blob: 196e849cc583d44553d95eee612023554be4743d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumReMats, "Number of re-materialization");
39STATISTIC(NumStores, "Number of stores added");
40STATISTIC(NumLoads , "Number of loads added");
41STATISTIC(NumReused, "Number of values reused");
42STATISTIC(NumDSE , "Number of dead stores elided");
43STATISTIC(NumDCE , "Number of copies elided");
44
45namespace {
46 enum SpillerName { simple, local };
47
48 static cl::opt<SpillerName>
49 SpillerOpt("spiller",
50 cl::desc("Spiller to use: (default: local)"),
51 cl::Prefix,
52 cl::values(clEnumVal(simple, " simple spiller"),
53 clEnumVal(local, " local spiller"),
54 clEnumValEnd),
55 cl::init(local));
56}
57
58//===----------------------------------------------------------------------===//
59// VirtRegMap implementation
60//===----------------------------------------------------------------------===//
61
62VirtRegMap::VirtRegMap(MachineFunction &mf)
63 : TII(*mf.getTarget().getInstrInfo()), MF(mf),
64 Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
65 ReMatId(MAX_STACK_SLOT+1) {
66 grow();
67}
68
69void VirtRegMap::grow() {
70 Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
71 Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
72}
73
74int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
75 assert(MRegisterInfo::isVirtualRegister(virtReg));
76 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
77 "attempt to assign stack slot to already spilled register");
78 const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
79 int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
80 RC->getAlignment());
81 Virt2StackSlotMap[virtReg] = frameIndex;
82 ++NumSpills;
83 return frameIndex;
84}
85
86void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
87 assert(MRegisterInfo::isVirtualRegister(virtReg));
88 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
89 "attempt to assign stack slot to already spilled register");
90 assert((frameIndex >= 0 ||
91 (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
92 "illegal fixed frame index");
93 Virt2StackSlotMap[virtReg] = frameIndex;
94}
95
96int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
97 assert(MRegisterInfo::isVirtualRegister(virtReg));
98 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
99 "attempt to assign re-mat id to already spilled register");
100 const MachineInstr *DefMI = getReMaterializedMI(virtReg);
101 int FrameIdx;
102 if (TII.isLoadFromStackSlot((MachineInstr*)DefMI, FrameIdx)) {
103 // Load from stack slot is re-materialize as reload from the stack slot!
104 Virt2StackSlotMap[virtReg] = FrameIdx;
105 return FrameIdx;
106 }
107 Virt2StackSlotMap[virtReg] = ReMatId;
108 return ReMatId++;
109}
110
111void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
112 unsigned OpNo, MachineInstr *NewMI) {
113 // Move previous memory references folded to new instruction.
114 MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
115 for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
116 E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
117 MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
118 MI2VirtMap.erase(I++);
119 }
120
121 ModRef MRInfo;
122 const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
123 if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
124 TID->findTiedToSrcOperand(OpNo) != -1) {
125 // Folded a two-address operand.
126 MRInfo = isModRef;
127 } else if (OldMI->getOperand(OpNo).isDef()) {
128 MRInfo = isMod;
129 } else {
130 MRInfo = isRef;
131 }
132
133 // add new memory reference
134 MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
135}
136
137void VirtRegMap::print(std::ostream &OS) const {
138 const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
139
140 OS << "********** REGISTER MAP **********\n";
141 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
142 e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
143 if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
144 OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
145
146 }
147
148 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
149 e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
150 if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
151 OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
152 OS << '\n';
153}
154
155void VirtRegMap::dump() const {
156 print(DOUT);
157}
158
159
160//===----------------------------------------------------------------------===//
161// Simple Spiller Implementation
162//===----------------------------------------------------------------------===//
163
164Spiller::~Spiller() {}
165
166namespace {
167 struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
168 bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
169 };
170}
171
172bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
173 DOUT << "********** REWRITE MACHINE CODE **********\n";
174 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
175 const TargetMachine &TM = MF.getTarget();
176 const MRegisterInfo &MRI = *TM.getRegisterInfo();
177
178 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
179 // each vreg once (in the case where a spilled vreg is used by multiple
180 // operands). This is always smaller than the number of operands to the
181 // current machine instr, so it should be small.
