blob: c8790819d33fc394afa0d279563382ed3bf31eae [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "ParserInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/ValueSymbolTable.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/Streams.h"
27#include <algorithm>
28#include <list>
29#include <map>
30#include <utility>
31#ifndef NDEBUG
32#define YYDEBUG 1
33#endif
34
35// The following is a gross hack. In order to rid the libAsmParser library of
36// exceptions, we have to have a way of getting the yyparse function to go into
37// an error situation. So, whenever we want an error to occur, the GenerateError
38// function (see bottom of file) sets TriggerError. Then, at the end of each
39// production in the grammer we use CHECK_FOR_ERROR which will invoke YYERROR
40// (a goto) to put YACC in error state. Furthermore, several calls to
41// GenerateError are made from inside productions and they must simulate the
42// previous exception behavior by exiting the production immediately. We have
43// replaced these with the GEN_ERROR macro which calls GeneratError and then
44// immediately invokes YYERROR. This would be so much cleaner if it was a
45// recursive descent parser.
46static bool TriggerError = false;
47#define CHECK_FOR_ERROR { if (TriggerError) { TriggerError = false; YYABORT; } }
48#define GEN_ERROR(msg) { GenerateError(msg); YYERROR; }
49
50int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
51int yylex(); // declaration" of xxx warnings.
52int yyparse();
53
54namespace llvm {
55 std::string CurFilename;
56#if YYDEBUG
57static cl::opt<bool>
58Debug("debug-yacc", cl::desc("Print yacc debug state changes"),
59 cl::Hidden, cl::init(false));
60#endif
61}
62using namespace llvm;
63
64static Module *ParserResult;
65
66// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
67// relating to upreferences in the input stream.
68//
69//#define DEBUG_UPREFS 1
70#ifdef DEBUG_UPREFS
71#define UR_OUT(X) cerr << X
72#else
73#define UR_OUT(X)
74#endif
75
76#define YYERROR_VERBOSE 1
77
78static GlobalVariable *CurGV;
79
80
81// This contains info used when building the body of a function. It is
82// destroyed when the function is completed.
83//
84typedef std::vector<Value *> ValueList; // Numbered defs
85
86static void
87ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers=0);
88
89static struct PerModuleInfo {
90 Module *CurrentModule;
91 ValueList Values; // Module level numbered definitions
92 ValueList LateResolveValues;
93 std::vector<PATypeHolder> Types;
94 std::map<ValID, PATypeHolder> LateResolveTypes;
95
96 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
97 /// how they were referenced and on which line of the input they came from so
98 /// that we can resolve them later and print error messages as appropriate.
99 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
100
101 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
102 // references to global values. Global values may be referenced before they
103 // are defined, and if so, the temporary object that they represent is held
104 // here. This is used for forward references of GlobalValues.
105 //
106 typedef std::map<std::pair<const PointerType *,
107 ValID>, GlobalValue*> GlobalRefsType;
108 GlobalRefsType GlobalRefs;
109
110 void ModuleDone() {
111 // If we could not resolve some functions at function compilation time
112 // (calls to functions before they are defined), resolve them now... Types
113 // are resolved when the constant pool has been completely parsed.
114 //
115 ResolveDefinitions(LateResolveValues);
116 if (TriggerError)
117 return;
118
119 // Check to make sure that all global value forward references have been
120 // resolved!
121 //
122 if (!GlobalRefs.empty()) {
123 std::string UndefinedReferences = "Unresolved global references exist:\n";
124
125 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
126 I != E; ++I) {
127 UndefinedReferences += " " + I->first.first->getDescription() + " " +
128 I->first.second.getName() + "\n";
129 }
130 GenerateError(UndefinedReferences);
131 return;
132 }
133
134 Values.clear(); // Clear out function local definitions
135 Types.clear();
136 CurrentModule = 0;
137 }
138
139 // GetForwardRefForGlobal - Check to see if there is a forward reference
140 // for this global. If so, remove it from the GlobalRefs map and return it.
141 // If not, just return null.
142 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
143 // Check to see if there is a forward reference to this global variable...
144 // if there is, eliminate it and patch the reference to use the new def'n.
145 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
146 GlobalValue *Ret = 0;
147 if (I != GlobalRefs.end()) {
148 Ret = I->second;
149 GlobalRefs.erase(I);
150 }
151 return Ret;
152 }
153
154 bool TypeIsUnresolved(PATypeHolder* PATy) {
155 // If it isn't abstract, its resolved
156 const Type* Ty = PATy->get();
157 if (!Ty->isAbstract())
158 return false;
159 // Traverse the type looking for abstract types. If it isn't abstract then
160 // we don't need to traverse that leg of the type.
161 std::vector<const Type*> WorkList, SeenList;
162 WorkList.push_back(Ty);
163 while (!WorkList.empty()) {
164 const Type* Ty = WorkList.back();
165 SeenList.push_back(Ty);
166 WorkList.pop_back();
167 if (const OpaqueType* OpTy = dyn_cast<OpaqueType>(Ty)) {
168 // Check to see if this is an unresolved type
169 std::map<ValID, PATypeHolder>::iterator I = LateResolveTypes.begin();
170 std::map<ValID, PATypeHolder>::iterator E = LateResolveTypes.end();
171 for ( ; I != E; ++I) {
172 if (I->second.get() == OpTy)
173 return true;
174 }
175 } else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(Ty)) {
176 const Type* TheTy = SeqTy->getElementType();
177 if (TheTy->isAbstract() && TheTy != Ty) {
178 std::vector<const Type*>::iterator I = SeenList.begin(),
179 E = SeenList.end();
180 for ( ; I != E; ++I)
181 if (*I == TheTy)
182 break;
183 if (I == E)
184 WorkList.push_back(TheTy);
185 }
186 } else if (const StructType* StrTy = dyn_cast<StructType>(Ty)) {
187 for (unsigned i = 0; i < StrTy->getNumElements(); ++i) {
188 const Type* TheTy = StrTy->getElementType(i);
189 if (TheTy->isAbstract() && TheTy != Ty) {
190 std::vector<const Type*>::iterator I = SeenList.begin(),
191 E = SeenList.end();
192 for ( ; I != E; ++I)
193 if (*I == TheTy)
194 break;
195 if (I == E)
196 WorkList.push_back(TheTy);
197 }
198 }
199 }
200 }
201 return false;
202 }
203} CurModule;
204
205static struct PerFunctionInfo {
206 Function *CurrentFunction; // Pointer to current function being created
207
208 ValueList Values; // Keep track of #'d definitions
209 unsigned NextValNum;
210 ValueList LateResolveValues;
211 bool isDeclare; // Is this function a forward declararation?
212 GlobalValue::LinkageTypes Linkage; // Linkage for forward declaration.
213 GlobalValue::VisibilityTypes Visibility;
214
215 /// BBForwardRefs - When we see forward references to basic blocks, keep
216 /// track of them here.
217 std::map<ValID, BasicBlock*> BBForwardRefs;
218
219 inline PerFunctionInfo() {
220 CurrentFunction = 0;
221 isDeclare = false;
222 Linkage = GlobalValue::ExternalLinkage;
223 Visibility = GlobalValue::DefaultVisibility;
224 }
225
226 inline void FunctionStart(Function *M) {
227 CurrentFunction = M;
228 NextValNum = 0;
229 }
230
231 void FunctionDone() {
232 // Any forward referenced blocks left?
233 if (!BBForwardRefs.empty()) {
234 GenerateError("Undefined reference to label " +
235 BBForwardRefs.begin()->second->getName());
236 return;
237 }
238
239 // Resolve all forward references now.
240 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
241
242 Values.clear(); // Clear out function local definitions
243 BBForwardRefs.clear();
244 CurrentFunction = 0;
245 isDeclare = false;
246 Linkage = GlobalValue::ExternalLinkage;
247 Visibility = GlobalValue::DefaultVisibility;
248 }
249} CurFun; // Info for the current function...
250
251static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
252
253
254//===----------------------------------------------------------------------===//
255// Code to handle definitions of all the types
256//===----------------------------------------------------------------------===//
257
258static void InsertValue(Value *V, ValueList &ValueTab = CurFun.Values) {
259 // Things that have names or are void typed don't get slot numbers
260 if (V->hasName() || (V->getType() == Type::VoidTy))
261 return;
262
263 // In the case of function values, we have to allow for the forward reference
264 // of basic blocks, which are included in the numbering. Consequently, we keep
265 // track of the next insertion location with NextValNum. When a BB gets
266 // inserted, it could change the size of the CurFun.Values vector.
267 if (&ValueTab == &CurFun.Values) {
268 if (ValueTab.size() <= CurFun.NextValNum)
269 ValueTab.resize(CurFun.NextValNum+1);
270 ValueTab[CurFun.NextValNum++] = V;
271 return;
272 }
273 // For all other lists, its okay to just tack it on the back of the vector.
274 ValueTab.push_back(V);
275}
276
277static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
278 switch (D.Type) {
279 case ValID::LocalID: // Is it a numbered definition?
280 // Module constants occupy the lowest numbered slots...
281 if (D.Num < CurModule.Types.size())
282 return CurModule.Types[D.Num];
283 break;
284 case ValID::LocalName: // Is it a named definition?
285 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.getName())) {
286 D.destroy(); // Free old strdup'd memory...
287 return N;
288 }
289 break;
290 default:
291 GenerateError("Internal parser error: Invalid symbol type reference");
292 return 0;
293 }
294
295 // If we reached here, we referenced either a symbol that we don't know about
296 // or an id number that hasn't been read yet. We may be referencing something
297 // forward, so just create an entry to be resolved later and get to it...
298 //
299 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
300
301
302 if (inFunctionScope()) {
303 if (D.Type == ValID::LocalName) {
304 GenerateError("Reference to an undefined type: '" + D.getName() + "'");
305 return 0;
306 } else {
307 GenerateError("Reference to an undefined type: #" + utostr(D.Num));
308 return 0;
309 }
310 }
311
312 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
313 if (I != CurModule.LateResolveTypes.end())
314 return I->second;
315
316 Type *Typ = OpaqueType::get();
317 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
318 return Typ;
319 }
320
321// getExistingVal - Look up the value specified by the provided type and
322// the provided ValID. If the value exists and has already been defined, return
323// it. Otherwise return null.
324//
325static Value *getExistingVal(const Type *Ty, const ValID &D) {
326 if (isa<FunctionType>(Ty)) {
327 GenerateError("Functions are not values and "
328 "must be referenced as pointers");
329 return 0;
330 }
331
332 switch (D.Type) {
333 case ValID::LocalID: { // Is it a numbered definition?
334 // Check that the number is within bounds.
335 if (D.Num >= CurFun.Values.size())
336 return 0;
337 Value *Result = CurFun.Values[D.Num];
338 if (Ty != Result->getType()) {
339 GenerateError("Numbered value (%" + utostr(D.Num) + ") of type '" +
340 Result->getType()->getDescription() + "' does not match "
341 "expected type, '" + Ty->getDescription() + "'");
342 return 0;
343 }
344 return Result;
345 }
346 case ValID::GlobalID: { // Is it a numbered definition?
347 if (D.Num >= CurModule.Values.size())
348 return 0;
349 Value *Result = CurModule.Values[D.Num];
350 if (Ty != Result->getType()) {
351 GenerateError("Numbered value (@" + utostr(D.Num) + ") of type '" +
352 Result->getType()->getDescription() + "' does not match "
353 "expected type, '" + Ty->getDescription() + "'");
354 return 0;
355 }
356 return Result;
357 }
358
359 case ValID::LocalName: { // Is it a named definition?
360 if (!inFunctionScope())
361 return 0;
362 ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
363 Value *N = SymTab.lookup(D.getName());
364 if (N == 0)
365 return 0;
366 if (N->getType() != Ty)
367 return 0;
368
369 D.destroy(); // Free old strdup'd memory...
370 return N;
371 }
372 case ValID::GlobalName: { // Is it a named definition?
373 ValueSymbolTable &SymTab = CurModule.CurrentModule->getValueSymbolTable();
374 Value *N = SymTab.lookup(D.getName());
375 if (N == 0)
376 return 0;
377 if (N->getType() != Ty)
378 return 0;
379
380 D.destroy(); // Free old strdup'd memory...
381 return N;
382 }
383
384 // Check to make sure that "Ty" is an integral type, and that our
385 // value will fit into the specified type...
386 case ValID::ConstSIntVal: // Is it a constant pool reference??
387 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
388 GenerateError("Signed integral constant '" +
389 itostr(D.ConstPool64) + "' is invalid for type '" +
390 Ty->getDescription() + "'");
391 return 0;
392 }
393 return ConstantInt::get(Ty, D.ConstPool64, true);
394
395 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
396 if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
397 if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
398 GenerateError("Integral constant '" + utostr(D.UConstPool64) +
399 "' is invalid or out of range");
400 return 0;
401 } else { // This is really a signed reference. Transmogrify.
402 return ConstantInt::get(Ty, D.ConstPool64, true);
403 }
404 } else {
405 return ConstantInt::get(Ty, D.UConstPool64);
406 }
407
408 case ValID::ConstFPVal: // Is it a floating point const pool reference?
409 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) {
410 GenerateError("FP constant invalid for type");
411 return 0;
412 }
413 return ConstantFP::get(Ty, D.ConstPoolFP);
414
415 case ValID::ConstNullVal: // Is it a null value?
416 if (!isa<PointerType>(Ty)) {
417 GenerateError("Cannot create a a non pointer null");
418 return 0;
419 }
420 return ConstantPointerNull::get(cast<PointerType>(Ty));
421
422 case ValID::ConstUndefVal: // Is it an undef value?
423 return UndefValue::get(Ty);
424
425 case ValID::ConstZeroVal: // Is it a zero value?
426 return Constant::getNullValue(Ty);
427
428 case ValID::ConstantVal: // Fully resolved constant?
429 if (D.ConstantValue->getType() != Ty) {
430 GenerateError("Constant expression type different from required type");
431 return 0;
432 }
433 return D.ConstantValue;
434
435 case ValID::InlineAsmVal: { // Inline asm expression
436 const PointerType *PTy = dyn_cast<PointerType>(Ty);
437 const FunctionType *FTy =
438 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
439 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) {
440 GenerateError("Invalid type for asm constraint string");
441 return 0;
442 }
443 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
444 D.IAD->HasSideEffects);
445 D.destroy(); // Free InlineAsmDescriptor.
446 return IA;
447 }
448 default:
449 assert(0 && "Unhandled case!");
450 return 0;
451 } // End of switch
452
453 assert(0 && "Unhandled case!");
454 return 0;
455}
456
457// getVal - This function is identical to getExistingVal, except that if a
458// value is not already defined, it "improvises" by creating a placeholder var
459// that looks and acts just like the requested variable. When the value is
460// defined later, all uses of the placeholder variable are replaced with the
461// real thing.
