Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame^] | 1 | //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This tool implements a just-in-time compiler for LLVM, allowing direct |
| 11 | // execution of LLVM bitcode in an efficient manner. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "JIT.h" |
| 16 | #include "llvm/Constants.h" |
| 17 | #include "llvm/DerivedTypes.h" |
| 18 | #include "llvm/Function.h" |
| 19 | #include "llvm/GlobalVariable.h" |
| 20 | #include "llvm/Instructions.h" |
| 21 | #include "llvm/ModuleProvider.h" |
| 22 | #include "llvm/CodeGen/MachineCodeEmitter.h" |
| 23 | #include "llvm/CodeGen/MachineFunction.h" |
| 24 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 25 | #include "llvm/Support/MutexGuard.h" |
| 26 | #include "llvm/System/DynamicLibrary.h" |
| 27 | #include "llvm/Target/TargetData.h" |
| 28 | #include "llvm/Target/TargetMachine.h" |
| 29 | #include "llvm/Target/TargetJITInfo.h" |
| 30 | using namespace llvm; |
| 31 | |
| 32 | #ifdef __APPLE__ |
| 33 | #include <AvailabilityMacros.h> |
| 34 | #if defined(MAC_OS_X_VERSION_10_4) && \ |
| 35 | ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| 36 | (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| 37 | __APPLE_CC__ >= 5330)) |
| 38 | // __dso_handle is resolved by Mac OS X dynamic linker. |
| 39 | extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); |
| 40 | #endif |
| 41 | #endif |
| 42 | |
| 43 | static struct RegisterJIT { |
| 44 | RegisterJIT() { JIT::Register(); } |
| 45 | } JITRegistrator; |
| 46 | |
| 47 | namespace llvm { |
| 48 | void LinkInJIT() { |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji) |
| 53 | : ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) { |
| 54 | setTargetData(TM.getTargetData()); |
| 55 | |
| 56 | // Initialize MCE |
| 57 | MCE = createEmitter(*this); |
| 58 | |
| 59 | // Add target data |
| 60 | MutexGuard locked(lock); |
| 61 | FunctionPassManager &PM = jitstate.getPM(locked); |
| 62 | PM.add(new TargetData(*TM.getTargetData())); |
| 63 | |
| 64 | // Turn the machine code intermediate representation into bytes in memory that |
| 65 | // may be executed. |
| 66 | if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) { |
| 67 | cerr << "Target does not support machine code emission!\n"; |
| 68 | abort(); |
| 69 | } |
| 70 | |
| 71 | // Initialize passes. |
| 72 | PM.doInitialization(); |
| 73 | } |
| 74 | |
| 75 | JIT::~JIT() { |
| 76 | delete MCE; |
| 77 | delete &TM; |
| 78 | } |
| 79 | |
| 80 | /// run - Start execution with the specified function and arguments. |
| 81 | /// |
| 82 | GenericValue JIT::runFunction(Function *F, |
| 83 | const std::vector<GenericValue> &ArgValues) { |
| 84 | assert(F && "Function *F was null at entry to run()"); |
| 85 | |
| 86 | void *FPtr = getPointerToFunction(F); |
| 87 | assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); |
| 88 | const FunctionType *FTy = F->getFunctionType(); |
| 89 | const Type *RetTy = FTy->getReturnType(); |
| 90 | |
| 91 | assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) && |
| 92 | "Too many arguments passed into function!"); |
| 93 | assert(FTy->getNumParams() == ArgValues.size() && |
| 94 | "This doesn't support passing arguments through varargs (yet)!"); |
| 95 | |
| 96 | // Handle some common cases first. These cases correspond to common `main' |
| 97 | // prototypes. |
| 98 | if (RetTy == Type::Int32Ty || RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { |
| 99 | switch (ArgValues.size()) { |
| 100 | case 3: |
| 101 | if ((FTy->getParamType(0) == Type::Int32Ty || |
| 102 | FTy->getParamType(0) == Type::Int32Ty) && |
| 103 | isa<PointerType>(FTy->getParamType(1)) && |
| 104 | isa<PointerType>(FTy->getParamType(2))) { |
| 105 | int (*PF)(int, char **, const char **) = |
| 106 | (int(*)(int, char **, const char **))(intptr_t)FPtr; |
| 107 | |
| 108 | // Call the function. |
| 109 | GenericValue rv; |
| 110 | rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| 111 | (char **)GVTOP(ArgValues[1]), |
| 112 | (const char **)GVTOP(ArgValues[2]))); |
| 113 | return rv; |
| 114 | } |
| 115 | break; |
| 116 | case 2: |
| 117 | if ((FTy->getParamType(0) == Type::Int32Ty || |
| 118 | FTy->getParamType(0) == Type::Int32Ty) && |
| 119 | isa<PointerType>(FTy->getParamType(1))) { |
| 120 | int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; |
| 121 | |