182 std::vector<unsigned> LoadedRegs;
183
184 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
185 MBBI != E; ++MBBI) {
186 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
187 MachineBasicBlock &MBB = *MBBI;
188 for (MachineBasicBlock::iterator MII = MBB.begin(),
189 E = MBB.end(); MII != E; ++MII) {
190 MachineInstr &MI = *MII;
191 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
192 MachineOperand &MO = MI.getOperand(i);
193 if (MO.isRegister() && MO.getReg())
194 if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
195 unsigned VirtReg = MO.getReg();
196 unsigned PhysReg = VRM.getPhys(VirtReg);
197 if (VRM.hasStackSlot(VirtReg)) {
198 int StackSlot = VRM.getStackSlot(VirtReg);
199 const TargetRegisterClass* RC =
200 MF.getSSARegMap()->getRegClass(VirtReg);
201
202 if (MO.isUse() &&
203 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
204 == LoadedRegs.end()) {
205 MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
206 LoadedRegs.push_back(VirtReg);
207 ++NumLoads;
208 DOUT << '\t' << *prior(MII);
209 }
210
211 if (MO.isDef()) {
212 MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
213 ++NumStores;
214 }
215 }
216 MF.setPhysRegUsed(PhysReg);
217 MI.getOperand(i).setReg(PhysReg);
218 } else {
219 MF.setPhysRegUsed(MO.getReg());
220 }
221 }
222
223 DOUT << '\t' << MI;
224 LoadedRegs.clear();
225 }
226 }
227 return true;
228}
229
230//===----------------------------------------------------------------------===//
231// Local Spiller Implementation
232//===----------------------------------------------------------------------===//
233
234namespace {
235 /// LocalSpiller - This spiller does a simple pass over the machine basic
236 /// block to attempt to keep spills in registers as much as possible for
237 /// blocks that have low register pressure (the vreg may be spilled due to
238 /// register pressure in other blocks).
239 class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
240 const MRegisterInfo *MRI;
241 const TargetInstrInfo *TII;
242 public:
243 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
244 MRI = MF.getTarget().getRegisterInfo();
245 TII = MF.getTarget().getInstrInfo();
246 DOUT << "\n**** Local spiller rewriting function '"
247 << MF.getFunction()->getName() << "':\n";
248
249 std::vector<MachineInstr *> ReMatedMIs;
250 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
251 MBB != E; ++MBB)
252 RewriteMBB(*MBB, VRM, ReMatedMIs);
253 for (unsigned i = 0, e = ReMatedMIs.size(); i != e; ++i)
254 delete ReMatedMIs[i];
255 return true;
256 }
257 private:
258 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
259 std::vector<MachineInstr*> &ReMatedMIs);
260 };
261}
262
263/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
264/// top down, keep track of which spills slots are available in each register.
265///
266/// Note that not all physregs are created equal here. In particular, some
267/// physregs are reloads that we are allowed to clobber or ignore at any time.
268/// Other physregs are values that the register allocated program is using that
269/// we cannot CHANGE, but we can read if we like. We keep track of this on a
270/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
271/// entries. The predicate 'canClobberPhysReg()' checks this bit and
272/// addAvailable sets it if.
273namespace {
274class VISIBILITY_HIDDEN AvailableSpills {
275 const MRegisterInfo *MRI;
276 const TargetInstrInfo *TII;
277
278 // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
279 // register values that are still available, due to being loaded or stored to,
280 // but not invalidated yet.
281 std::map<int, unsigned> SpillSlotsAvailable;
282
283 // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
284 // which stack slot values are currently held by a physreg. This is used to
285 // invalidate entries in SpillSlotsAvailable when a physreg is modified.
286 std::multimap<unsigned, int> PhysRegsAvailable;
287
288 void disallowClobberPhysRegOnly(unsigned PhysReg);
289
290 void ClobberPhysRegOnly(unsigned PhysReg);
291public:
292 AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
293 : MRI(mri), TII(tii) {
294 }
295
296 const MRegisterInfo *getRegInfo() const { return MRI; }
297
298 /// getSpillSlotPhysReg - If the specified stack slot is available in a
299 /// physical register, return that PhysReg, otherwise return 0.
300 unsigned getSpillSlotPhysReg(int Slot) const {
301 std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
302 if (I != SpillSlotsAvailable.end()) {
303 return I->second >> 1; // Remove the CanClobber bit.
304 }
305 return 0;
306 }
307
308 /// addAvailable - Mark that the specified stack slot is available in the
309 /// specified physreg. If CanClobber is true, the physreg can be modified at
310 /// any time without changing the semantics of the program.
311 void addAvailable(int Slot, MachineInstr *MI, unsigned Reg,
312 bool CanClobber = true) {
313 // If this stack slot is thought to be available in some other physreg,
314 // remove its record.
315 ModifyStackSlot(Slot);
316
317 PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
318 SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
319
320 if (Slot > VirtRegMap::MAX_STACK_SLOT)
321 DOUT << "Remembering RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1;
322 else
323 DOUT << "Remembering SS#" << Slot;
324 DOUT << " in physreg " << MRI->getName(Reg) << "\n";
325 }
326
327 /// canClobberPhysReg - Return true if the spiller is allowed to change the
328 /// value of the specified stackslot register if it desires. The specified
329 /// stack slot must be available in a physreg for this query to make sense.
330 bool canClobberPhysReg(int Slot) const {
331 assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
332 return SpillSlotsAvailable.find(Slot)->second & 1;
333 }
334
335 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
336 /// stackslot register. The register is still available but is no longer
337 /// allowed to be modifed.