462//
463static Value *getVal(const Type *Ty, const ValID &ID) {
464 if (Ty == Type::LabelTy) {
465 GenerateError("Cannot use a basic block here");
466 return 0;
467 }
468
469 // See if the value has already been defined.
470 Value *V = getExistingVal(Ty, ID);
471 if (V) return V;
472 if (TriggerError) return 0;
473
474 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) {
475 GenerateError("Invalid use of a composite type");
476 return 0;
477 }
478
479 // If we reached here, we referenced either a symbol that we don't know about
480 // or an id number that hasn't been read yet. We may be referencing something
481 // forward, so just create an entry to be resolved later and get to it...
482 //
483 switch (ID.Type) {
484 case ValID::GlobalName:
485 case ValID::GlobalID: {
486 const PointerType *PTy = dyn_cast<PointerType>(Ty);
487 if (!PTy) {
488 GenerateError("Invalid type for reference to global" );
489 return 0;
490 }
491 const Type* ElTy = PTy->getElementType();
492 if (const FunctionType *FTy = dyn_cast<FunctionType>(ElTy))
493 V = new Function(FTy, GlobalValue::ExternalLinkage);
494 else
495 V = new GlobalVariable(ElTy, false, GlobalValue::ExternalLinkage);
496 break;
497 }
498 default:
499 V = new Argument(Ty);
500 }
501
502 // Remember where this forward reference came from. FIXME, shouldn't we try
503 // to recycle these things??
504 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
505 llvmAsmlineno)));
506
507 if (inFunctionScope())
508 InsertValue(V, CurFun.LateResolveValues);
509 else
510 InsertValue(V, CurModule.LateResolveValues);
511 return V;
512}
513
514/// defineBBVal - This is a definition of a new basic block with the specified
515/// identifier which must be the same as CurFun.NextValNum, if its numeric.
516static BasicBlock *defineBBVal(const ValID &ID) {
517 assert(inFunctionScope() && "Can't get basic block at global scope!");
518
519 BasicBlock *BB = 0;
520
521 // First, see if this was forward referenced
522
523 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
524 if (BBI != CurFun.BBForwardRefs.end()) {
525 BB = BBI->second;
526 // The forward declaration could have been inserted anywhere in the
527 // function: insert it into the correct place now.
528 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
529 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
530
531 // We're about to erase the entry, save the key so we can clean it up.
532 ValID Tmp = BBI->first;
533
534 // Erase the forward ref from the map as its no longer "forward"
535 CurFun.BBForwardRefs.erase(ID);
536
537 // The key has been removed from the map but so we don't want to leave
538 // strdup'd memory around so destroy it too.
539 Tmp.destroy();
540
541 // If its a numbered definition, bump the number and set the BB value.
542 if (ID.Type == ValID::LocalID) {
543 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
544 InsertValue(BB);
545 }
546
547 ID.destroy();
548 return BB;
549 }
550
551 // We haven't seen this BB before and its first mention is a definition.
552 // Just create it and return it.
553 std::string Name (ID.Type == ValID::LocalName ? ID.getName() : "");
554 BB = new BasicBlock(Name, CurFun.CurrentFunction);
555 if (ID.Type == ValID::LocalID) {
556 assert(ID.Num == CurFun.NextValNum && "Invalid new block number");
557 InsertValue(BB);
558 }
559
560 ID.destroy(); // Free strdup'd memory
561 return BB;
562}
563
564/// getBBVal - get an existing BB value or create a forward reference for it.
565///
566static BasicBlock *getBBVal(const ValID &ID) {
567 assert(inFunctionScope() && "Can't get basic block at global scope!");
568
569 BasicBlock *BB = 0;
570
571 std::map<ValID, BasicBlock*>::iterator BBI = CurFun.BBForwardRefs.find(ID);
572 if (BBI != CurFun.BBForwardRefs.end()) {
573 BB = BBI->second;
574 } if (ID.Type == ValID::LocalName) {
575 std::string Name = ID.getName();
576 Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name);
577 if (N)
578 if (N->getType()->getTypeID() == Type::LabelTyID)
579 BB = cast<BasicBlock>(N);
580 else
581 GenerateError("Reference to label '" + Name + "' is actually of type '"+
582 N->getType()->getDescription() + "'");
583 } else if (ID.Type == ValID::LocalID) {
584 if (ID.Num < CurFun.NextValNum && ID.Num < CurFun.Values.size()) {
585 if (CurFun.Values[ID.Num]->getType()->getTypeID() == Type::LabelTyID)
586 BB = cast<BasicBlock>(CurFun.Values[ID.Num]);
587 else
588 GenerateError("Reference to label '%" + utostr(ID.Num) +
589 "' is actually of type '"+
590 CurFun.Values[ID.Num]->getType()->getDescription() + "'");
591 }
592 } else {
593 GenerateError("Illegal label reference " + ID.getName());
594 return 0;
595 }
596
597 // If its already been defined, return it now.
598 if (BB) {
599 ID.destroy(); // Free strdup'd memory.
600 return BB;
601 }
602
603 // Otherwise, this block has not been seen before, create it.
604 std::string Name;
605 if (ID.Type == ValID::LocalName)
606 Name = ID.getName();
607 BB = new BasicBlock(Name, CurFun.CurrentFunction);
608
609 // Insert it in the forward refs map.
610 CurFun.BBForwardRefs[ID] = BB;
611
612 return BB;
613}
614
615
616//===----------------------------------------------------------------------===//
617// Code to handle forward references in instructions
618//===----------------------------------------------------------------------===//
619//
620// This code handles the late binding needed with statements that reference
621// values not defined yet... for example, a forward branch, or the PHI node for
622// a loop body.
623//
624// This keeps a table (CurFun.LateResolveValues) of all such forward references
625// and back patchs after we are done.
626//
627
628// ResolveDefinitions - If we could not resolve some defs at parsing
629// time (forward branches, phi functions for loops, etc...) resolve the
630// defs now...
631//
632static void
633ResolveDefinitions(ValueList &LateResolvers, ValueList *FutureLateResolvers) {
634 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
635 while (!LateResolvers.empty()) {
636 Value *V = LateResolvers.back();
637 LateResolvers.pop_back();
638
639 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
640 CurModule.PlaceHolderInfo.find(V);
641 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
642
643 ValID &DID = PHI->second.first;
644
645 Value *TheRealValue = getExistingVal(V->getType(), DID);
646 if (TriggerError)
647 return;
648 if (TheRealValue) {
649 V->replaceAllUsesWith(TheRealValue);
650 delete V;
651 CurModule.PlaceHolderInfo.erase(PHI);
652 } else if (FutureLateResolvers) {
653 // Functions have their unresolved items forwarded to the module late
654 // resolver table
655 InsertValue(V, *FutureLateResolvers);
656 } else {
657 if (DID.Type == ValID::LocalName || DID.Type == ValID::GlobalName) {
658 GenerateError("Reference to an invalid definition: '" +DID.getName()+
659 "' of type '" + V->getType()->getDescription() + "'",
660 PHI->second.second);
661 return;
662 } else {
663 GenerateError("Reference to an invalid definition: #" +
664 itostr(DID.Num) + " of type '" +
665 V->getType()->getDescription() + "'",
666 PHI->second.second);
667 return;
668 }
669 }
670 }
671 LateResolvers.clear();
672}
673
674// ResolveTypeTo - A brand new type was just declared. This means that (if
675// name is not null) things referencing Name can be resolved. Otherwise, things
676// refering to the number can be resolved. Do this now.
677//
678static void ResolveTypeTo(std::string *Name, const Type *ToTy) {
679 ValID D;
680 if (Name)
681 D = ValID::createLocalName(*Name);
682 else
683 D = ValID::createLocalID(CurModule.Types.size());
684
685 std::map<ValID, PATypeHolder>::iterator I =
686 CurModule.LateResolveTypes.find(D);
687 if (I != CurModule.LateResolveTypes.end()) {
688 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
689 CurModule.LateResolveTypes.erase(I);
690 }
691}
692
693// setValueName - Set the specified value to the name given. The name may be
694// null potentially, in which case this is a noop. The string passed in is
695// assumed to be a malloc'd string buffer, and is free'd by this function.
696//
697static void setValueName(Value *V, std::string *NameStr) {
698 if (!NameStr) return;
699 std::string Name(*NameStr); // Copy string
700 delete NameStr; // Free old string
701
702 if (V->getType() == Type::VoidTy) {
703 GenerateError("Can't assign name '" + Name+"' to value with void type");
704 return;
705 }
706
707 assert(inFunctionScope() && "Must be in function scope!");
708 ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
709 if (ST.lookup(Name)) {
710 GenerateError("Redefinition of value '" + Name + "' of type '" +
711 V->getType()->getDescription() + "'");
712 return;
713 }
714
715 // Set the name.
716 V->setName(Name);
717}
718
719/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
720/// this is a declaration, otherwise it is a definition.
721static GlobalVariable *
722ParseGlobalVariable(std::string *NameStr,
723 GlobalValue::LinkageTypes Linkage,
724 GlobalValue::VisibilityTypes Visibility,
725 bool isConstantGlobal, const Type *Ty,
726 Constant *Initializer, bool IsThreadLocal) {
727 if (isa<FunctionType>(Ty)) {
728 GenerateError("Cannot declare global vars of function type");
729 return 0;
730 }
731
732 const PointerType *PTy = PointerType::get(Ty);
733
734 std::string Name;
735 if (NameStr) {
736 Name = *NameStr; // Copy string
737 delete NameStr; // Free old string
738 }
739
740 // See if this global value was forward referenced. If so, recycle the
741 // object.
742 ValID ID;
743 if (!Name.empty()) {
744 ID = ValID::createGlobalName(Name);
745 } else {
746 ID = ValID::createGlobalID(CurModule.Values.size());
747 }
748
749 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
750 // Move the global to the end of the list, from whereever it was
751 // previously inserted.
752 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
753 CurModule.CurrentModule->getGlobalList().remove(GV);
754 CurModule.CurrentModule->getGlobalList().push_back(GV);
755 GV->setInitializer(Initializer);
756 GV->setLinkage(Linkage);
757 GV->setVisibility(Visibility);
758 GV->setConstant(isConstantGlobal);
759 GV->setThreadLocal(IsThreadLocal);
760 InsertValue(GV, CurModule.Values);
761 return GV;
762 }
763
764 // If this global has a name
765 if (!Name.empty()) {
766 // if the global we're parsing has an initializer (is a definition) and
767 // has external linkage.
768 if (Initializer && Linkage != GlobalValue::InternalLinkage)
769 // If there is already a global with external linkage with this name
770 if (CurModule.CurrentModule->getGlobalVariable(Name, false)) {
771 // If we allow this GVar to get created, it will be renamed in the
772 // symbol table because it conflicts with an existing GVar. We can't
773 // allow redefinition of GVars whose linking indicates that their name
774 // must stay the same. Issue the error.
775 GenerateError("Redefinition of global variable named '" + Name +
776 "' of type '" + Ty->getDescription() + "'");
777 return 0;
778 }
779 }
780
781 // Otherwise there is no existing GV to use, create one now.
782 GlobalVariable *GV =
783 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
784 CurModule.CurrentModule, IsThreadLocal);
785 GV->setVisibility(Visibility);
786 InsertValue(GV, CurModule.Values);
787 return GV;
788}
789
790// setTypeName - Set the specified type to the name given. The name may be
791// null potentially, in which case this is a noop. The string passed in is
792// assumed to be a malloc'd string buffer, and is freed by this function.
793//
794// This function returns true if the type has already been defined, but is
795// allowed to be redefined in the specified context. If the name is a new name
796// for the type plane, it is inserted and false is returned.
797static bool setTypeName(const Type *T, std::string *NameStr) {
798 assert(!inFunctionScope() && "Can't give types function-local names!");
799 if (NameStr == 0) return false;
800
801 std::string Name(*NameStr); // Copy string
802 delete NameStr; // Free old string
803
804 // We don't allow assigning names to void type
805 if (T == Type::VoidTy) {
806 GenerateError("Can't assign name '" + Name + "' to the void type");
807 return false;
808 }
809
810 // Set the type name, checking for conflicts as we do so.
811 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
812
813 if (AlreadyExists) { // Inserting a name that is already defined???
814 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
815 assert(Existing && "Conflict but no matching type?!");
816
817 // There is only one case where this is allowed: when we are refining an
818 // opaque type. In this case, Existing will be an opaque type.
819 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
820 // We ARE replacing an opaque type!
821 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
822 return true;
823 }
824
825 // Otherwise, this is an attempt to redefine a type. That's okay if
826 // the redefinition is identical to the original. This will be so if
827 // Existing and T point to the same Type object. In this one case we
828 // allow the equivalent redefinition.
829 if (Existing == T) return true; // Yes, it's equal.
830
831 // Any other kind of (non-equivalent) redefinition is an error.
832 GenerateError("Redefinition of type named '" + Name + "' of type '" +
833 T->getDescription() + "'");
834 }
835
836 return false;
837}
838
839//===----------------------------------------------------------------------===//
840// Code for handling upreferences in type names...
841//
842
843// TypeContains - Returns true if Ty directly contains E in it.
844//
845static bool TypeContains(const Type *Ty, const Type *E) {
846 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
847 E) != Ty->subtype_end();
848}
849
850namespace {
851 struct UpRefRecord {
852 // NestingLevel - The number of nesting levels that need to be popped before
853 // this type is resolved.
854 unsigned NestingLevel;
855
856 // LastContainedTy - This is the type at the current binding level for the
857 // type. Every time we reduce the nesting level, this gets updated.
858 const Type *LastContainedTy;
859
860 // UpRefTy - This is the actual opaque type that the upreference is
861 // represented with.
862 OpaqueType *UpRefTy;
863
864 UpRefRecord(unsigned NL, OpaqueType *URTy)
865 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
866 };
867}
868
869// UpRefs - A list of the outstanding upreferences that need to be resolved.
870static std::vector<UpRefRecord> UpRefs;
871
872/// HandleUpRefs - Every time we finish a new layer of types, this function is
873/// called. It loops through the UpRefs vector, which is a list of the
874/// currently active types. For each type, if the up reference is contained in
875/// the newly completed type, we decrement the level count. When the level
876/// count reaches zero, the upreferenced type is the type that is passed in:
877/// thus we can complete the cycle.