| 122 | // Call the function. |
| 123 | GenericValue rv; |
| 124 | rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| 125 | (char **)GVTOP(ArgValues[1]))); |
| 126 | return rv; |
| 127 | } |
| 128 | break; |
| 129 | case 1: |
| 130 | if (FTy->getNumParams() == 1 && |
| 131 | (FTy->getParamType(0) == Type::Int32Ty || |
| 132 | FTy->getParamType(0) == Type::Int32Ty)) { |
| 133 | GenericValue rv; |
| 134 | int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; |
| 135 | rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); |
| 136 | return rv; |
| 137 | } |
| 138 | break; |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | // Handle cases where no arguments are passed first. |
| 143 | if (ArgValues.empty()) { |
| 144 | GenericValue rv; |
| 145 | switch (RetTy->getTypeID()) { |
| 146 | default: assert(0 && "Unknown return type for function call!"); |
| 147 | case Type::IntegerTyID: { |
| 148 | unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); |
| 149 | if (BitWidth == 1) |
| 150 | rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); |
| 151 | else if (BitWidth <= 8) |
| 152 | rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); |
| 153 | else if (BitWidth <= 16) |
| 154 | rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); |
| 155 | else if (BitWidth <= 32) |
| 156 | rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); |
| 157 | else if (BitWidth <= 64) |
| 158 | rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); |
| 159 | else |
| 160 | assert(0 && "Integer types > 64 bits not supported"); |
| 161 | return rv; |
| 162 | } |
| 163 | case Type::VoidTyID: |
| 164 | rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); |
| 165 | return rv; |
| 166 | case Type::FloatTyID: |
| 167 | rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); |
| 168 | return rv; |
| 169 | case Type::DoubleTyID: |
| 170 | rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); |
| 171 | return rv; |
| 172 | case Type::PointerTyID: |
| 173 | return PTOGV(((void*(*)())(intptr_t)FPtr)()); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | // Okay, this is not one of our quick and easy cases. Because we don't have a |
| 178 | // full FFI, we have to codegen a nullary stub function that just calls the |
| 179 | // function we are interested in, passing in constants for all of the |
| 180 | // arguments. Make this function and return. |
| 181 | |
| 182 | // First, create the function. |
| 183 | FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false); |
| 184 | Function *Stub = new Function(STy, Function::InternalLinkage, "", |
| 185 | F->getParent()); |
| 186 | |
| 187 | // Insert a basic block. |
| 188 | BasicBlock *StubBB = new BasicBlock("", Stub); |
| 189 | |
| 190 | // Convert all of the GenericValue arguments over to constants. Note that we |
| 191 | // currently don't support varargs. |
| 192 | SmallVector<Value*, 8> Args; |
| 193 | for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { |
| 194 | Constant *C = 0; |
| 195 | const Type *ArgTy = FTy->getParamType(i); |
| 196 | const GenericValue &AV = ArgValues[i]; |
| 197 | switch (ArgTy->getTypeID()) { |
| 198 | default: assert(0 && "Unknown argument type for function call!"); |
| 199 | case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break; |
| 200 | case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break; |
| 201 | case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break; |
| 202 | case Type::PointerTyID: |
| 203 | void *ArgPtr = GVTOP(AV); |
| 204 | if (sizeof(void*) == 4) { |
| 205 | C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr); |
| 206 | } else { |
| 207 | C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr); |
| 208 | } |
| 209 | C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer |
| 210 | break; |
| 211 | } |
| 212 | Args.push_back(C); |
| 213 | } |
| 214 | |
| 215 | CallInst *TheCall = new CallInst(F, &Args[0], Args.size(), "", StubBB); |
| 216 | TheCall->setTailCall(); |
| 217 | if (TheCall->getType() != Type::VoidTy) |
| 218 | new ReturnInst(TheCall, StubBB); // Return result of the call. |
| 219 | else |
| 220 | new ReturnInst(StubBB); // Just return void. |
| 221 | |
| 222 | // Finally, return the value returned by our nullary stub function. |
| 223 | return runFunction(Stub, std::vector<GenericValue>()); |
| 224 | } |
| 225 | |
| 226 | /// runJITOnFunction - Run the FunctionPassManager full of |