338 void disallowClobberPhysReg(unsigned PhysReg);
339
340 /// ClobberPhysReg - This is called when the specified physreg changes
341 /// value. We use this to invalidate any info about stuff we thing lives in
342 /// it and any of its aliases.
343 void ClobberPhysReg(unsigned PhysReg);
344
345 /// ModifyStackSlot - This method is called when the value in a stack slot
346 /// changes. This removes information about which register the previous value
347 /// for this slot lives in (as the previous value is dead now).
348 void ModifyStackSlot(int Slot);
349};
350}
351
352/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
353/// stackslot register. The register is still available but is no longer
354/// allowed to be modifed.
355void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
356 std::multimap<unsigned, int>::iterator I =
357 PhysRegsAvailable.lower_bound(PhysReg);
358 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
359 int Slot = I->second;
360 I++;
361 assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
362 "Bidirectional map mismatch!");
363 SpillSlotsAvailable[Slot] &= ~1;
364 DOUT << "PhysReg " << MRI->getName(PhysReg)
365 << " copied, it is available for use but can no longer be modified\n";
366 }
367}
368
369/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
370/// stackslot register and its aliases. The register and its aliases may
371/// still available but is no longer allowed to be modifed.
372void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
373 for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
374 disallowClobberPhysRegOnly(*AS);
375 disallowClobberPhysRegOnly(PhysReg);
376}
377
378/// ClobberPhysRegOnly - This is called when the specified physreg changes
379/// value. We use this to invalidate any info about stuff we thing lives in it.
380void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
381 std::multimap<unsigned, int>::iterator I =
382 PhysRegsAvailable.lower_bound(PhysReg);
383 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
384 int Slot = I->second;
385 PhysRegsAvailable.erase(I++);
386 assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
387 "Bidirectional map mismatch!");
388 SpillSlotsAvailable.erase(Slot);
389 DOUT << "PhysReg " << MRI->getName(PhysReg)
390 << " clobbered, invalidating ";
391 if (Slot > VirtRegMap::MAX_STACK_SLOT)
392 DOUT << "RM#" << Slot-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
393 else
394 DOUT << "SS#" << Slot << "\n";
395 }
396}
397
398/// ClobberPhysReg - This is called when the specified physreg changes
399/// value. We use this to invalidate any info about stuff we thing lives in
400/// it and any of its aliases.
401void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
402 for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
403 ClobberPhysRegOnly(*AS);
404 ClobberPhysRegOnly(PhysReg);
405}
406
407/// ModifyStackSlot - This method is called when the value in a stack slot
408/// changes. This removes information about which register the previous value
409/// for this slot lives in (as the previous value is dead now).
410void AvailableSpills::ModifyStackSlot(int Slot) {
411 std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
412 if (It == SpillSlotsAvailable.end()) return;
413 unsigned Reg = It->second >> 1;
414 SpillSlotsAvailable.erase(It);
415
416 // This register may hold the value of multiple stack slots, only remove this
417 // stack slot from the set of values the register contains.
418 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
419 for (; ; ++I) {
420 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
421 "Map inverse broken!");
422 if (I->second == Slot) break;
423 }
424 PhysRegsAvailable.erase(I);
425}
426
427
428
429/// InvalidateKills - MI is going to be deleted. If any of its operands are
430/// marked kill, then invalidate the information.
431static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
432 std::vector<MachineOperand*> &KillOps) {
433 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
434 MachineOperand &MO = MI.getOperand(i);
435 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
436 continue;
437 unsigned Reg = MO.getReg();
438 if (KillOps[Reg] == &MO) {
439 RegKills.reset(Reg);
440 KillOps[Reg] = NULL;
441 }
442 }
443}
444
445/// UpdateKills - Track and update kill info. If a MI reads a register that is
446/// marked kill, then it must be due to register reuse. Transfer the kill info
447/// over.
448static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
449 std::vector<MachineOperand*> &KillOps) {
450 const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
451 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
452 MachineOperand &MO = MI.getOperand(i);
453 if (!MO.isReg() || !MO.isUse())
454 continue;
455 unsigned Reg = MO.getReg();
456 if (Reg == 0)
457 continue;
458
459 if (RegKills[Reg]) {
460 // That can't be right. Register is killed but not re-defined and it's
461 // being reused. Let's fix that.
462 KillOps[Reg]->unsetIsKill();
463 if (i < TID->numOperands &&
464 TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
465 // Unless it's a two-address operand, this is the new kill.