878///
879static PATypeHolder HandleUpRefs(const Type *ty) {
880 // If Ty isn't abstract, or if there are no up-references in it, then there is
881 // nothing to resolve here.
882 if (!ty->isAbstract() || UpRefs.empty()) return ty;
883
884 PATypeHolder Ty(ty);
885 UR_OUT("Type '" << Ty->getDescription() <<
886 "' newly formed. Resolving upreferences.\n" <<
887 UpRefs.size() << " upreferences active!\n");
888
889 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
890 // to zero), we resolve them all together before we resolve them to Ty. At
891 // the end of the loop, if there is anything to resolve to Ty, it will be in
892 // this variable.
893 OpaqueType *TypeToResolve = 0;
894
895 for (unsigned i = 0; i != UpRefs.size(); ++i) {
896 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
897 << UpRefs[i].second->getDescription() << ") = "
898 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
899 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
900 // Decrement level of upreference
901 unsigned Level = --UpRefs[i].NestingLevel;
902 UpRefs[i].LastContainedTy = Ty;
903 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
904 if (Level == 0) { // Upreference should be resolved!
905 if (!TypeToResolve) {
906 TypeToResolve = UpRefs[i].UpRefTy;
907 } else {
908 UR_OUT(" * Resolving upreference for "
909 << UpRefs[i].second->getDescription() << "\n";
910 std::string OldName = UpRefs[i].UpRefTy->getDescription());
911 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
912 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
913 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
914 }
915 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
916 --i; // Do not skip the next element...
917 }
918 }
919 }
920
921 if (TypeToResolve) {
922 UR_OUT(" * Resolving upreference for "
923 << UpRefs[i].second->getDescription() << "\n";
924 std::string OldName = TypeToResolve->getDescription());
925 TypeToResolve->refineAbstractTypeTo(Ty);
926 }
927
928 return Ty;
929}
930
931//===----------------------------------------------------------------------===//
932// RunVMAsmParser - Define an interface to this parser
933//===----------------------------------------------------------------------===//
934//
935static Module* RunParser(Module * M);
936
937Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
938 set_scan_file(F);
939
940 CurFilename = Filename;
941 return RunParser(new Module(CurFilename));
942}
943
944Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
945 set_scan_string(AsmString);
946
947 CurFilename = "from_memory";
948 if (M == NULL) {
949 return RunParser(new Module (CurFilename));
950 } else {
951 return RunParser(M);
952 }
953}
954
955%}
956
957%union {
958 llvm::Module *ModuleVal;
959 llvm::Function *FunctionVal;
960 llvm::BasicBlock *BasicBlockVal;
961 llvm::TerminatorInst *TermInstVal;
962 llvm::Instruction *InstVal;
963 llvm::Constant *ConstVal;
964
965 const llvm::Type *PrimType;
966 std::list<llvm::PATypeHolder> *TypeList;
967 llvm::PATypeHolder *TypeVal;
968 llvm::Value *ValueVal;
969 std::vector<llvm::Value*> *ValueList;
970 llvm::ArgListType *ArgList;
971 llvm::TypeWithAttrs TypeWithAttrs;
972 llvm::TypeWithAttrsList *TypeWithAttrsList;
973 llvm::ValueRefList *ValueRefList;
974
975 // Represent the RHS of PHI node
976 std::list<std::pair<llvm::Value*,
977 llvm::BasicBlock*> > *PHIList;
978 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
979 std::vector<llvm::Constant*> *ConstVector;
980
981 llvm::GlobalValue::LinkageTypes Linkage;
982 llvm::GlobalValue::VisibilityTypes Visibility;
983 uint16_t ParamAttrs;
984 llvm::APInt *APIntVal;
985 int64_t SInt64Val;
986 uint64_t UInt64Val;
987 int SIntVal;
988 unsigned UIntVal;
989 double FPVal;
990 bool BoolVal;
991
992 std::string *StrVal; // This memory must be deleted
993 llvm::ValID ValIDVal;
994
995 llvm::Instruction::BinaryOps BinaryOpVal;
996 llvm::Instruction::TermOps TermOpVal;
997 llvm::Instruction::MemoryOps MemOpVal;
998 llvm::Instruction::CastOps CastOpVal;
999 llvm::Instruction::OtherOps OtherOpVal;
1000 llvm::ICmpInst::Predicate IPredicate;
1001 llvm::FCmpInst::Predicate FPredicate;
1002}
1003
1004%type <ModuleVal> Module
1005%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
1006%type <BasicBlockVal> BasicBlock InstructionList
1007%type <TermInstVal> BBTerminatorInst
1008%type <InstVal> Inst InstVal MemoryInst
1009%type <ConstVal> ConstVal ConstExpr AliaseeRef
1010%type <ConstVector> ConstVector
1011%type <ArgList> ArgList ArgListH
1012%type <PHIList> PHIList
1013%type <ValueRefList> ValueRefList // For call param lists & GEP indices
1014%type <ValueList> IndexList // For GEP indices
1015%type <TypeList> TypeListI
1016%type <TypeWithAttrsList> ArgTypeList ArgTypeListI
1017%type <TypeWithAttrs> ArgType
1018%type <JumpTable> JumpTable
1019%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
1020%type <BoolVal> ThreadLocal // 'thread_local' or not
1021%type <BoolVal> OptVolatile // 'volatile' or not
1022%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
1023%type <BoolVal> OptSideEffect // 'sideeffect' or not.
1024%type <Linkage> GVInternalLinkage GVExternalLinkage
1025%type <Linkage> FunctionDefineLinkage FunctionDeclareLinkage
1026%type <Linkage> AliasLinkage
1027%type <Visibility> GVVisibilityStyle
1028
1029// ValueRef - Unresolved reference to a definition or BB
1030%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
1031%type <ValueVal> ResolvedVal // <type> <valref> pair
1032// Tokens and types for handling constant integer values
1033//
1034// ESINT64VAL - A negative number within long long range
1035%token <SInt64Val> ESINT64VAL
1036
1037// EUINT64VAL - A positive number within uns. long long range
1038%token <UInt64Val> EUINT64VAL
1039
1040// ESAPINTVAL - A negative number with arbitrary precision
1041%token <APIntVal> ESAPINTVAL
1042
1043// EUAPINTVAL - A positive number with arbitrary precision
1044%token <APIntVal> EUAPINTVAL
1045
1046%token <UIntVal> LOCALVAL_ID GLOBALVAL_ID // %123 @123
1047%token <FPVal> FPVAL // Float or Double constant
1048
1049// Built in types...
1050%type <TypeVal> Types ResultTypes
1051%type <PrimType> IntType FPType PrimType // Classifications
1052%token <PrimType> VOID INTTYPE
1053%token <PrimType> FLOAT DOUBLE LABEL
1054%token TYPE
1055
1056
1057%token<StrVal> LOCALVAR GLOBALVAR LABELSTR
1058%token<StrVal> STRINGCONSTANT ATSTRINGCONSTANT PCTSTRINGCONSTANT
1059%type <StrVal> LocalName OptLocalName OptLocalAssign
1060%type <StrVal> GlobalName OptGlobalAssign GlobalAssign
1061%type <StrVal> OptSection SectionString
1062
1063%type <UIntVal> OptAlign OptCAlign
1064
1065%token ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
1066%token DECLARE DEFINE GLOBAL CONSTANT SECTION ALIAS VOLATILE THREAD_LOCAL
1067%token TO DOTDOTDOT NULL_TOK UNDEF INTERNAL LINKONCE WEAK APPENDING
1068%token DLLIMPORT DLLEXPORT EXTERN_WEAK
1069%token OPAQUE EXTERNAL TARGET TRIPLE ALIGN
1070%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
1071%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
1072%token DATALAYOUT
1073%type <UIntVal> OptCallingConv
1074%type <ParamAttrs> OptParamAttrs ParamAttr
1075%type <ParamAttrs> OptFuncAttrs FuncAttr
1076
1077// Basic Block Terminating Operators
1078%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
1079
1080// Binary Operators
1081%type <BinaryOpVal> ArithmeticOps LogicalOps // Binops Subcatagories
1082%token <BinaryOpVal> ADD SUB MUL UDIV SDIV FDIV UREM SREM FREM AND OR XOR
1083%token <BinaryOpVal> SHL LSHR ASHR
1084
1085%token <OtherOpVal> ICMP FCMP
1086%type <IPredicate> IPredicates
1087%type <FPredicate> FPredicates
1088%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
1089%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
1090
1091// Memory Instructions
1092%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
1093
1094// Cast Operators
1095%type <CastOpVal> CastOps
1096%token <CastOpVal> TRUNC ZEXT SEXT FPTRUNC FPEXT BITCAST
1097%token <CastOpVal> UITOFP SITOFP FPTOUI FPTOSI INTTOPTR PTRTOINT
1098
1099// Other Operators
1100%token <OtherOpVal> PHI_TOK SELECT VAARG
1101%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1102
1103// Function Attributes
1104%token NORETURN INREG SRET NOUNWIND NOALIAS BYVAL
1105
1106// Visibility Styles
1107%token DEFAULT HIDDEN PROTECTED
1108
1109%start Module
1110%%
1111
1112
1113// Operations that are notably excluded from this list include:
1114// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1115//
1116ArithmeticOps: ADD | SUB | MUL | UDIV | SDIV | FDIV | UREM | SREM | FREM;
1117LogicalOps : SHL | LSHR | ASHR | AND | OR | XOR;
1118CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | BITCAST |
1119 UITOFP | SITOFP | FPTOUI | FPTOSI | INTTOPTR | PTRTOINT;
1120
1121IPredicates
1122 : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
1123 | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
1124 | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
1125 | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
1126 | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
1127 ;
1128
1129FPredicates
1130 : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
1131 | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
1132 | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
1133 | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
1134 | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
1135 | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
1136 | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
1137 | TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
1138 | FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
1139 ;
1140
1141// These are some types that allow classification if we only want a particular
1142// thing... for example, only a signed, unsigned, or integral type.
1143IntType : INTTYPE;
1144FPType : FLOAT | DOUBLE;
1145
1146LocalName : LOCALVAR | STRINGCONSTANT | PCTSTRINGCONSTANT ;
1147OptLocalName : LocalName | /*empty*/ { $$ = 0; };
1148
1149/// OptLocalAssign - Value producing statements have an optional assignment
1150/// component.
1151OptLocalAssign : LocalName '=' {
1152 $$ = $1;
1153 CHECK_FOR_ERROR
1154 }
1155 | /*empty*/ {
1156 $$ = 0;
1157 CHECK_FOR_ERROR
1158 };
1159
1160GlobalName : GLOBALVAR | ATSTRINGCONSTANT ;
1161
1162OptGlobalAssign : GlobalAssign
1163 | /*empty*/ {
1164 $$ = 0;
1165 CHECK_FOR_ERROR
1166 };
1167
1168GlobalAssign : GlobalName '=' {
1169 $$ = $1;
1170 CHECK_FOR_ERROR
1171 };
1172
1173GVInternalLinkage
1174 : INTERNAL { $$ = GlobalValue::InternalLinkage; }
1175 | WEAK { $$ = GlobalValue::WeakLinkage; }
1176 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1177 | APPENDING { $$ = GlobalValue::AppendingLinkage; }
1178 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1179 ;
1180
1181GVExternalLinkage
1182 : DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1183 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1184 | EXTERNAL { $$ = GlobalValue::ExternalLinkage; }
1185 ;
1186
1187GVVisibilityStyle
1188 : /*empty*/ { $$ = GlobalValue::DefaultVisibility; }
1189 | DEFAULT { $$ = GlobalValue::DefaultVisibility; }
1190 | HIDDEN { $$ = GlobalValue::HiddenVisibility; }
1191 | PROTECTED { $$ = GlobalValue::ProtectedVisibility; }
1192 ;
1193
1194FunctionDeclareLinkage
1195 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1196 | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
1197 | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
1198 ;
1199
1200FunctionDefineLinkage
1201 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1202 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1203 | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
1204 | WEAK { $$ = GlobalValue::WeakLinkage; }
1205 | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
1206 ;
1207
1208AliasLinkage
1209 : /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
1210 | WEAK { $$ = GlobalValue::WeakLinkage; }
1211 | INTERNAL { $$ = GlobalValue::InternalLinkage; }
1212 ;
1213
1214OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1215 CCC_TOK { $$ = CallingConv::C; } |
1216 FASTCC_TOK { $$ = CallingConv::Fast; } |
1217 COLDCC_TOK { $$ = CallingConv::Cold; } |
1218 X86_STDCALLCC_TOK { $$ = CallingConv::X86_StdCall; } |
1219 X86_FASTCALLCC_TOK { $$ = CallingConv::X86_FastCall; } |
1220 CC_TOK EUINT64VAL {
1221 if ((unsigned)$2 != $2)
1222 GEN_ERROR("Calling conv too large");
1223 $$ = $2;
1224 CHECK_FOR_ERROR
1225 };
1226
1227ParamAttr : ZEXT { $$ = ParamAttr::ZExt; }
1228 | SEXT { $$ = ParamAttr::SExt; }
1229 | INREG { $$ = ParamAttr::InReg; }
1230 | SRET { $$ = ParamAttr::StructRet; }
1231 | NOALIAS { $$ = ParamAttr::NoAlias; }
1232 | BYVAL { $$ = ParamAttr::ByVal; }
1233 ;
1234
1235OptParamAttrs : /* empty */ { $$ = ParamAttr::None; }
1236 | OptParamAttrs ParamAttr {
1237 $$ = $1 | $2;
1238 }
1239 ;
1240
1241FuncAttr : NORETURN { $$ = ParamAttr::NoReturn; }
1242 | NOUNWIND { $$ = ParamAttr::NoUnwind; }
1243 | ParamAttr
1244 ;
1245
1246OptFuncAttrs : /* empty */ { $$ = ParamAttr::None; }
1247 | OptFuncAttrs FuncAttr {
1248 $$ = $1 | $2;
1249 }
1250 ;
1251
1252// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1253// a comma before it.
