pred_end(H)) return 0; // dead loop |
| 500 | Incoming = *PI++; |
| 501 | if (PI != pred_end(H)) return 0; // multiple backedges? |
| 502 | |
| 503 | if (contains(Incoming)) { |
| 504 | if (contains(Backedge)) |
| 505 | return 0; |
| 506 | std::swap(Incoming, Backedge); |
| 507 | } else if (!contains(Backedge)) |
| 508 | return 0; |
| 509 | |
| 510 | // Loop over all of the PHI nodes, looking for a canonical indvar. |
| 511 | for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| 512 | PHINode *PN = cast<PHINode>(I); |
| 513 | if (Instruction *Inc = |
| 514 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| 515 | if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) |
| 516 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| 517 | if (CI->equalsInt(1)) |
| 518 | return PN; |
| 519 | } |
| 520 | return 0; |
| 521 | } |
| 522 | |
| 523 | /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds |
| 524 | /// the canonical induction variable value for the "next" iteration of the loop. |
| 525 | /// This always succeeds if getCanonicalInductionVariable succeeds. |
| 526 | /// |
| 527 | Instruction *Loop::getCanonicalInductionVariableIncrement() const { |
| 528 | if (PHINode *PN = getCanonicalInductionVariable()) { |
| 529 | bool P1InLoop = contains(PN->getIncomingBlock(1)); |
| 530 | return cast<Instruction>(PN->getIncomingValue(P1InLoop)); |
| 531 | } |
| 532 | return 0; |
| 533 | } |
| 534 | |
| 535 | /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| 536 | /// times the loop will be executed. Note that this means that the backedge of |
| 537 | /// the loop executes N-1 times. If the trip-count cannot be determined, this |
| 538 | /// returns null. |
| 539 | /// |
| 540 | Value *Loop::getTripCount() const { |
| 541 | // Canonical loops will end with a 'cmp ne I, V', where I is the incremented |
| 542 | // canonical induction variable and V is the trip count of the loop. |
| 543 | Instruction *Inc = getCanonicalInductionVariableIncrement(); |
| 544 | if (Inc == 0) return 0; |
| 545 | PHINode *IV = cast<PHINode>(Inc->getOperand(0)); |
| 546 | |
| 547 | BasicBlock *BackedgeBlock = |
| 548 | IV->getIncomingBlock(contains(IV->getIncomingBlock(1))); |
| 549 | |
| 550 | if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| 551 | if (BI->isConditional()) { |
| 552 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| 553 | if (ICI->getOperand(0) == Inc) |
| 554 | if (BI->getSuccessor(0) == getHeader()) { |
| 555 | if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| 556 | return ICI->getOperand(1); |
| 557 | } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { |
| 558 | return ICI->getOperand(1); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | return 0; |
| 564 | } |
| 565 | |
| 566 | /// isLCSSAForm - Return true if the Loop is in LCSSA form |
| 567 | bool Loop::isLCSSAForm() const { |
| 568 | // Sort the blocks vector so that we can use binary search to do quick |
| 569 | // lookups. |
| 570 | SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); |
| 571 | |
| 572 | for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { |
| 573 | BasicBlock *BB = *BI; |
| 574 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 575 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| 576 | ++UI) { |
| 577 | BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| 578 | if (PHINode *P = dyn_cast<PHINode>(*UI)) { |
| 579 | unsigned OperandNo = UI.getOperandNo(); |
| 580 | UserBB = P->getIncomingBlock(OperandNo/2); |
| 581 | } |
| 582 | |
| 583 | // Check the current block, as a fast-path. Most values are used in the |
| 584 | // same block they are defined in. |
| 585 | if (UserBB != BB && !LoopBBs.count(UserBB)) |
| 586 | return false; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | return true; |
| 591 | } |
| 592 | |
| 593 | //===-------------------------------------------------------------------===// |
| 594 | // APIs for updating loop information after changing the CFG |
| 595 | // |
| 596 | |
| 597 | /// addBasicBlockToLoop - This function is used by other analyses to update loop |
| 598 | /// information. NewBB is set to be a new member of the current loop. Because |
| 599 | /// of this, it is added as a member of all parent loops, and is added to the |
| 600 | /// specified LoopInfo object as being in the current basic block. It is not |
| 601 | /// valid to replace the loop header with this method. |
| 602 | /// |
| 603 | void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) { |
| 604 | assert((Blocks.empty() || LI[getHeader()] == this) && |
| 605 | "Incorrect LI specified for this loop!"); |
| 606 | assert(NewBB && "Cannot add a null basic block to the loop!"); |
| 607 | assert(LI[NewBB] == 0 && "BasicBlock already in the loop!"); |
| 608 | |
| 609 | // Add the loop mapping to the LoopInfo object... |
| 610 | LI.BBMap[NewBB] = this; |
| 611 | |
| 612 | // Add the basic block to this loop and all parent loops... |
| 613 | Loop *L = this; |
| 614 | while (L) { |
| 615 | L->Blocks.push_back(NewBB); |
| 616 | L = L->getParentLoop(); |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
| 621 | /// the OldChild entry in our children list with NewChild, and updates the |
| 622 | /// parent pointers of the two loops as appropriate. |
| 623 | void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) { |
| 624 | assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
| 625 | assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| 626 | std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(), |
| 627 | OldChild); |
| 628 | assert(I != SubLoops.end() && "OldChild not in loop!"); |
| 629 | *I = NewChild; |
| 630 | OldChild->ParentLoop = 0; |
| 631 | NewChild->ParentLoop = this; |
| 632 | } |
| 633 | |
| 634 | /// addChildLoop - Add the specified loop to be a child of this loop. |
| 635 | /// |
| 636 | void Loop::addChildLoop(Loop *NewChild) { |
| 637 | assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); |
| 638 | NewChild->ParentLoop = this; |
| 639 | SubLoops.push_back(NewChild); |
| 640 | } |
| 641 | |
| 642 | template<typename T> |
| 643 | static void RemoveFromVector(std::vector<T*> &V, T *N) { |
| 644 | typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); |
| 645 | assert(I != V.end() && "N is not in this list!"); |
| 646 | V.erase(I); |
| 647 | } |
| 648 | |
| 649 | /// removeChildLoop - This removes the specified child from being a subloop of |
| 650 | /// this loop. The loop is not deleted, as it will presumably be inserted |
| 651 | /// into another loop. |
| 652 | Loop *Loop::removeChildLoop(iterator I) { |
| 653 | assert(I != SubLoops.end() && "Cannot remove end iterator!"); |
| 654 | Loop *Child = *I; |
| 655 | assert(Child->ParentLoop == this && "Child is not a child of this loop!"); |
| 656 | SubLoops.erase(SubLoops.begin()+(I-begin())); |
| 657 | Child->ParentLoop = 0; |
| 658 | return Child; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | /// removeBlockFromLoop - This removes the specified basic block from the |
| 663 | /// current loop, updating the Blocks and ExitBlocks lists as appropriate. This |
| 664 | /// does not update the mapping in the LoopInfo class. |
| 665 | void Loop::removeBlockFromLoop(BasicBlock *BB) { |
| 666 | RemoveFromVector(Blocks, BB); |
| 667 | } |
| 668 | |
| 669 | // Ensure this file gets linked when LoopInfo.h is used. |
| 670 | DEFINING_FILE_FOR(LoopInfo) |