466 MO.setIsKill();
467 }
468
469 if (MO.isKill()) {
470 RegKills.set(Reg);
471 KillOps[Reg] = &MO;
472 }
473 }
474
475 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
476 const MachineOperand &MO = MI.getOperand(i);
477 if (!MO.isReg() || !MO.isDef())
478 continue;
479 unsigned Reg = MO.getReg();
480 RegKills.reset(Reg);
481 KillOps[Reg] = NULL;
482 }
483}
484
485
486// ReusedOp - For each reused operand, we keep track of a bit of information, in
487// case we need to rollback upon processing a new operand. See comments below.
488namespace {
489 struct ReusedOp {
490 // The MachineInstr operand that reused an available value.
491 unsigned Operand;
492
493 // StackSlot - The spill slot of the value being reused.
494 unsigned StackSlot;
495
496 // PhysRegReused - The physical register the value was available in.
497 unsigned PhysRegReused;
498
499 // AssignedPhysReg - The physreg that was assigned for use by the reload.
500 unsigned AssignedPhysReg;
501
502 // VirtReg - The virtual register itself.
503 unsigned VirtReg;
504
505 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
506 unsigned vreg)
507 : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
508 VirtReg(vreg) {}
509 };
510
511 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
512 /// is reused instead of reloaded.
513 class VISIBILITY_HIDDEN ReuseInfo {
514 MachineInstr &MI;
515 std::vector<ReusedOp> Reuses;
516 BitVector PhysRegsClobbered;
517 public:
518 ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
519 PhysRegsClobbered.resize(mri->getNumRegs());
520 }
521
522 bool hasReuses() const {
523 return !Reuses.empty();
524 }
525
526 /// addReuse - If we choose to reuse a virtual register that is already
527 /// available instead of reloading it, remember that we did so.
528 void addReuse(unsigned OpNo, unsigned StackSlot,
529 unsigned PhysRegReused, unsigned AssignedPhysReg,
530 unsigned VirtReg) {
531 // If the reload is to the assigned register anyway, no undo will be
532 // required.
533 if (PhysRegReused == AssignedPhysReg) return;
534
535 // Otherwise, remember this.
536 Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
537 AssignedPhysReg, VirtReg));
538 }
539
540 void markClobbered(unsigned PhysReg) {
541 PhysRegsClobbered.set(PhysReg);
542 }
543
544 bool isClobbered(unsigned PhysReg) const {
545 return PhysRegsClobbered.test(PhysReg);
546 }
547
548 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
549 /// is some other operand that is using the specified register, either pick
550 /// a new register to use, or evict the previous reload and use this reg.
551 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
552 AvailableSpills &Spills,
553 std::map<int, MachineInstr*> &MaybeDeadStores,
554 SmallSet<unsigned, 8> &Rejected,
555 BitVector &RegKills,
556 std::vector<MachineOperand*> &KillOps) {
557 if (Reuses.empty()) return PhysReg; // This is most often empty.
558
559 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
560 ReusedOp &Op = Reuses[ro];
561 // If we find some other reuse that was supposed to use this register
562 // exactly for its reload, we can change this reload to use ITS reload
563 // register. That is, unless its reload register has already been
564 // considered and subsequently rejected because it has also been reused
565 // by another operand.
566 if (Op.PhysRegReused == PhysReg &&
567 Rejected.count(Op.AssignedPhysReg) == 0) {
568 // Yup, use the reload register that we didn't use before.
569 unsigned NewReg = Op.AssignedPhysReg;
570 Rejected.insert(PhysReg);
571 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
572 RegKills, KillOps);
573 } else {
574 // Otherwise, we might also have a problem if a previously reused
575 // value aliases the new register. If so, codegen the previous reload
576 // and use this one.
577 unsigned PRRU = Op.PhysRegReused;
578 const MRegisterInfo *MRI = Spills.getRegInfo();
579 if (MRI->areAliases(PRRU, PhysReg)) {
580 // Okay, we found out that an alias of a reused register
581 // was used. This isn't good because it means we have
582 // to undo a previous reuse.
583 MachineBasicBlock *MBB = MI->getParent();
584 const TargetRegisterClass *AliasRC =
585 MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
586
587 // Copy Op out of the vector and remove it, we're going to insert an
588 // explicit load for it.
589 ReusedOp NewOp = Op;
590 Reuses.erase(Reuses.begin()+ro);
591
592 // Ok, we're going to try to reload the assigned physreg into the
593 // slot that we were supposed to in the first place. However, that
594 // register could hold a reuse. Check to see if it conflicts or
595 // would prefer us to use a different register.
596 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
597 MI, Spills, MaybeDeadStores,
598 Rejected, RegKills, KillOps);
599
600 MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
601 NewOp.StackSlot, AliasRC);
602 Spills.ClobberPhysReg(NewPhysReg);
603 Spills.ClobberPhysReg(NewOp.PhysRegReused);
604
605 // Any stores to this stack slot are not dead anymore.