1254OptAlign : /*empty*/ { $$ = 0; } |
1255 ALIGN EUINT64VAL {
1256 $$ = $2;
1257 if ($$ != 0 && !isPowerOf2_32($$))
1258 GEN_ERROR("Alignment must be a power of two");
1259 CHECK_FOR_ERROR
1260};
1261OptCAlign : /*empty*/ { $$ = 0; } |
1262 ',' ALIGN EUINT64VAL {
1263 $$ = $3;
1264 if ($$ != 0 && !isPowerOf2_32($$))
1265 GEN_ERROR("Alignment must be a power of two");
1266 CHECK_FOR_ERROR
1267};
1268
1269
1270SectionString : SECTION STRINGCONSTANT {
1271 for (unsigned i = 0, e = $2->length(); i != e; ++i)
1272 if ((*$2)[i] == '"' || (*$2)[i] == '\\')
1273 GEN_ERROR("Invalid character in section name");
1274 $$ = $2;
1275 CHECK_FOR_ERROR
1276};
1277
1278OptSection : /*empty*/ { $$ = 0; } |
1279 SectionString { $$ = $1; };
1280
1281// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1282// is set to be the global we are processing.
1283//
1284GlobalVarAttributes : /* empty */ {} |
1285 ',' GlobalVarAttribute GlobalVarAttributes {};
1286GlobalVarAttribute : SectionString {
1287 CurGV->setSection(*$1);
1288 delete $1;
1289 CHECK_FOR_ERROR
1290 }
1291 | ALIGN EUINT64VAL {
1292 if ($2 != 0 && !isPowerOf2_32($2))
1293 GEN_ERROR("Alignment must be a power of two");
1294 CurGV->setAlignment($2);
1295 CHECK_FOR_ERROR
1296 };
1297
1298//===----------------------------------------------------------------------===//
1299// Types includes all predefined types... except void, because it can only be
1300// used in specific contexts (function returning void for example).
1301
1302// Derived types are added later...
1303//
1304PrimType : INTTYPE | FLOAT | DOUBLE | LABEL ;
1305
1306Types
1307 : OPAQUE {
1308 $$ = new PATypeHolder(OpaqueType::get());
1309 CHECK_FOR_ERROR
1310 }
1311 | PrimType {
1312 $$ = new PATypeHolder($1);
1313 CHECK_FOR_ERROR
1314 }
1315 | Types '*' { // Pointer type?
1316 if (*$1 == Type::LabelTy)
1317 GEN_ERROR("Cannot form a pointer to a basic block");
1318 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1319 delete $1;
1320 CHECK_FOR_ERROR
1321 }
1322 | SymbolicValueRef { // Named types are also simple types...
1323 const Type* tmp = getTypeVal($1);
1324 CHECK_FOR_ERROR
1325 $$ = new PATypeHolder(tmp);
1326 }
1327 | '\\' EUINT64VAL { // Type UpReference
1328 if ($2 > (uint64_t)~0U) GEN_ERROR("Value out of range");
1329 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1330 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1331 $$ = new PATypeHolder(OT);
1332 UR_OUT("New Upreference!\n");
1333 CHECK_FOR_ERROR
1334 }
1335 | Types '(' ArgTypeListI ')' OptFuncAttrs {
1336 std::vector<const Type*> Params;
1337 ParamAttrsVector Attrs;
1338 if ($5 != ParamAttr::None) {
1339 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1340 Attrs.push_back(X);
1341 }
1342 unsigned index = 1;
1343 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1344 for (; I != E; ++I, ++index) {
1345 const Type *Ty = I->Ty->get();
1346 Params.push_back(Ty);
1347 if (Ty != Type::VoidTy)
1348 if (I->Attrs != ParamAttr::None) {
1349 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1350 Attrs.push_back(X);
1351 }
1352 }
1353 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1354 if (isVarArg) Params.pop_back();
1355
1356 ParamAttrsList *ActualAttrs = 0;
1357 if (!Attrs.empty())
1358 ActualAttrs = ParamAttrsList::get(Attrs);
1359 FunctionType *FT = FunctionType::get(*$1, Params, isVarArg, ActualAttrs);
1360 delete $3; // Delete the argument list
1361 delete $1; // Delete the return type handle
1362 $$ = new PATypeHolder(HandleUpRefs(FT));
1363 CHECK_FOR_ERROR
1364 }
1365 | VOID '(' ArgTypeListI ')' OptFuncAttrs {
1366 std::vector<const Type*> Params;
1367 ParamAttrsVector Attrs;
1368 if ($5 != ParamAttr::None) {
1369 ParamAttrsWithIndex X; X.index = 0; X.attrs = $5;
1370 Attrs.push_back(X);
1371 }
1372 TypeWithAttrsList::iterator I = $3->begin(), E = $3->end();
1373 unsigned index = 1;
1374 for ( ; I != E; ++I, ++index) {
1375 const Type* Ty = I->Ty->get();
1376 Params.push_back(Ty);
1377 if (Ty != Type::VoidTy)
1378 if (I->Attrs != ParamAttr::None) {
1379 ParamAttrsWithIndex X; X.index = index; X.attrs = I->Attrs;
1380 Attrs.push_back(X);
1381 }
1382 }
1383 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1384 if (isVarArg) Params.pop_back();
1385
1386 ParamAttrsList *ActualAttrs = 0;
1387 if (!Attrs.empty())
1388 ActualAttrs = ParamAttrsList::get(Attrs);
1389
1390 FunctionType *FT = FunctionType::get($1, Params, isVarArg, ActualAttrs);
1391 delete $3; // Delete the argument list
1392 $$ = new PATypeHolder(HandleUpRefs(FT));
1393 CHECK_FOR_ERROR
1394 }
1395
1396 | '[' EUINT64VAL 'x' Types ']' { // Sized array type?
1397 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1398 delete $4;
1399 CHECK_FOR_ERROR
1400 }
1401 | '<' EUINT64VAL 'x' Types '>' { // Vector type?
1402 const llvm::Type* ElemTy = $4->get();
1403 if ((unsigned)$2 != $2)
1404 GEN_ERROR("Unsigned result not equal to signed result");
1405 if (!ElemTy->isFloatingPoint() && !ElemTy->isInteger())
1406 GEN_ERROR("Element type of a VectorType must be primitive");
1407 if (!isPowerOf2_32($2))
1408 GEN_ERROR("Vector length should be a power of 2");
1409 $$ = new PATypeHolder(HandleUpRefs(VectorType::get(*$4, (unsigned)$2)));
1410 delete $4;
1411 CHECK_FOR_ERROR
1412 }
1413 | '{' TypeListI '}' { // Structure type?
1414 std::vector<const Type*> Elements;
1415 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1416 E = $2->end(); I != E; ++I)
1417 Elements.push_back(*I);
1418
1419 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1420 delete $2;
1421 CHECK_FOR_ERROR
1422 }
1423 | '{' '}' { // Empty structure type?
1424 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1425 CHECK_FOR_ERROR
1426 }
1427 | '<' '{' TypeListI '}' '>' {
1428 std::vector<const Type*> Elements;
1429 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1430 E = $3->end(); I != E; ++I)
1431 Elements.push_back(*I);
1432
1433 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true)));
1434 delete $3;
1435 CHECK_FOR_ERROR
1436 }
1437 | '<' '{' '}' '>' { // Empty structure type?
1438 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>(), true));
1439 CHECK_FOR_ERROR
1440 }
1441 ;
1442
1443ArgType
1444 : Types OptParamAttrs {
1445 $$.Ty = $1;
1446 $$.Attrs = $2;
1447 }
1448 ;
1449
1450ResultTypes
1451 : Types {
1452 if (!UpRefs.empty())
1453 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1454 if (!(*$1)->isFirstClassType())
1455 GEN_ERROR("LLVM functions cannot return aggregate types");
1456 $$ = $1;
1457 }
1458 | VOID {
1459 $$ = new PATypeHolder(Type::VoidTy);
1460 }
1461 ;
1462
1463ArgTypeList : ArgType {
1464 $$ = new TypeWithAttrsList();
1465 $$->push_back($1);
1466 CHECK_FOR_ERROR
1467 }
1468 | ArgTypeList ',' ArgType {
1469 ($$=$1)->push_back($3);
1470 CHECK_FOR_ERROR
1471 }
1472 ;
1473
1474ArgTypeListI
1475 : ArgTypeList
1476 | ArgTypeList ',' DOTDOTDOT {
1477 $$=$1;
1478 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1479 TWA.Ty = new PATypeHolder(Type::VoidTy);
1480 $$->push_back(TWA);
1481 CHECK_FOR_ERROR
1482 }
1483 | DOTDOTDOT {
1484 $$ = new TypeWithAttrsList;
1485 TypeWithAttrs TWA; TWA.Attrs = ParamAttr::None;
1486 TWA.Ty = new PATypeHolder(Type::VoidTy);
1487 $$->push_back(TWA);
1488 CHECK_FOR_ERROR
1489 }
1490 | /*empty*/ {
1491 $$ = new TypeWithAttrsList();
1492 CHECK_FOR_ERROR
1493 };
1494
1495// TypeList - Used for struct declarations and as a basis for function type
1496// declaration type lists
1497//
1498TypeListI : Types {
1499 $$ = new std::list<PATypeHolder>();
1500 $$->push_back(*$1);
1501 delete $1;
1502 CHECK_FOR_ERROR
1503 }
1504 | TypeListI ',' Types {
1505 ($$=$1)->push_back(*$3);
1506 delete $3;
1507 CHECK_FOR_ERROR
1508 };
1509
1510// ConstVal - The various declarations that go into the constant pool. This
1511// production is used ONLY to represent constants that show up AFTER a 'const',
1512// 'constant' or 'global' token at global scope. Constants that can be inlined
1513// into other expressions (such as integers and constexprs) are handled by the
1514// ResolvedVal, ValueRef and ConstValueRef productions.
1515//
1516ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1517 if (!UpRefs.empty())
1518 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1519 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1520 if (ATy == 0)
1521 GEN_ERROR("Cannot make array constant with type: '" +
1522 (*$1)->getDescription() + "'");
1523 const Type *ETy = ATy->getElementType();
1524 int NumElements = ATy->getNumElements();
1525
1526 // Verify that we have the correct size...
1527 if (NumElements != -1 && NumElements != (int)$3->size())
1528 GEN_ERROR("Type mismatch: constant sized array initialized with " +
1529 utostr($3->size()) + " arguments, but has size of " +
1530 itostr(NumElements) + "");
1531
1532 // Verify all elements are correct type!
1533 for (unsigned i = 0; i < $3->size(); i++) {
1534 if (ETy != (*$3)[i]->getType())
1535 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1536 ETy->getDescription() +"' as required!\nIt is of type '"+
1537 (*$3)[i]->getType()->getDescription() + "'.");
1538 }
1539
1540 $$ = ConstantArray::get(ATy, *$3);
1541 delete $1; delete $3;
1542 CHECK_FOR_ERROR
1543 }
1544 | Types '[' ']' {
1545 if (!UpRefs.empty())
1546 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1547 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1548 if (ATy == 0)
1549 GEN_ERROR("Cannot make array constant with type: '" +
1550 (*$1)->getDescription() + "'");
1551
1552 int NumElements = ATy->getNumElements();
1553 if (NumElements != -1 && NumElements != 0)
1554 GEN_ERROR("Type mismatch: constant sized array initialized with 0"
1555 " arguments, but has size of " + itostr(NumElements) +"");
1556 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1557 delete $1;
1558 CHECK_FOR_ERROR
1559 }
1560 | Types 'c' STRINGCONSTANT {
1561 if (!UpRefs.empty())
1562 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1563 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1564 if (ATy == 0)
1565 GEN_ERROR("Cannot make array constant with type: '" +
1566 (*$1)->getDescription() + "'");
1567
1568 int NumElements = ATy->getNumElements();
1569 const Type *ETy = ATy->getElementType();
1570 if (NumElements != -1 && NumElements != int($3->length()))
1571 GEN_ERROR("Can't build string constant of size " +
1572 itostr((int)($3->length())) +
1573 " when array has size " + itostr(NumElements) + "");
1574 std::vector<Constant*> Vals;
1575 if (ETy == Type::Int8Ty) {
1576 for (unsigned i = 0; i < $3->length(); ++i)
1577 Vals.push_back(ConstantInt::get(ETy, (*$3)[i]));
1578 } else {
1579 delete $3;
1580 GEN_ERROR("Cannot build string arrays of non byte sized elements");
1581 }
1582 delete $3;
1583 $$ = ConstantArray::get(ATy, Vals);
1584 delete $1;
1585 CHECK_FOR_ERROR
1586 }
1587 | Types '<' ConstVector '>' { // Nonempty unsized arr
1588 if (!UpRefs.empty())
1589 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1590 const VectorType *PTy = dyn_cast<VectorType>($1->get());
1591 if (PTy == 0)
1592 GEN_ERROR("Cannot make packed constant with type: '" +
1593 (*$1)->getDescription() + "'");
1594 const Type *ETy = PTy->getElementType();
1595 int NumElements = PTy->getNumElements();
1596
1597 // Verify that we have the correct size...
1598 if (NumElements != -1 && NumElements != (int)$3->size())
1599 GEN_ERROR("Type mismatch: constant sized packed initialized with " +
1600 utostr($3->size()) + " arguments, but has size of " +
1601 itostr(NumElements) + "");
1602
1603 // Verify all elements are correct type!
1604 for (unsigned i = 0; i < $3->size(); i++) {
1605 if (ETy != (*$3)[i]->getType())
1606 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
1607 ETy->getDescription() +"' as required!\nIt is of type '"+
1608 (*$3)[i]->getType()->getDescription() + "'.");
1609 }
1610
1611 $$ = ConstantVector::get(PTy, *$3);
1612 delete $1; delete $3;
1613 CHECK_FOR_ERROR
1614 }
1615 | Types '{' ConstVector '}' {
1616 const StructType *STy = dyn_cast<StructType>($1->get());
1617 if (STy == 0)
1618 GEN_ERROR("Cannot make struct constant with type: '" +
1619 (*$1)->getDescription() + "'");
1620
1621 if ($3->size() != STy->getNumContainedTypes())
1622 GEN_ERROR("Illegal number of initializers for structure type");
1623
1624 // Check to ensure that constants are compatible with the type initializer!