606 MaybeDeadStores.erase(NewOp.StackSlot);
607
608 MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
609
610 Spills.addAvailable(NewOp.StackSlot, MI, NewPhysReg);
611 ++NumLoads;
612 MachineBasicBlock::iterator MII = MI;
613 --MII;
614 UpdateKills(*MII, RegKills, KillOps);
615 DOUT << '\t' << *MII;
616
617 DOUT << "Reuse undone!\n";
618 --NumReused;
619
620 // Finally, PhysReg is now available, go ahead and use it.
621 return PhysReg;
622 }
623 }
624 }
625 return PhysReg;
626 }
627
628 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
629 /// 'Rejected' set to remember which registers have been considered and
630 /// rejected for the reload. This avoids infinite looping in case like
631 /// this:
632 /// t1 := op t2, t3
633 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
634 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
635 /// t1 <- desires r1
636 /// sees r1 is taken by t2, tries t2's reload register r0
637 /// sees r0 is taken by t3, tries t3's reload register r1
638 /// sees r1 is taken by t2, tries t2's reload register r0 ...
639 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
640 AvailableSpills &Spills,
641 std::map<int, MachineInstr*> &MaybeDeadStores,
642 BitVector &RegKills,
643 std::vector<MachineOperand*> &KillOps) {
644 SmallSet<unsigned, 8> Rejected;
645 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
646 RegKills, KillOps);
647 }
648 };
649}
650
651
652/// rewriteMBB - Keep track of which spills are available even after the
653/// register allocator is done with them. If possible, avoid reloading vregs.
654void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
655 std::vector<MachineInstr*> &ReMatedMIs) {
656 DOUT << MBB.getBasicBlock()->getName() << ":\n";
657
658 // Spills - Keep track of which spilled values are available in physregs so
659 // that we can choose to reuse the physregs instead of emitting reloads.
660 AvailableSpills Spills(MRI, TII);
661
662 // MaybeDeadStores - When we need to write a value back into a stack slot,
663 // keep track of the inserted store. If the stack slot value is never read
664 // (because the value was used from some available register, for example), and
665 // subsequently stored to, the original store is dead. This map keeps track
666 // of inserted stores that are not used. If we see a subsequent store to the
667 // same stack slot, the original store is deleted.
668 std::map<int, MachineInstr*> MaybeDeadStores;
669
670 // Keep track of kill information.
671 BitVector RegKills(MRI->getNumRegs());
672 std::vector<MachineOperand*> KillOps;
673 KillOps.resize(MRI->getNumRegs(), NULL);
674
675 MachineFunction &MF = *MBB.getParent();
676 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
677 MII != E; ) {
678 MachineInstr &MI = *MII;
679 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
680 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
681
682 bool Erased = false;
683 bool BackTracked = false;
684
685 /// ReusedOperands - Keep track of operand reuse in case we need to undo
686 /// reuse.
687 ReuseInfo ReusedOperands(MI, MRI);
688
689 // Loop over all of the implicit defs, clearing them from our available
690 // sets.
691 const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
692
693 // If this instruction is being rematerialized, just remove it!
694 int FrameIdx;
695 if (TII->isTriviallyReMaterializable(&MI) ||
696 TII->isLoadFromStackSlot(&MI, FrameIdx)) {
697 Erased = true;
698 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
699 MachineOperand &MO = MI.getOperand(i);
700 if (!MO.isRegister() || MO.getReg() == 0)
701 continue; // Ignore non-register operands.
702 if (MO.isDef() && !VRM.isReMaterialized(MO.getReg())) {
703 Erased = false;
704 break;
705 }
706 }
707 if (Erased) {
708 VRM.RemoveFromFoldedVirtMap(&MI);
709 ReMatedMIs.push_back(MI.removeFromParent());
710 goto ProcessNextInst;
711 }
712 }
713
714 if (TID->ImplicitDefs) {
715 const unsigned *ImpDef = TID->ImplicitDefs;
716 for ( ; *ImpDef; ++ImpDef) {
717 MF.setPhysRegUsed(*ImpDef);
718 ReusedOperands.markClobbered(*ImpDef);
719 Spills.ClobberPhysReg(*ImpDef);
720 }
721 }
722
723 // Process all of the spilled uses and all non spilled reg references.
724 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
725 MachineOperand &MO = MI.getOperand(i);
726 if (!MO.isRegister() || MO.getReg() == 0)
727 continue; // Ignore non-register operands.
728
729 if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
730 // Ignore physregs for spilling, but remember that it is used by this
731 // function.
732 MF.setPhysRegUsed(MO.getReg());
733 ReusedOperands.markClobbered(MO.getReg());
734 continue;
735 }
736
737 assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
738 "Not a virtual or a physical register?");
739
740 unsigned VirtReg = MO.getReg();
741 if (!VRM.hasStackSlot(VirtReg)) {
742 // This virtual register was assigned a physreg!
743 unsigned Phys = VRM.getPhys(VirtReg);
744 MF.setPhysRegUsed(Phys);
745 if (MO.isDef())
746 ReusedOperands.markClobbered(Phys);
747 MI.getOperand(i).setReg(Phys);
748 continue;
749 }
750
751 // This virtual register is now known to be a spilled value.
752 if (!MO.isUse())
753 continue; // Handle defs in the loop below (handle use&def here though)
754
755 bool doReMat = VRM.isReMaterialized(VirtReg);
756 int StackSlot = VRM.getStackSlot(VirtReg);
757 unsigned PhysReg;
758
759 // Check to see if this stack slot is available.
760 if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
761 // This spilled operand might be part of a two-address operand. If this
762 // is the case, then changing it will necessarily require changing the
763 // def part of the instruction as well. However, in some cases, we
764 // aren't allowed to modify the reused register. If none of these cases
765 // apply, reuse it.
766 bool CanReuse = true;
767 int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
768 if (ti != -1 &&
769 MI.getOperand(ti).isReg() &&
770 MI.getOperand(ti).getReg() == VirtReg) {
771 // Okay, we have a two address operand. We can reuse this physreg as
772 // long as we are allowed to clobber the value and there isn't an
773 // earlier def that has already clobbered the physreg.
774 CanReuse = Spills.canClobberPhysReg(StackSlot) &&
775 !ReusedOperands.isClobbered(PhysReg);
776 }
777
778 if (CanReuse) {
779 // If this stack slot value is already available, reuse it!
780 if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
781 DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
782 else
783 DOUT << "Reusing SS#" << StackSlot;
784 DOUT << " from physreg "
785 << MRI->getName(PhysReg) << " for vreg"
786 << VirtReg <<" instead of reloading into physreg "
787 << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
788 MI.getOperand(i).setReg(PhysReg);
789
790 // The only technical detail we have is that we don't know that
791 // PhysReg won't be clobbered by a reloaded stack slot that occurs
792 // later in the instruction. In particular, consider 'op V1, V2'.
793 // If V1 is available in physreg R0, we would choose to reuse it
794 // here, instead of reloading it into the register the allocator
795 // indicated (say R1). However, V2 might have to be reloaded
796 // later, and it might indicate that it needs to live in R0. When
797 // this occurs, we need to have information available that
798 // indicates it is safe to use R1 for the reload instead of R0.
799 //
800 // To further complicate matters, we might conflict with an alias,
801 // or R0 and R1 might not be compatible with each other. In this
802 // case, we actually insert a reload for V1 in R1, ensuring that
803 // we can get at R0 or its alias.
804 ReusedOperands.addReuse(i, StackSlot, PhysReg,
805 VRM.getPhys(VirtReg), VirtReg);
806 if (ti != -1)
807 // Only mark it clobbered if this is a use&def operand.
808 ReusedOperands.markClobbered(PhysReg);
809 ++NumReused;
810 continue;
811 }
812
813 // Otherwise we have a situation where we have a two-address instruction
814 // whose mod/ref operand needs to be reloaded. This reload is already
815 // available in some register "PhysReg", but if we used PhysReg as the
816 // operand to our 2-addr instruction, the instruction would modify
817 // PhysReg. This isn't cool if something later uses PhysReg and expects
818 // to get its initial value.
819 //
820 // To avoid this problem, and to avoid doing a load right after a store,
821 // we emit a copy from PhysReg into the designated register for this
822 // operand.
823 unsigned DesignatedReg = VRM.getPhys(VirtReg);
824 assert(DesignatedReg && "Must map virtreg to physreg!");
825
826 // Note that, if we reused a register for a previous operand, the
827 // register we want to reload into might not actually be
828 // available. If this occurs, use the register indicated by the
829 // reuser.
830 if (ReusedOperands.hasReuses())
831 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
832 Spills, MaybeDeadStores, RegKills, KillOps);
833
834 // If the mapped designated register is actually the physreg we have
835 // incoming, we don't need to inserted a dead copy.
836 if (DesignatedReg == PhysReg) {
837 // If this stack slot value is already available, reuse it!
838 if (StackSlot > VirtRegMap::MAX_STACK_SLOT)
839 DOUT << "Reusing RM#" << StackSlot-VirtRegMap::MAX_STACK_SLOT-1;
840 else
841 DOUT << "Reusing SS#" << StackSlot;
842 DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
843 << VirtReg
844 << " instead of reloading into same physreg.\n";
845 MI.getOperand(i).setReg(PhysReg);
846 ReusedOperands.markClobbered(PhysReg);
847 ++NumReused;
848 continue;
849 }
850
851 const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
852 MF.setPhysRegUsed(DesignatedReg);
853 ReusedOperands.markClobbered(DesignatedReg);
854 MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
855
856 MachineInstr *CopyMI = prior(MII);
857 UpdateKills(*CopyMI, RegKills, KillOps);
858
859 // This invalidates DesignatedReg.