1625 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1626 if ((*$3)[i]->getType() != STy->getElementType(i))
1627 GEN_ERROR("Expected type '" +
1628 STy->getElementType(i)->getDescription() +
1629 "' for element #" + utostr(i) +
1630 " of structure initializer");
1631
1632 // Check to ensure that Type is not packed
1633 if (STy->isPacked())
1634 GEN_ERROR("Unpacked Initializer to vector type '" +
1635 STy->getDescription() + "'");
1636
1637 $$ = ConstantStruct::get(STy, *$3);
1638 delete $1; delete $3;
1639 CHECK_FOR_ERROR
1640 }
1641 | Types '{' '}' {
1642 if (!UpRefs.empty())
1643 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1644 const StructType *STy = dyn_cast<StructType>($1->get());
1645 if (STy == 0)
1646 GEN_ERROR("Cannot make struct constant with type: '" +
1647 (*$1)->getDescription() + "'");
1648
1649 if (STy->getNumContainedTypes() != 0)
1650 GEN_ERROR("Illegal number of initializers for structure type");
1651
1652 // Check to ensure that Type is not packed
1653 if (STy->isPacked())
1654 GEN_ERROR("Unpacked Initializer to vector type '" +
1655 STy->getDescription() + "'");
1656
1657 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1658 delete $1;
1659 CHECK_FOR_ERROR
1660 }
1661 | Types '<' '{' ConstVector '}' '>' {
1662 const StructType *STy = dyn_cast<StructType>($1->get());
1663 if (STy == 0)
1664 GEN_ERROR("Cannot make struct constant with type: '" +
1665 (*$1)->getDescription() + "'");
1666
1667 if ($4->size() != STy->getNumContainedTypes())
1668 GEN_ERROR("Illegal number of initializers for structure type");
1669
1670 // Check to ensure that constants are compatible with the type initializer!
1671 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1672 if ((*$4)[i]->getType() != STy->getElementType(i))
1673 GEN_ERROR("Expected type '" +
1674 STy->getElementType(i)->getDescription() +
1675 "' for element #" + utostr(i) +
1676 " of structure initializer");
1677
1678 // Check to ensure that Type is packed
1679 if (!STy->isPacked())
1680 GEN_ERROR("Vector initializer to non-vector type '" +
1681 STy->getDescription() + "'");
1682
1683 $$ = ConstantStruct::get(STy, *$4);
1684 delete $1; delete $4;
1685 CHECK_FOR_ERROR
1686 }
1687 | Types '<' '{' '}' '>' {
1688 if (!UpRefs.empty())
1689 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1690 const StructType *STy = dyn_cast<StructType>($1->get());
1691 if (STy == 0)
1692 GEN_ERROR("Cannot make struct constant with type: '" +
1693 (*$1)->getDescription() + "'");
1694
1695 if (STy->getNumContainedTypes() != 0)
1696 GEN_ERROR("Illegal number of initializers for structure type");
1697
1698 // Check to ensure that Type is packed
1699 if (!STy->isPacked())
1700 GEN_ERROR("Vector initializer to non-vector type '" +
1701 STy->getDescription() + "'");
1702
1703 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1704 delete $1;
1705 CHECK_FOR_ERROR
1706 }
1707 | Types NULL_TOK {
1708 if (!UpRefs.empty())
1709 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1710 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1711 if (PTy == 0)
1712 GEN_ERROR("Cannot make null pointer constant with type: '" +
1713 (*$1)->getDescription() + "'");
1714
1715 $$ = ConstantPointerNull::get(PTy);
1716 delete $1;
1717 CHECK_FOR_ERROR
1718 }
1719 | Types UNDEF {
1720 if (!UpRefs.empty())
1721 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1722 $$ = UndefValue::get($1->get());
1723 delete $1;
1724 CHECK_FOR_ERROR
1725 }
1726 | Types SymbolicValueRef {
1727 if (!UpRefs.empty())
1728 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1729 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1730 if (Ty == 0)
1731 GEN_ERROR("Global const reference must be a pointer type");
1732
1733 // ConstExprs can exist in the body of a function, thus creating
1734 // GlobalValues whenever they refer to a variable. Because we are in
1735 // the context of a function, getExistingVal will search the functions
1736 // symbol table instead of the module symbol table for the global symbol,
1737 // which throws things all off. To get around this, we just tell
1738 // getExistingVal that we are at global scope here.
1739 //
1740 Function *SavedCurFn = CurFun.CurrentFunction;
1741 CurFun.CurrentFunction = 0;
1742
1743 Value *V = getExistingVal(Ty, $2);
1744 CHECK_FOR_ERROR
1745
1746 CurFun.CurrentFunction = SavedCurFn;
1747
1748 // If this is an initializer for a constant pointer, which is referencing a
1749 // (currently) undefined variable, create a stub now that shall be replaced
1750 // in the future with the right type of variable.
1751 //
1752 if (V == 0) {
1753 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1754 const PointerType *PT = cast<PointerType>(Ty);
1755
1756 // First check to see if the forward references value is already created!
1757 PerModuleInfo::GlobalRefsType::iterator I =
1758 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1759
1760 if (I != CurModule.GlobalRefs.end()) {
1761 V = I->second; // Placeholder already exists, use it...
1762 $2.destroy();
1763 } else {
1764 std::string Name;
1765 if ($2.Type == ValID::GlobalName)
1766 Name = $2.getName();
1767 else if ($2.Type != ValID::GlobalID)
1768 GEN_ERROR("Invalid reference to global");
1769
1770 // Create the forward referenced global.
1771 GlobalValue *GV;
1772 if (const FunctionType *FTy =
1773 dyn_cast<FunctionType>(PT->getElementType())) {
1774 GV = new Function(FTy, GlobalValue::ExternalWeakLinkage, Name,
1775 CurModule.CurrentModule);
1776 } else {
1777 GV = new GlobalVariable(PT->getElementType(), false,
1778 GlobalValue::ExternalWeakLinkage, 0,
1779 Name, CurModule.CurrentModule);
1780 }
1781
1782 // Keep track of the fact that we have a forward ref to recycle it
1783 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1784 V = GV;
1785 }
1786 }
1787
1788 $$ = cast<GlobalValue>(V);
1789 delete $1; // Free the type handle
1790 CHECK_FOR_ERROR
1791 }
1792 | Types ConstExpr {
1793 if (!UpRefs.empty())
1794 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1795 if ($1->get() != $2->getType())
1796 GEN_ERROR("Mismatched types for constant expression: " +
1797 (*$1)->getDescription() + " and " + $2->getType()->getDescription());
1798 $$ = $2;
1799 delete $1;
1800 CHECK_FOR_ERROR
1801 }
1802 | Types ZEROINITIALIZER {
1803 if (!UpRefs.empty())
1804 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
1805 const Type *Ty = $1->get();
1806 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1807 GEN_ERROR("Cannot create a null initialized value of this type");
1808 $$ = Constant::getNullValue(Ty);
1809 delete $1;
1810 CHECK_FOR_ERROR
1811 }
1812 | IntType ESINT64VAL { // integral constants
1813 if (!ConstantInt::isValueValidForType($1, $2))
1814 GEN_ERROR("Constant value doesn't fit in type");
1815 $$ = ConstantInt::get($1, $2, true);
1816 CHECK_FOR_ERROR
1817 }
1818 | IntType ESAPINTVAL { // arbitrary precision integer constants
1819 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1820 if ($2->getBitWidth() > BitWidth) {
1821 GEN_ERROR("Constant value does not fit in type");
1822 }
1823 $2->sextOrTrunc(BitWidth);
1824 $$ = ConstantInt::get(*$2);
1825 delete $2;
1826 CHECK_FOR_ERROR
1827 }
1828 | IntType EUINT64VAL { // integral constants
1829 if (!ConstantInt::isValueValidForType($1, $2))
1830 GEN_ERROR("Constant value doesn't fit in type");
1831 $$ = ConstantInt::get($1, $2, false);
1832 CHECK_FOR_ERROR
1833 }
1834 | IntType EUAPINTVAL { // arbitrary precision integer constants
1835 uint32_t BitWidth = cast<IntegerType>($1)->getBitWidth();
1836 if ($2->getBitWidth() > BitWidth) {
1837 GEN_ERROR("Constant value does not fit in type");
1838 }
1839 $2->zextOrTrunc(BitWidth);
1840 $$ = ConstantInt::get(*$2);
1841 delete $2;
1842 CHECK_FOR_ERROR
1843 }
1844 | INTTYPE TRUETOK { // Boolean constants
1845 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1846 $$ = ConstantInt::getTrue();
1847 CHECK_FOR_ERROR
1848 }
1849 | INTTYPE FALSETOK { // Boolean constants
1850 assert(cast<IntegerType>($1)->getBitWidth() == 1 && "Not Bool?");
1851 $$ = ConstantInt::getFalse();
1852 CHECK_FOR_ERROR
1853 }
1854 | FPType FPVAL { // Float & Double constants
1855 if (!ConstantFP::isValueValidForType($1, $2))
1856 GEN_ERROR("Floating point constant invalid for type");
1857 $$ = ConstantFP::get($1, $2);
1858 CHECK_FOR_ERROR
1859 };
1860
1861
1862ConstExpr: CastOps '(' ConstVal TO Types ')' {
1863 if (!UpRefs.empty())
1864 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
1865 Constant *Val = $3;
1866 const Type *DestTy = $5->get();
1867 if (!CastInst::castIsValid($1, $3, DestTy))
1868 GEN_ERROR("invalid cast opcode for cast from '" +
1869 Val->getType()->getDescription() + "' to '" +
1870 DestTy->getDescription() + "'");
1871 $$ = ConstantExpr::getCast($1, $3, DestTy);
1872 delete $5;
1873 }
1874 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1875 if (!isa<PointerType>($3->getType()))
1876 GEN_ERROR("GetElementPtr requires a pointer operand");
1877
1878 const Type *IdxTy =
1879 GetElementPtrInst::getIndexedType($3->getType(), &(*$4)[0], $4->size(),
1880 true);
1881 if (!IdxTy)
1882 GEN_ERROR("Index list invalid for constant getelementptr");
1883
1884 SmallVector<Constant*, 8> IdxVec;
1885 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1886 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1887 IdxVec.push_back(C);
1888 else
1889 GEN_ERROR("Indices to constant getelementptr must be constants");
1890
1891 delete $4;
1892
1893 $$ = ConstantExpr::getGetElementPtr($3, &IdxVec[0], IdxVec.size());
1894 CHECK_FOR_ERROR
1895 }
1896 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1897 if ($3->getType() != Type::Int1Ty)
1898 GEN_ERROR("Select condition must be of boolean type");
1899 if ($5->getType() != $7->getType())
1900 GEN_ERROR("Select operand types must match");
1901 $$ = ConstantExpr::getSelect($3, $5, $7);
1902 CHECK_FOR_ERROR
1903 }
1904 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1905 if ($3->getType() != $5->getType())
1906 GEN_ERROR("Binary operator types must match");
1907 CHECK_FOR_ERROR;
1908 $$ = ConstantExpr::get($1, $3, $5);
1909 }
1910 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1911 if ($3->getType() != $5->getType())
1912 GEN_ERROR("Logical operator types must match");
1913 if (!$3->getType()->isInteger()) {
1914 if (Instruction::isShift($1) || !isa<VectorType>($3->getType()) ||
1915 !cast<VectorType>($3->getType())->getElementType()->isInteger())
1916 GEN_ERROR("Logical operator requires integral operands");
1917 }
1918 $$ = ConstantExpr::get($1, $3, $5);
1919 CHECK_FOR_ERROR
1920 }
1921 | ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
1922 if ($4->getType() != $6->getType())
1923 GEN_ERROR("icmp operand types must match");
1924 $$ = ConstantExpr::getICmp($2, $4, $6);
1925 }
1926 | FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
1927 if ($4->getType() != $6->getType())
1928 GEN_ERROR("fcmp operand types must match");
1929 $$ = ConstantExpr::getFCmp($2, $4, $6);
1930 }
1931 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1932 if (!ExtractElementInst::isValidOperands($3, $5))
1933 GEN_ERROR("Invalid extractelement operands");
1934 $$ = ConstantExpr::getExtractElement($3, $5);
1935 CHECK_FOR_ERROR
1936 }
1937 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1938 if (!InsertElementInst::isValidOperands($3, $5, $7))
1939 GEN_ERROR("Invalid insertelement operands");
1940 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1941 CHECK_FOR_ERROR
1942 }
1943 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1944 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1945 GEN_ERROR("Invalid shufflevector operands");
1946 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1947 CHECK_FOR_ERROR
1948 };
1949
1950
1951// ConstVector - A list of comma separated constants.
1952ConstVector : ConstVector ',' ConstVal {
1953 ($$ = $1)->push_back($3);
1954 CHECK_FOR_ERROR
1955 }
1956 | ConstVal {
1957 $$ = new std::vector<Constant*>();
1958 $$->push_back($1);
1959 CHECK_FOR_ERROR
1960 };
1961
1962
1963// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1964GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1965
1966// ThreadLocal
1967ThreadLocal : THREAD_LOCAL { $$ = true; } | { $$ = false; };
1968
1969// AliaseeRef - Match either GlobalValue or bitcast to GlobalValue.
1970AliaseeRef : ResultTypes SymbolicValueRef {
1971 const Type* VTy = $1->get();
1972 Value *V = getVal(VTy, $2);
1973 GlobalValue* Aliasee = dyn_cast<GlobalValue>(V);
1974 if (!Aliasee)
1975 GEN_ERROR("Aliases can be created only to global values");
1976
1977 $$ = Aliasee;
1978 CHECK_FOR_ERROR
1979 delete $1;
1980 }
1981 | BITCAST '(' AliaseeRef TO Types ')' {
1982 Constant *Val = $3;
1983 const Type *DestTy = $5->get();
1984 if (!CastInst::castIsValid($1, $3, DestTy))
1985 GEN_ERROR("invalid cast opcode for cast from '" +
1986 Val->getType()->getDescription() + "' to '" +
1987 DestTy->getDescription() + "'");
1988
1989 $$ = ConstantExpr::getCast($1, $3, DestTy);
1990 CHECK_FOR_ERROR
1991 delete $5;
1992 };
1993
1994//===----------------------------------------------------------------------===//
1995// Rules to match Modules
1996//===----------------------------------------------------------------------===//
1997
1998// Module rule: Capture the result of parsing the whole file into a result
1999// variable...