860 Spills.ClobberPhysReg(DesignatedReg);
861
862 Spills.addAvailable(StackSlot, &MI, DesignatedReg);
863 MI.getOperand(i).setReg(DesignatedReg);
864 DOUT << '\t' << *prior(MII);
865 ++NumReused;
866 continue;
867 }
868
869 // Otherwise, reload it and remember that we have it.
870 PhysReg = VRM.getPhys(VirtReg);
871 assert(PhysReg && "Must map virtreg to physreg!");
872 const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
873
874 // Note that, if we reused a register for a previous operand, the
875 // register we want to reload into might not actually be
876 // available. If this occurs, use the register indicated by the
877 // reuser.
878 if (ReusedOperands.hasReuses())
879 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
880 Spills, MaybeDeadStores, RegKills, KillOps);
881
882 MF.setPhysRegUsed(PhysReg);
883 ReusedOperands.markClobbered(PhysReg);
884 if (doReMat) {
885 MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
886 ++NumReMats;
887 } else {
888 MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
889 ++NumLoads;
890 }
891 // This invalidates PhysReg.
892 Spills.ClobberPhysReg(PhysReg);
893
894 // Any stores to this stack slot are not dead anymore.
895 if (!doReMat)
896 MaybeDeadStores.erase(StackSlot);
897 Spills.addAvailable(StackSlot, &MI, PhysReg);
898 // Assumes this is the last use. IsKill will be unset if reg is reused
899 // unless it's a two-address operand.
900 if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
901 MI.getOperand(i).setIsKill();
902 MI.getOperand(i).setReg(PhysReg);
903 UpdateKills(*prior(MII), RegKills, KillOps);
904 DOUT << '\t' << *prior(MII);
905 }
906
907 DOUT << '\t' << MI;
908
909 // If we have folded references to memory operands, make sure we clear all
910 // physical registers that may contain the value of the spilled virtual
911 // register
912 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
913 DOUT << "Folded vreg: " << I->second.first << " MR: "
914 << I->second.second;
915 unsigned VirtReg = I->second.first;
916 VirtRegMap::ModRef MR = I->second.second;
917 if (!VRM.hasStackSlot(VirtReg)) {
918 DOUT << ": No stack slot!\n";
919 continue;
920 }
921 int SS = VRM.getStackSlot(VirtReg);
922 DOUT << " - StackSlot: " << SS << "\n";
923
924 // If this folded instruction is just a use, check to see if it's a
925 // straight load from the virt reg slot.
926 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
927 int FrameIdx;
928 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
929 if (FrameIdx == SS) {
930 // If this spill slot is available, turn it into a copy (or nothing)
931 // instead of leaving it as a load!
932 if (unsigned InReg = Spills.getSpillSlotPhysReg(SS)) {
933 DOUT << "Promoted Load To Copy: " << MI;
934 if (DestReg != InReg) {
935 MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
936 MF.getSSARegMap()->getRegClass(VirtReg));
937 // Revisit the copy so we make sure to notice the effects of the
938 // operation on the destreg (either needing to RA it if it's
939 // virtual or needing to clobber any values if it's physical).
940 NextMII = &MI;
941 --NextMII; // backtrack to the copy.
942 BackTracked = true;
943 } else
944 DOUT << "Removing now-noop copy: " << MI;
945
946 VRM.RemoveFromFoldedVirtMap(&MI);
947 MBB.erase(&MI);
948 Erased = true;
949 goto ProcessNextInst;
950 }
951 }
952 }
953 }
954
955 // If this reference is not a use, any previous store is now dead.
956 // Otherwise, the store to this stack slot is not dead anymore.
957 std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
958 if (MDSI != MaybeDeadStores.end()) {
959 if (MR & VirtRegMap::isRef) // Previous store is not dead.
960 MaybeDeadStores.erase(MDSI);
961 else {
962 // If we get here, the store is dead, nuke it now.
963 assert(VirtRegMap::isMod && "Can't be modref!");
964 DOUT << "Removed dead store:\t" << *MDSI->second;
965 InvalidateKills(*MDSI->second, RegKills, KillOps);
966 MBB.erase(MDSI->second);
967 VRM.RemoveFromFoldedVirtMap(MDSI->second);
968 MaybeDeadStores.erase(MDSI);
969 ++NumDSE;
970 }
971 }
972
973 // If the spill slot value is available, and this is a new definition of
974 // the value, the value is not available anymore.
975 if (MR & VirtRegMap::isMod) {
976 // Notice that the value in this stack slot has been modified.
977 Spills.ModifyStackSlot(SS);
978
979 // If this is *just* a mod of the value, check to see if this is just a
980 // store to the spill slot (i.e. the spill got merged into the copy). If
981 // so, realize that the vreg is available now, and add the store to the
982 // MaybeDeadStore info.
983 int StackSlot;
984 if (!(MR & VirtRegMap::isRef)) {
985 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
986 assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
987 "Src hasn't been allocated yet?");
988 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
989 // this as a potentially dead store in case there is a subsequent
990 // store into the stack slot without a read from it.
991 MaybeDeadStores[StackSlot] = &MI;
992
993 // If the stack slot value was previously available in some other
994 // register, change it now. Otherwise, make the register available,
995 // in PhysReg.
996 Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
997 }
998 }
999 }
1000 }
1001
1002 // Process all of the spilled defs.
1003 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1004 MachineOperand &MO = MI.getOperand(i);
1005 if (MO.isRegister() && MO.getReg() && MO.isDef()) {
1006 unsigned VirtReg = MO.getReg();
1007
1008 if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
1009 // Check to see if this is a noop copy. If so, eliminate the
1010 // instruction before considering the dest reg to be changed.
1011 unsigned Src, Dst;
1012 if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1013 ++NumDCE;
1014 DOUT << "Removing now-noop copy: " << MI;
1015 MBB.erase(&MI);
1016 Erased = true;
1017 VRM.RemoveFromFoldedVirtMap(&MI);
1018 Spills.disallowClobberPhysReg(VirtReg);
1019 goto ProcessNextInst;
1020 }
1021
1022 // If it's not a no-op copy, it clobbers the value in the destreg.
1023 Spills.ClobberPhysReg(VirtReg);
1024 ReusedOperands.markClobbered(VirtReg);
1025
1026 // Check to see if this instruction is a load from a stack slot into
1027 // a register. If so, this provides the stack slot value in the reg.
1028 int FrameIdx;
1029 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1030 assert(DestReg == VirtReg && "Unknown load situation!");
1031
1032 // Otherwise, if it wasn't available, remember that it is now!
1033 Spills.addAvailable(FrameIdx, &MI, DestReg);
1034 goto ProcessNextInst;
1035 }
1036
1037 continue;
1038 }
1039
1040 // The only vregs left are stack slot definitions.
1041 int StackSlot = VRM.getStackSlot(VirtReg);
1042 const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(VirtReg);
1043
1044 // If this def is part of a two-address operand, make sure to execute
1045 // the store from the correct physical register.
1046 unsigned PhysReg;
1047 int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
1048 if (TiedOp != -1)
1049 PhysReg = MI.getOperand(TiedOp).getReg();
1050 else {
1051 PhysReg = VRM.getPhys(VirtReg);
1052 if (ReusedOperands.isClobbered(PhysReg)) {
1053 // Another def has taken the assigned physreg. It must have been a
1054 // use&def which got it due to reuse. Undo the reuse!
1055 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1056 Spills, MaybeDeadStores, RegKills, KillOps);
1057 }
1058 }
1059
1060 MF.setPhysRegUsed(PhysReg);
1061 ReusedOperands.markClobbered(PhysReg);
1062 MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
1063 DOUT << "Store:\t" << *next(MII);
1064 MI.getOperand(i).setReg(PhysReg);
1065
1066 // If there is a dead store to this stack slot, nuke it now.
1067 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1068 if (LastStore) {
1069 DOUT << "Removed dead store:\t" << *LastStore;
1070 ++NumDSE;
1071 InvalidateKills(*LastStore, RegKills, KillOps);
1072 MBB.erase(LastStore);
1073 VRM.RemoveFromFoldedVirtMap(LastStore);
1074 }
1075 LastStore = next(MII);
1076
1077 // If the stack slot value was previously available in some other
1078 // register, change it now. Otherwise, make the register available,
1079 // in PhysReg.
1080 Spills.ModifyStackSlot(StackSlot);
1081 Spills.ClobberPhysReg(PhysReg);
1082 Spills.addAvailable(StackSlot, LastStore, PhysReg);
1083 ++NumStores;
1084
1085 // Check to see if this is a noop copy. If so, eliminate the
1086 // instruction before considering the dest reg to be changed.
1087 {
1088 unsigned Src, Dst;
1089 if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1090 ++NumDCE;
1091 DOUT << "Removing now-noop copy: " << MI;
1092 MBB.erase(&MI);
1093 Erased = true;
1094 VRM.RemoveFromFoldedVirtMap(&MI);
1095 UpdateKills(*LastStore, RegKills, KillOps);
1096 goto ProcessNextInst;
1097 }
1098 }
1099 }
1100 }
1101 ProcessNextInst:
1102 if (!Erased && !BackTracked)
1103 for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1104 UpdateKills(*II, RegKills, KillOps);
1105 MII = NextMII;
1106 }
1107}
1108
1109
1110llvm::Spiller* llvm::createSpiller() {
1111 switch (SpillerOpt) {
1112 default: assert(0 && "Unreachable!");
1113 case local:
1114 return new LocalSpiller();
1115 case simple:
1116 return new SimpleSpiller();
1117 }
1118}