2000//
2001Module
2002 : DefinitionList {
2003 $$ = ParserResult = CurModule.CurrentModule;
2004 CurModule.ModuleDone();
2005 CHECK_FOR_ERROR;
2006 }
2007 | /*empty*/ {
2008 $$ = ParserResult = CurModule.CurrentModule;
2009 CurModule.ModuleDone();
2010 CHECK_FOR_ERROR;
2011 }
2012 ;
2013
2014DefinitionList
2015 : Definition
2016 | DefinitionList Definition
2017 ;
2018
2019Definition
2020 : DEFINE { CurFun.isDeclare = false; } Function {
2021 CurFun.FunctionDone();
2022 CHECK_FOR_ERROR
2023 }
2024 | DECLARE { CurFun.isDeclare = true; } FunctionProto {
2025 CHECK_FOR_ERROR
2026 }
2027 | MODULE ASM_TOK AsmBlock {
2028 CHECK_FOR_ERROR
2029 }
2030 | OptLocalAssign TYPE Types {
2031 if (!UpRefs.empty())
2032 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2033 // Eagerly resolve types. This is not an optimization, this is a
2034 // requirement that is due to the fact that we could have this:
2035 //
2036 // %list = type { %list * }
2037 // %list = type { %list * } ; repeated type decl
2038 //
2039 // If types are not resolved eagerly, then the two types will not be
2040 // determined to be the same type!
2041 //
2042 ResolveTypeTo($1, *$3);
2043
2044 if (!setTypeName(*$3, $1) && !$1) {
2045 CHECK_FOR_ERROR
2046 // If this is a named type that is not a redefinition, add it to the slot
2047 // table.
2048 CurModule.Types.push_back(*$3);
2049 }
2050
2051 delete $3;
2052 CHECK_FOR_ERROR
2053 }
2054 | OptLocalAssign TYPE VOID {
2055 ResolveTypeTo($1, $3);
2056
2057 if (!setTypeName($3, $1) && !$1) {
2058 CHECK_FOR_ERROR
2059 // If this is a named type that is not a redefinition, add it to the slot
2060 // table.
2061 CurModule.Types.push_back($3);
2062 }
2063 CHECK_FOR_ERROR
2064 }
2065 | OptGlobalAssign GVVisibilityStyle ThreadLocal GlobalType ConstVal {
2066 /* "Externally Visible" Linkage */
2067 if ($5 == 0)
2068 GEN_ERROR("Global value initializer is not a constant");
2069 CurGV = ParseGlobalVariable($1, GlobalValue::ExternalLinkage,
2070 $2, $4, $5->getType(), $5, $3);
2071 CHECK_FOR_ERROR
2072 } GlobalVarAttributes {
2073 CurGV = 0;
2074 }
2075 | OptGlobalAssign GVInternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2076 ConstVal {
2077 if ($6 == 0)
2078 GEN_ERROR("Global value initializer is not a constant");
2079 CurGV = ParseGlobalVariable($1, $2, $3, $5, $6->getType(), $6, $4);
2080 CHECK_FOR_ERROR
2081 } GlobalVarAttributes {
2082 CurGV = 0;
2083 }
2084 | OptGlobalAssign GVExternalLinkage GVVisibilityStyle ThreadLocal GlobalType
2085 Types {
2086 if (!UpRefs.empty())
2087 GEN_ERROR("Invalid upreference in type: " + (*$6)->getDescription());
2088 CurGV = ParseGlobalVariable($1, $2, $3, $5, *$6, 0, $4);
2089 CHECK_FOR_ERROR
2090 delete $6;
2091 } GlobalVarAttributes {
2092 CurGV = 0;
2093 CHECK_FOR_ERROR
2094 }
2095 | OptGlobalAssign GVVisibilityStyle ALIAS AliasLinkage AliaseeRef {
2096 std::string Name;
2097 if ($1) {
2098 Name = *$1;
2099 delete $1;
2100 }
2101 if (Name.empty())
2102 GEN_ERROR("Alias name cannot be empty");
2103
2104 Constant* Aliasee = $5;
2105 if (Aliasee == 0)
2106 GEN_ERROR(std::string("Invalid aliasee for alias: ") + Name);
2107
2108 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), $4, Name, Aliasee,
2109 CurModule.CurrentModule);
2110 GA->setVisibility($2);
2111 InsertValue(GA, CurModule.Values);
2112 CHECK_FOR_ERROR
2113 }
2114 | TARGET TargetDefinition {
2115 CHECK_FOR_ERROR
2116 }
2117 | DEPLIBS '=' LibrariesDefinition {
2118 CHECK_FOR_ERROR
2119 }
2120 ;
2121
2122
2123AsmBlock : STRINGCONSTANT {
2124 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
2125 if (AsmSoFar.empty())
2126 CurModule.CurrentModule->setModuleInlineAsm(*$1);
2127 else
2128 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+*$1);
2129 delete $1;
2130 CHECK_FOR_ERROR
2131};
2132
2133TargetDefinition : TRIPLE '=' STRINGCONSTANT {
2134 CurModule.CurrentModule->setTargetTriple(*$3);
2135 delete $3;
2136 }
2137 | DATALAYOUT '=' STRINGCONSTANT {
2138 CurModule.CurrentModule->setDataLayout(*$3);
2139 delete $3;
2140 };
2141
2142LibrariesDefinition : '[' LibList ']';
2143
2144LibList : LibList ',' STRINGCONSTANT {
2145 CurModule.CurrentModule->addLibrary(*$3);
2146 delete $3;
2147 CHECK_FOR_ERROR
2148 }
2149 | STRINGCONSTANT {
2150 CurModule.CurrentModule->addLibrary(*$1);
2151 delete $1;
2152 CHECK_FOR_ERROR
2153 }
2154 | /* empty: end of list */ {
2155 CHECK_FOR_ERROR
2156 }
2157 ;
2158
2159//===----------------------------------------------------------------------===//
2160// Rules to match Function Headers
2161//===----------------------------------------------------------------------===//
2162
2163ArgListH : ArgListH ',' Types OptParamAttrs OptLocalName {
2164 if (!UpRefs.empty())
2165 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2166 if (*$3 == Type::VoidTy)
2167 GEN_ERROR("void typed arguments are invalid");
2168 ArgListEntry E; E.Attrs = $4; E.Ty = $3; E.Name = $5;
2169 $$ = $1;
2170 $1->push_back(E);
2171 CHECK_FOR_ERROR
2172 }
2173 | Types OptParamAttrs OptLocalName {
2174 if (!UpRefs.empty())
2175 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2176 if (*$1 == Type::VoidTy)
2177 GEN_ERROR("void typed arguments are invalid");
2178 ArgListEntry E; E.Attrs = $2; E.Ty = $1; E.Name = $3;
2179 $$ = new ArgListType;
2180 $$->push_back(E);
2181 CHECK_FOR_ERROR
2182 };
2183
2184ArgList : ArgListH {
2185 $$ = $1;
2186 CHECK_FOR_ERROR
2187 }
2188 | ArgListH ',' DOTDOTDOT {
2189 $$ = $1;
2190 struct ArgListEntry E;
2191 E.Ty = new PATypeHolder(Type::VoidTy);
2192 E.Name = 0;
2193 E.Attrs = ParamAttr::None;
2194 $$->push_back(E);
2195 CHECK_FOR_ERROR
2196 }
2197 | DOTDOTDOT {
2198 $$ = new ArgListType;
2199 struct ArgListEntry E;
2200 E.Ty = new PATypeHolder(Type::VoidTy);
2201 E.Name = 0;
2202 E.Attrs = ParamAttr::None;
2203 $$->push_back(E);
2204 CHECK_FOR_ERROR
2205 }
2206 | /* empty */ {
2207 $$ = 0;
2208 CHECK_FOR_ERROR
2209 };
2210
2211FunctionHeaderH : OptCallingConv ResultTypes GlobalName '(' ArgList ')'
2212 OptFuncAttrs OptSection OptAlign {
2213 std::string FunctionName(*$3);
2214 delete $3; // Free strdup'd memory!
2215
2216 // Check the function result for abstractness if this is a define. We should
2217 // have no abstract types at this point
2218 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved($2))
2219 GEN_ERROR("Reference to abstract result: "+ $2->get()->getDescription());
2220
2221 std::vector<const Type*> ParamTypeList;
2222 ParamAttrsVector Attrs;
2223 if ($7 != ParamAttr::None) {
2224 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $7;
2225 Attrs.push_back(PAWI);
2226 }
2227 if ($5) { // If there are arguments...
2228 unsigned index = 1;
2229 for (ArgListType::iterator I = $5->begin(); I != $5->end(); ++I, ++index) {
2230 const Type* Ty = I->Ty->get();
2231 if (!CurFun.isDeclare && CurModule.TypeIsUnresolved(I->Ty))
2232 GEN_ERROR("Reference to abstract argument: " + Ty->getDescription());
2233 ParamTypeList.push_back(Ty);
2234 if (Ty != Type::VoidTy)
2235 if (I->Attrs != ParamAttr::None) {
2236 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2237 Attrs.push_back(PAWI);
2238 }
2239 }
2240 }
2241
2242 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
2243 if (isVarArg) ParamTypeList.pop_back();
2244
2245 ParamAttrsList *PAL = 0;
2246 if (!Attrs.empty())
2247 PAL = ParamAttrsList::get(Attrs);
2248
2249 FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg, PAL);
2250 const PointerType *PFT = PointerType::get(FT);
2251 delete $2;
2252
2253 ValID ID;
2254 if (!FunctionName.empty()) {
2255 ID = ValID::createGlobalName((char*)FunctionName.c_str());
2256 } else {
2257 ID = ValID::createGlobalID(CurModule.Values.size());
2258 }
2259
2260 Function *Fn = 0;
2261 // See if this function was forward referenced. If so, recycle the object.
2262 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
2263 // Move the function to the end of the list, from whereever it was
2264 // previously inserted.
2265 Fn = cast<Function>(FWRef);
2266 CurModule.CurrentModule->getFunctionList().remove(Fn);
2267 CurModule.CurrentModule->getFunctionList().push_back(Fn);
2268 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
2269 (Fn = CurModule.CurrentModule->getFunction(FunctionName))) {
2270 if (Fn->getFunctionType() != FT) {
2271 // The existing function doesn't have the same type. This is an overload
2272 // error.
2273 GEN_ERROR("Overload of function '" + FunctionName + "' not permitted.");
2274 } else if (!CurFun.isDeclare && !Fn->isDeclaration()) {
2275 // Neither the existing or the current function is a declaration and they
2276 // have the same name and same type. Clearly this is a redefinition.
2277 GEN_ERROR("Redefinition of function '" + FunctionName + "'");
2278 } if (Fn->isDeclaration()) {
2279 // Make sure to strip off any argument names so we can't get conflicts.
2280 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2281 AI != AE; ++AI)
2282 AI->setName("");
2283 }
2284 } else { // Not already defined?
2285 Fn = new Function(FT, GlobalValue::ExternalWeakLinkage, FunctionName,
2286 CurModule.CurrentModule);
2287
2288 InsertValue(Fn, CurModule.Values);
2289 }
2290
2291 CurFun.FunctionStart(Fn);
2292
2293 if (CurFun.isDeclare) {
2294 // If we have declaration, always overwrite linkage. This will allow us to
2295 // correctly handle cases, when pointer to function is passed as argument to
2296 // another function.
2297 Fn->setLinkage(CurFun.Linkage);
2298 Fn->setVisibility(CurFun.Visibility);
2299 }
2300 Fn->setCallingConv($1);
2301 Fn->setAlignment($9);
2302 if ($8) {
2303 Fn->setSection(*$8);
2304 delete $8;
2305 }
2306
2307 // Add all of the arguments we parsed to the function...
2308 if ($5) { // Is null if empty...
2309 if (isVarArg) { // Nuke the last entry
2310 assert($5->back().Ty->get() == Type::VoidTy && $5->back().Name == 0 &&
2311 "Not a varargs marker!");
2312 delete $5->back().Ty;
2313 $5->pop_back(); // Delete the last entry
2314 }
2315 Function::arg_iterator ArgIt = Fn->arg_begin();
2316 Function::arg_iterator ArgEnd = Fn->arg_end();
2317 unsigned Idx = 1;
2318 for (ArgListType::iterator I = $5->begin();
2319 I != $5->end() && ArgIt != ArgEnd; ++I, ++ArgIt) {
2320 delete I->Ty; // Delete the typeholder...
2321 setValueName(ArgIt, I->Name); // Insert arg into symtab...
2322 CHECK_FOR_ERROR
2323 InsertValue(ArgIt);
2324 Idx++;
2325 }
2326
2327 delete $5; // We're now done with the argument list
2328 }
2329 CHECK_FOR_ERROR
2330};
2331
2332BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
2333
2334FunctionHeader : FunctionDefineLinkage GVVisibilityStyle FunctionHeaderH BEGIN {
2335 $$ = CurFun.CurrentFunction;
2336
2337 // Make sure that we keep track of the linkage type even if there was a
2338 // previous "declare".
2339 $$->setLinkage($1);
2340 $$->setVisibility($2);
2341};
2342
2343END : ENDTOK | '}'; // Allow end of '}' to end a function
2344
2345Function : BasicBlockList END {
2346 $$ = $1;
2347 CHECK_FOR_ERROR
2348};
2349
2350FunctionProto : FunctionDeclareLinkage GVVisibilityStyle FunctionHeaderH {
2351 CurFun.CurrentFunction->setLinkage($1);
2352 CurFun.CurrentFunction->setVisibility($2);
2353 $$ = CurFun.CurrentFunction;
2354 CurFun.FunctionDone();
2355 CHECK_FOR_ERROR
2356 };
2357
2358//===----------------------------------------------------------------------===//
2359// Rules to match Basic Blocks
2360//===----------------------------------------------------------------------===//
2361
2362OptSideEffect : /* empty */ {
2363 $$ = false;
2364 CHECK_FOR_ERROR
2365 }
2366 | SIDEEFFECT {
2367 $$ = true;
2368 CHECK_FOR_ERROR
2369 };
2370
2371ConstValueRef : ESINT64VAL { // A reference to a direct constant
2372 $$ = ValID::create($1);
2373 CHECK_FOR_ERROR
2374 }
2375 | EUINT64VAL {
2376 $$ = ValID::create($1);
2377 CHECK_FOR_ERROR
2378 }
2379 | FPVAL { // Perhaps it's an FP constant?
2380 $$ = ValID::create($1);
2381 CHECK_FOR_ERROR
2382 }
2383 | TRUETOK {
2384 $$ = ValID::create(ConstantInt::getTrue());
2385 CHECK_FOR_ERROR
2386 }
2387 | FALSETOK {
2388 $$ = ValID::create(ConstantInt::getFalse());
2389 CHECK_FOR_ERROR
2390 }
2391 | NULL_TOK {
2392 $$ = ValID::createNull();
2393 CHECK_FOR_ERROR
2394 }
2395 | UNDEF {
2396 $$ = ValID::createUndef();
2397 CHECK_FOR_ERROR
2398 }
2399 | ZEROINITIALIZER { // A vector zero constant.
2400 $$ = ValID::createZeroInit();
2401 CHECK_FOR_ERROR
2402 }
2403 | '<' ConstVector '>' { // Nonempty unsized packed vector
2404 const Type *ETy = (*$2)[0]->getType();
2405 int NumElements = $2->size();
2406
2407 VectorType* pt = VectorType::get(ETy, NumElements);
2408 PATypeHolder* PTy = new PATypeHolder(
2409 HandleUpRefs(
2410 VectorType::get(
2411 ETy,
2412 NumElements)
2413 )
2414 );
2415
2416 // Verify all elements are correct type!
2417 for (unsigned i = 0; i < $2->size(); i++) {
2418 if (ETy != (*$2)[i]->getType())
2419 GEN_ERROR("Element #" + utostr(i) + " is not of type '" +
2420 ETy->getDescription() +"' as required!\nIt is of type '" +
2421 (*$2)[i]->getType()->getDescription() + "'.");
2422 }
2423
2424 $$ = ValID::create(ConstantVector::get(pt, *$2));
2425 delete PTy; delete $2;
2426 CHECK_FOR_ERROR
2427 }
2428 | ConstExpr {
2429 $$ = ValID::create($1);
2430 CHECK_FOR_ERROR
2431 }
2432 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
2433 $$ = ValID::createInlineAsm(*$3, *$5, $2);
2434 delete $3;
2435 delete $5;
2436 CHECK_FOR_ERROR
2437 };
2438
2439// SymbolicValueRef - Reference to one of two ways of symbolically refering to
2440// another value.
2441//
2442SymbolicValueRef : LOCALVAL_ID { // Is it an integer reference...?
2443 $$ = ValID::createLocalID($1);
2444 CHECK_FOR_ERROR
2445 }
2446 | GLOBALVAL_ID {
2447 $$ = ValID::createGlobalID($1);
2448 CHECK_FOR_ERROR
2449 }
2450 | LocalName { // Is it a named reference...?
2451 $$ = ValID::createLocalName(*$1);
2452 delete $1;
2453 CHECK_FOR_ERROR
2454 }
2455 | GlobalName { // Is it a named reference...?
2456 $$ = ValID::createGlobalName(*$1);
2457 delete $1;
2458 CHECK_FOR_ERROR
2459 };
2460
2461// ValueRef - A reference to a definition... either constant or symbolic
2462ValueRef : SymbolicValueRef | ConstValueRef;
2463
2464
2465// ResolvedVal - a <type> <value> pair. This is used only in cases where the
2466// type immediately preceeds the value reference, and allows complex constant
2467// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
2468ResolvedVal : Types ValueRef {
2469 if (!UpRefs.empty())
2470 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2471 $$ = getVal(*$1, $2);
2472 delete $1;
2473 CHECK_FOR_ERROR
2474 }
2475 ;
2476
2477BasicBlockList : BasicBlockList BasicBlock {
2478 $$ = $1;
2479 CHECK_FOR_ERROR
2480 }
2481 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
2482 $$ = $1;
2483 CHECK_FOR_ERROR
2484 };
2485
2486
2487// Basic blocks are terminated by branching instructions:
2488// br, br/cc, switch, ret
2489//
2490BasicBlock : InstructionList OptLocalAssign BBTerminatorInst {
2491 setValueName($3, $2);
2492 CHECK_FOR_ERROR
2493 InsertValue($3);
2494 $1->getInstList().push_back($3);
2495 $$ = $1;
2496 CHECK_FOR_ERROR
2497 };
2498
2499InstructionList : InstructionList Inst {
2500 if (CastInst *CI1 = dyn_cast<CastInst>($2))
2501 if (CastInst *CI2 = dyn_cast<CastInst>(CI1->getOperand(0)))
2502 if (CI2->getParent() == 0)
2503 $1->getInstList().push_back(CI2);
2504 $1->getInstList().push_back($2);
2505 $$ = $1;
2506 CHECK_FOR_ERROR
2507 }
2508 | /* empty */ { // Empty space between instruction lists
2509 $$ = defineBBVal(ValID::createLocalID(CurFun.NextValNum));
2510 CHECK_FOR_ERROR
2511 }
2512 | LABELSTR { // Labelled (named) basic block
2513 $$ = defineBBVal(ValID::createLocalName(*$1));
2514 delete $1;
2515 CHECK_FOR_ERROR
2516
2517 };
2518
2519BBTerminatorInst : RET ResolvedVal { // Return with a result...
2520 $$ = new ReturnInst($2);
2521 CHECK_FOR_ERROR
2522 }
2523 | RET VOID { // Return with no result...
2524 $$ = new ReturnInst();
2525 CHECK_FOR_ERROR
2526 }
2527 | BR LABEL ValueRef { // Unconditional Branch...
2528 BasicBlock* tmpBB = getBBVal($3);
2529 CHECK_FOR_ERROR
2530 $$ = new BranchInst(tmpBB);
2531 } // Conditional Branch...
2532 | BR INTTYPE ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2533 assert(cast<IntegerType>($2)->getBitWidth() == 1 && "Not Bool?");
2534 BasicBlock* tmpBBA = getBBVal($6);
2535 CHECK_FOR_ERROR
2536 BasicBlock* tmpBBB = getBBVal($9);
2537 CHECK_FOR_ERROR
2538 Value* tmpVal = getVal(Type::Int1Ty, $3);
2539 CHECK_FOR_ERROR
2540 $$ = new BranchInst(tmpBBA, tmpBBB, tmpVal);
2541 }
2542 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2543 Value* tmpVal = getVal($2, $3);
2544 CHECK_FOR_ERROR
2545 BasicBlock* tmpBB = getBBVal($6);
2546 CHECK_FOR_ERROR
2547 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
2548 $$ = S;
2549
2550 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2551 E = $8->end();
2552 for (; I != E; ++I) {
2553 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2554 S->addCase(CI, I->second);
2555 else
2556 GEN_ERROR("Switch case is constant, but not a simple integer");
2557 }
2558 delete $8;
2559 CHECK_FOR_ERROR
2560 }
2561 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2562 Value* tmpVal = getVal($2, $3);
2563 CHECK_FOR_ERROR
2564 BasicBlock* tmpBB = getBBVal($6);
2565 CHECK_FOR_ERROR
2566 SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
2567 $$ = S;
2568 CHECK_FOR_ERROR
2569 }
2570 | INVOKE OptCallingConv ResultTypes ValueRef '(' ValueRefList ')' OptFuncAttrs
2571 TO LABEL ValueRef UNWIND LABEL ValueRef {
2572
2573 // Handle the short syntax
2574 const PointerType *PFTy = 0;
2575 const FunctionType *Ty = 0;
2576 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2577 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2578 // Pull out the types of all of the arguments...
2579 std::vector<const Type*> ParamTypes;
2580 ParamAttrsVector Attrs;
2581 if ($8 != ParamAttr::None) {
2582 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2583 Attrs.push_back(PAWI);
2584 }
2585 ValueRefList::iterator I = $6->begin(), E = $6->end();
2586 unsigned index = 1;
2587 for (; I != E; ++I, ++index) {
2588 const Type *Ty = I->Val->getType();
2589 if (Ty == Type::VoidTy)
2590 GEN_ERROR("Short call syntax cannot be used with varargs");
2591 ParamTypes.push_back(Ty);
2592 if (I->Attrs != ParamAttr::None) {
2593 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2594 Attrs.push_back(PAWI);
2595 }
2596 }
2597
2598 ParamAttrsList *PAL = 0;
2599 if (!Attrs.empty())
2600 PAL = ParamAttrsList::get(Attrs);
2601 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2602 PFTy = PointerType::get(Ty);
2603 }
2604
2605 delete $3;
2606
2607 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2608 CHECK_FOR_ERROR
2609 BasicBlock *Normal = getBBVal($11);
2610 CHECK_FOR_ERROR
2611 BasicBlock *Except = getBBVal($14);
2612 CHECK_FOR_ERROR
2613
2614 // Check the arguments
2615 ValueList Args;
2616 if ($6->empty()) { // Has no arguments?
2617 // Make sure no arguments is a good thing!
2618 if (Ty->getNumParams() != 0)
2619 GEN_ERROR("No arguments passed to a function that "
2620 "expects arguments");
2621 } else { // Has arguments?
2622 // Loop through FunctionType's arguments and ensure they are specified
2623 // correctly!
2624 FunctionType::param_iterator I = Ty->param_begin();
2625 FunctionType::param_iterator E = Ty->param_end();
2626 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2627
2628 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2629 if (ArgI->Val->getType() != *I)
2630 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2631 (*I)->getDescription() + "'");
2632 Args.push_back(ArgI->Val);
2633 }
2634
2635 if (Ty->isVarArg()) {
2636 if (I == E)
2637 for (; ArgI != ArgE; ++ArgI)
2638 Args.push_back(ArgI->Val); // push the remaining varargs
2639 } else if (I != E || ArgI != ArgE)
2640 GEN_ERROR("Invalid number of parameters detected");
2641 }
2642
2643 // Create the InvokeInst
2644 InvokeInst *II = new InvokeInst(V, Normal, Except, &Args[0], Args.size());
2645 II->setCallingConv($2);
2646 $$ = II;
2647 delete $6;
2648 CHECK_FOR_ERROR
2649 }
2650 | UNWIND {
2651 $$ = new UnwindInst();
2652 CHECK_FOR_ERROR
2653 }
2654 | UNREACHABLE {
2655 $$ = new UnreachableInst();
2656 CHECK_FOR_ERROR
2657 };
2658
2659
2660
2661JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2662 $$ = $1;
2663 Constant *V = cast<Constant>(getExistingVal($2, $3));
2664 CHECK_FOR_ERROR
2665 if (V == 0)
2666 GEN_ERROR("May only switch on a constant pool value");
2667
2668 BasicBlock* tmpBB = getBBVal($6);
2669 CHECK_FOR_ERROR
2670 $$->push_back(std::make_pair(V, tmpBB));
2671 }
2672 | IntType ConstValueRef ',' LABEL ValueRef {
2673 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2674 Constant *V = cast<Constant>(getExistingVal($1, $2));
2675 CHECK_FOR_ERROR
2676
2677 if (V == 0)
2678 GEN_ERROR("May only switch on a constant pool value");
2679
2680 BasicBlock* tmpBB = getBBVal($5);
2681 CHECK_FOR_ERROR
2682 $$->push_back(std::make_pair(V, tmpBB));
2683 };
2684
2685Inst : OptLocalAssign InstVal {
2686 // Is this definition named?? if so, assign the name...
2687 setValueName($2, $1);
2688 CHECK_FOR_ERROR
2689 InsertValue($2);
2690 $$ = $2;
2691 CHECK_FOR_ERROR
2692 };
2693
2694
2695PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2696 if (!UpRefs.empty())
2697 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2698 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2699 Value* tmpVal = getVal(*$1, $3);
2700 CHECK_FOR_ERROR
2701 BasicBlock* tmpBB = getBBVal($5);
2702 CHECK_FOR_ERROR
2703 $$->push_back(std::make_pair(tmpVal, tmpBB));
2704 delete $1;
2705 }
2706 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2707 $$ = $1;
2708 Value* tmpVal = getVal($1->front().first->getType(), $4);
2709 CHECK_FOR_ERROR
2710 BasicBlock* tmpBB = getBBVal($6);
2711 CHECK_FOR_ERROR
2712 $1->push_back(std::make_pair(tmpVal, tmpBB));
2713 };
2714
2715
2716ValueRefList : Types ValueRef OptParamAttrs {
2717 if (!UpRefs.empty())
2718 GEN_ERROR("Invalid upreference in type: " + (*$1)->getDescription());
2719 // Used for call and invoke instructions
2720 $$ = new ValueRefList();
2721 ValueRefListEntry E; E.Attrs = $3; E.Val = getVal($1->get(), $2);
2722 $$->push_back(E);
2723 delete $1;
2724 }
2725 | ValueRefList ',' Types ValueRef OptParamAttrs {
2726 if (!UpRefs.empty())
2727 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2728 $$ = $1;
2729 ValueRefListEntry E; E.Attrs = $5; E.Val = getVal($3->get(), $4);
2730 $$->push_back(E);
2731 delete $3;
2732 CHECK_FOR_ERROR
2733 }
2734 | /*empty*/ { $$ = new ValueRefList(); };
2735
2736IndexList // Used for gep instructions and constant expressions
2737 : /*empty*/ { $$ = new std::vector<Value*>(); }
2738 | IndexList ',' ResolvedVal {
2739 $$ = $1;
2740 $$->push_back($3);
2741 CHECK_FOR_ERROR
2742 }
2743 ;
2744
2745OptTailCall : TAIL CALL {
2746 $$ = true;
2747 CHECK_FOR_ERROR
2748 }
2749 | CALL {
2750 $$ = false;
2751 CHECK_FOR_ERROR
2752 };
2753
2754InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2755 if (!UpRefs.empty())
2756 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2757 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2758 !isa<VectorType>((*$2).get()))
2759 GEN_ERROR(
2760 "Arithmetic operator requires integer, FP, or packed operands");
2761 if (isa<VectorType>((*$2).get()) &&
2762 ($1 == Instruction::URem ||
2763 $1 == Instruction::SRem ||
2764 $1 == Instruction::FRem))
2765 GEN_ERROR("Remainder not supported on vector types");
2766 Value* val1 = getVal(*$2, $3);
2767 CHECK_FOR_ERROR
2768 Value* val2 = getVal(*$2, $5);
2769 CHECK_FOR_ERROR
2770 $$ = BinaryOperator::create($1, val1, val2);
2771 if ($$ == 0)
2772 GEN_ERROR("binary operator returned null");
2773 delete $2;
2774 }
2775 | LogicalOps Types ValueRef ',' ValueRef {
2776 if (!UpRefs.empty())
2777 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2778 if (!(*$2)->isInteger()) {
2779 if (Instruction::isShift($1) || !isa<VectorType>($2->get()) ||
2780 !cast<VectorType>($2->get())->getElementType()->isInteger())
2781 GEN_ERROR("Logical operator requires integral operands");
2782 }
2783 Value* tmpVal1 = getVal(*$2, $3);
2784 CHECK_FOR_ERROR
2785 Value* tmpVal2 = getVal(*$2, $5);
2786 CHECK_FOR_ERROR
2787 $$ = BinaryOperator::create($1, tmpVal1, tmpVal2);
2788 if ($$ == 0)
2789 GEN_ERROR("binary operator returned null");
2790 delete $2;
2791 }
2792 | ICMP IPredicates Types ValueRef ',' ValueRef {
2793 if (!UpRefs.empty())
2794 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2795 if (isa<VectorType>((*$3).get()))
2796 GEN_ERROR("Vector types not supported by icmp instruction");
2797 Value* tmpVal1 = getVal(*$3, $4);
2798 CHECK_FOR_ERROR
2799 Value* tmpVal2 = getVal(*$3, $6);
2800 CHECK_FOR_ERROR
2801 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2802 if ($$ == 0)
2803 GEN_ERROR("icmp operator returned null");
2804 delete $3;
2805 }
2806 | FCMP FPredicates Types ValueRef ',' ValueRef {
2807 if (!UpRefs.empty())
2808 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
2809 if (isa<VectorType>((*$3).get()))
2810 GEN_ERROR("Vector types not supported by fcmp instruction");
2811 Value* tmpVal1 = getVal(*$3, $4);
2812 CHECK_FOR_ERROR
2813 Value* tmpVal2 = getVal(*$3, $6);
2814 CHECK_FOR_ERROR
2815 $$ = CmpInst::create($1, $2, tmpVal1, tmpVal2);
2816 if ($$ == 0)
2817 GEN_ERROR("fcmp operator returned null");
2818 delete $3;
2819 }
2820 | CastOps ResolvedVal TO Types {
2821 if (!UpRefs.empty())
2822 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2823 Value* Val = $2;
2824 const Type* DestTy = $4->get();
2825 if (!CastInst::castIsValid($1, Val, DestTy))
2826 GEN_ERROR("invalid cast opcode for cast from '" +
2827 Val->getType()->getDescription() + "' to '" +
2828 DestTy->getDescription() + "'");
2829 $$ = CastInst::create($1, Val, DestTy);
2830 delete $4;
2831 }
2832 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2833 if ($2->getType() != Type::Int1Ty)
2834 GEN_ERROR("select condition must be boolean");
2835 if ($4->getType() != $6->getType())
2836 GEN_ERROR("select value types should match");
2837 $$ = new SelectInst($2, $4, $6);
2838 CHECK_FOR_ERROR
2839 }
2840 | VAARG ResolvedVal ',' Types {
2841 if (!UpRefs.empty())
2842 GEN_ERROR("Invalid upreference in type: " + (*$4)->getDescription());
2843 $$ = new VAArgInst($2, *$4);
2844 delete $4;
2845 CHECK_FOR_ERROR
2846 }
2847 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2848 if (!ExtractElementInst::isValidOperands($2, $4))
2849 GEN_ERROR("Invalid extractelement operands");
2850 $$ = new ExtractElementInst($2, $4);
2851 CHECK_FOR_ERROR
2852 }
2853 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2854 if (!InsertElementInst::isValidOperands($2, $4, $6))
2855 GEN_ERROR("Invalid insertelement operands");
2856 $$ = new InsertElementInst($2, $4, $6);
2857 CHECK_FOR_ERROR
2858 }
2859 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2860 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2861 GEN_ERROR("Invalid shufflevector operands");
2862 $$ = new ShuffleVectorInst($2, $4, $6);
2863 CHECK_FOR_ERROR
2864 }
2865 | PHI_TOK PHIList {
2866 const Type *Ty = $2->front().first->getType();
2867 if (!Ty->isFirstClassType())
2868 GEN_ERROR("PHI node operands must be of first class type");
2869 $$ = new PHINode(Ty);
2870 ((PHINode*)$$)->reserveOperandSpace($2->size());
2871 while ($2->begin() != $2->end()) {
2872 if ($2->front().first->getType() != Ty)
2873 GEN_ERROR("All elements of a PHI node must be of the same type");
2874 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2875 $2->pop_front();
2876 }
2877 delete $2; // Free the list...
2878 CHECK_FOR_ERROR
2879 }
2880 | OptTailCall OptCallingConv ResultTypes ValueRef '(' ValueRefList ')'
2881 OptFuncAttrs {
2882
2883 // Handle the short syntax
2884 const PointerType *PFTy = 0;
2885 const FunctionType *Ty = 0;
2886 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2887 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2888 // Pull out the types of all of the arguments...
2889 std::vector<const Type*> ParamTypes;
2890 ParamAttrsVector Attrs;
2891 if ($8 != ParamAttr::None) {
2892 ParamAttrsWithIndex PAWI; PAWI.index = 0; PAWI.attrs = $8;
2893 Attrs.push_back(PAWI);
2894 }
2895 unsigned index = 1;
2896 ValueRefList::iterator I = $6->begin(), E = $6->end();
2897 for (; I != E; ++I, ++index) {
2898 const Type *Ty = I->Val->getType();
2899 if (Ty == Type::VoidTy)
2900 GEN_ERROR("Short call syntax cannot be used with varargs");
2901 ParamTypes.push_back(Ty);
2902 if (I->Attrs != ParamAttr::None) {
2903 ParamAttrsWithIndex PAWI; PAWI.index = index; PAWI.attrs = I->Attrs;
2904 Attrs.push_back(PAWI);
2905 }
2906 }
2907
2908 ParamAttrsList *PAL = 0;
2909 if (!Attrs.empty())
2910 PAL = ParamAttrsList::get(Attrs);
2911
2912 Ty = FunctionType::get($3->get(), ParamTypes, false, PAL);
2913 PFTy = PointerType::get(Ty);
2914 }
2915
2916 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2917 CHECK_FOR_ERROR
2918
2919 // Check for call to invalid intrinsic to avoid crashing later.
2920 if (Function *theF = dyn_cast<Function>(V)) {
2921 if (theF->hasName() && (theF->getValueName()->getKeyLength() >= 5) &&
2922 (0 == strncmp(theF->getValueName()->getKeyData(), "llvm.", 5)) &&
2923 !theF->getIntrinsicID(true))
2924 GEN_ERROR("Call to invalid LLVM intrinsic function '" +
2925 theF->getName() + "'");
2926 }
2927
2928 // Check the arguments
2929 ValueList Args;
2930 if ($6->empty()) { // Has no arguments?
2931 // Make sure no arguments is a good thing!
2932 if (Ty->getNumParams() != 0)
2933 GEN_ERROR("No arguments passed to a function that "
2934 "expects arguments");
2935 } else { // Has arguments?
2936 // Loop through FunctionType's arguments and ensure they are specified
2937 // correctly!
2938 //
2939 FunctionType::param_iterator I = Ty->param_begin();
2940 FunctionType::param_iterator E = Ty->param_end();
2941 ValueRefList::iterator ArgI = $6->begin(), ArgE = $6->end();
2942
2943 for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
2944 if (ArgI->Val->getType() != *I)
2945 GEN_ERROR("Parameter " + ArgI->Val->getName()+ " is not of type '" +
2946 (*I)->getDescription() + "'");
2947 Args.push_back(ArgI->Val);
2948 }
2949 if (Ty->isVarArg()) {
2950 if (I == E)
2951 for (; ArgI != ArgE; ++ArgI)
2952 Args.push_back(ArgI->Val); // push the remaining varargs
2953 } else if (I != E || ArgI != ArgE)
2954 GEN_ERROR("Invalid number of parameters detected");
2955 }
2956 // Create the call node
2957 CallInst *CI = new CallInst(V, &Args[0], Args.size());
2958 CI->setTailCall($1);
2959 CI->setCallingConv($2);
2960 $$ = CI;
2961 delete $6;
2962 delete $3;
2963 CHECK_FOR_ERROR
2964 }
2965 | MemoryInst {
2966 $$ = $1;
2967 CHECK_FOR_ERROR
2968 };
2969
2970OptVolatile : VOLATILE {
2971 $$ = true;
2972 CHECK_FOR_ERROR
2973 }
2974 | /* empty */ {
2975 $$ = false;
2976 CHECK_FOR_ERROR
2977 };
2978
2979
2980
2981MemoryInst : MALLOC Types OptCAlign {
2982 if (!UpRefs.empty())
2983 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2984 $$ = new MallocInst(*$2, 0, $3);
2985 delete $2;
2986 CHECK_FOR_ERROR
2987 }
2988 | MALLOC Types ',' INTTYPE ValueRef OptCAlign {
2989 if (!UpRefs.empty())
2990 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2991 Value* tmpVal = getVal($4, $5);
2992 CHECK_FOR_ERROR
2993 $$ = new MallocInst(*$2, tmpVal, $6);
2994 delete $2;
2995 }
2996 | ALLOCA Types OptCAlign {
2997 if (!UpRefs.empty())
2998 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
2999 $$ = new AllocaInst(*$2, 0, $3);
3000 delete $2;
3001 CHECK_FOR_ERROR
3002 }
3003 | ALLOCA Types ',' INTTYPE ValueRef OptCAlign {
3004 if (!UpRefs.empty())
3005 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3006 Value* tmpVal = getVal($4, $5);
3007 CHECK_FOR_ERROR
3008 $$ = new AllocaInst(*$2, tmpVal, $6);
3009 delete $2;
3010 }
3011 | FREE ResolvedVal {
3012 if (!isa<PointerType>($2->getType()))
3013 GEN_ERROR("Trying to free nonpointer type " +
3014 $2->getType()->getDescription() + "");
3015 $$ = new FreeInst($2);
3016 CHECK_FOR_ERROR
3017 }
3018
3019 | OptVolatile LOAD Types ValueRef OptCAlign {
3020 if (!UpRefs.empty())
3021 GEN_ERROR("Invalid upreference in type: " + (*$3)->getDescription());
3022 if (!isa<PointerType>($3->get()))
3023 GEN_ERROR("Can't load from nonpointer type: " +
3024 (*$3)->getDescription());
3025 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
3026 GEN_ERROR("Can't load from pointer of non-first-class type: " +
3027 (*$3)->getDescription());
3028 Value* tmpVal = getVal(*$3, $4);
3029 CHECK_FOR_ERROR
3030 $$ = new LoadInst(tmpVal, "", $1, $5);
3031 delete $3;
3032 }
3033 | OptVolatile STORE ResolvedVal ',' Types ValueRef OptCAlign {
3034 if (!UpRefs.empty())
3035 GEN_ERROR("Invalid upreference in type: " + (*$5)->getDescription());
3036 const PointerType *PT = dyn_cast<PointerType>($5->get());
3037 if (!PT)
3038 GEN_ERROR("Can't store to a nonpointer type: " +
3039 (*$5)->getDescription());
3040 const Type *ElTy = PT->getElementType();
3041 if (ElTy != $3->getType())
3042 GEN_ERROR("Can't store '" + $3->getType()->getDescription() +
3043 "' into space of type '" + ElTy->getDescription() + "'");
3044
3045 Value* tmpVal = getVal(*$5, $6);
3046 CHECK_FOR_ERROR
3047 $$ = new StoreInst($3, tmpVal, $1, $7);
3048 delete $5;
3049 }
3050 | GETELEMENTPTR Types ValueRef IndexList {
3051 if (!UpRefs.empty())
3052 GEN_ERROR("Invalid upreference in type: " + (*$2)->getDescription());
3053 if (!isa<PointerType>($2->get()))
3054 GEN_ERROR("getelementptr insn requires pointer operand");
3055
3056 if (!GetElementPtrInst::getIndexedType(*$2, &(*$4)[0], $4->size(), true))
3057 GEN_ERROR("Invalid getelementptr indices for type '" +
3058 (*$2)->getDescription()+ "'");
3059 Value* tmpVal = getVal(*$2, $3);
3060 CHECK_FOR_ERROR
3061 $$ = new GetElementPtrInst(tmpVal, &(*$4)[0], $4->size());
3062 delete $2;
3063 delete $4;
3064 };
3065
3066
3067%%
3068
3069// common code from the two 'RunVMAsmParser' functions
3070static Module* RunParser(Module * M) {
3071
3072 llvmAsmlineno = 1; // Reset the current line number...
3073 CurModule.CurrentModule = M;
3074#if YYDEBUG
3075 yydebug = Debug;
3076#endif
3077
3078 // Check to make sure the parser succeeded
3079 if (yyparse()) {
3080 if (ParserResult)
3081 delete ParserResult;
3082 return 0;
3083 }
3084
3085 // Emit an error if there are any unresolved types left.
3086 if (!CurModule.LateResolveTypes.empty()) {
3087 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
3088 if (DID.Type == ValID::LocalName) {
3089 GenerateError("Undefined type remains at eof: '"+DID.getName() + "'");
3090 } else {
3091 GenerateError("Undefined type remains at eof: #" + itostr(DID.Num));
3092 }
3093 if (ParserResult)
3094 delete ParserResult;
3095 return 0;
3096 }
3097
3098 // Emit an error if there are any unresolved values left.
3099 if (!CurModule.LateResolveValues.empty()) {
3100 Value *V = CurModule.LateResolveValues.back();
3101 std::map<Value*, std::pair<ValID, int> >::iterator I =
3102 CurModule.PlaceHolderInfo.find(V);
3103
3104 if (I != CurModule.PlaceHolderInfo.end()) {
3105 ValID &DID = I->second.first;
3106 if (DID.Type == ValID::LocalName) {
3107 GenerateError("Undefined value remains at eof: "+DID.getName() + "'");
3108 } else {
3109 GenerateError("Undefined value remains at eof: #" + itostr(DID.Num));
3110 }
3111 if (ParserResult)
3112 delete ParserResult;
3113 return 0;
3114 }
3115 }
3116
3117 // Check to make sure that parsing produced a result
3118 if (!ParserResult)
3119 return 0;
3120
3121 // Reset ParserResult variable while saving its value for the result.
3122 Module *Result = ParserResult;
3123 ParserResult = 0;
3124
3125 return Result;
3126}
3127
3128void llvm::GenerateError(const std::string &message, int LineNo) {
3129 if (LineNo == -1) LineNo = llvmAsmlineno;
3130 // TODO: column number in exception
3131 if (TheParseError)
3132 TheParseError->setError(CurFilename, message, LineNo);
3133 TriggerError = 1;
3134}
3135
3136int yyerror(const char *ErrorMsg) {
3137 std::string where
3138 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
3139 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
3140 std::string errMsg = where + "error: " + std::string(ErrorMsg);
3141 if (yychar != YYEMPTY && yychar != 0)
3142 errMsg += " while reading token: '" + std::string(llvmAsmtext, llvmAsmleng)+
3143 "'";
3144 GenerateError(errMsg);
3145 return 0;
3146}