| 227 | /// just-in-time compilation passes on F, hopefully filling in |
| 228 | /// GlobalAddress[F] with the address of F's machine code. |
| 229 | /// |
| 230 | void JIT::runJITOnFunction(Function *F) { |
| 231 | static bool isAlreadyCodeGenerating = false; |
| 232 | assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); |
| 233 | |
| 234 | MutexGuard locked(lock); |
| 235 | |
| 236 | // JIT the function |
| 237 | isAlreadyCodeGenerating = true; |
| 238 | jitstate.getPM(locked).run(*F); |
| 239 | isAlreadyCodeGenerating = false; |
| 240 | |
| 241 | // If the function referred to a global variable that had not yet been |
| 242 | // emitted, it allocates memory for the global, but doesn't emit it yet. Emit |
| 243 | // all of these globals now. |
| 244 | while (!jitstate.getPendingGlobals(locked).empty()) { |
| 245 | const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back(); |
| 246 | jitstate.getPendingGlobals(locked).pop_back(); |
| 247 | EmitGlobalVariable(GV); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /// getPointerToFunction - This method is used to get the address of the |
| 252 | /// specified function, compiling it if neccesary. |
| 253 | /// |
| 254 | void *JIT::getPointerToFunction(Function *F) { |
| 255 | MutexGuard locked(lock); |
| 256 | |
| 257 | if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| 258 | return Addr; // Check if function already code gen'd |
| 259 | |
| 260 | // Make sure we read in the function if it exists in this Module. |
| 261 | if (F->hasNotBeenReadFromBitcode()) { |
| 262 | // Determine the module provider this function is provided by. |
| 263 | Module *M = F->getParent(); |
| 264 | ModuleProvider *MP = 0; |
| 265 | for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| 266 | if (Modules[i]->getModule() == M) { |
| 267 | MP = Modules[i]; |
| 268 | break; |
| 269 | } |
| 270 | } |
| 271 | assert(MP && "Function isn't in a module we know about!"); |
| 272 | |
| 273 | std::string ErrorMsg; |
| 274 | if (MP->materializeFunction(F, &ErrorMsg)) { |
| 275 | cerr << "Error reading function '" << F->getName() |
| 276 | << "' from bitcode file: " << ErrorMsg << "\n"; |
| 277 | abort(); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | if (F->isDeclaration()) { |
| 282 | void *Addr = getPointerToNamedFunction(F->getName()); |
| 283 | addGlobalMapping(F, Addr); |
| 284 | return Addr; |
| 285 | } |
| 286 | |
| 287 | runJITOnFunction(F); |
| 288 | |
| 289 | void *Addr = getPointerToGlobalIfAvailable(F); |
| 290 | assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| 291 | return Addr; |
| 292 | } |
| 293 | |
| 294 | /// getOrEmitGlobalVariable - Return the address of the specified global |
| 295 | /// variable, possibly emitting it to memory if needed. This is used by the |
| 296 | /// Emitter. |
| 297 | void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { |
| 298 | MutexGuard locked(lock); |
| 299 | |
| 300 | void *Ptr = getPointerToGlobalIfAvailable(GV); |
| 301 | if (Ptr) return Ptr; |
| 302 | |
| 303 | // If the global is external, just remember the address. |
| 304 | if (GV->isDeclaration()) { |
| 305 | #if defined(__APPLE__) && defined(MAC_OS_X_VERSION_10_4) && \ |
| 306 | ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| 307 | (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| 308 | __APPLE_CC__ >= 5330)) |
| 309 | // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead |
| 310 | // of atexit). It passes the address of linker generated symbol __dso_handle |
| 311 | // to the function. |
| 312 | // This configuration change happened at version 5330. |
| 313 | if (GV->getName() == "__dso_handle") |
| 314 | return (void*)&__dso_handle; |
| 315 | #endif |
| 316 | Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); |
| 317 | if (Ptr == 0) { |
| 318 | cerr << "Could not resolve external global address: " |
| 319 | << GV->getName() << "\n"; |
| 320 | abort(); |
| 321 | } |
| 322 | } else { |
| 323 | // If the global hasn't been emitted to memory yet, allocate space. We will |
| 324 | // actually initialize the global after current function has finished |
| 325 | // compilation. |
| 326 | const Type *GlobalType = GV->getType()->getElementType(); |
| 327 | size_t S = getTargetData()->getTypeSize(GlobalType); |
| 328 | size_t A = getTargetData()->getPrefTypeAlignment(GlobalType); |
| 329 | if (A <= 8) { |
| 330 | Ptr = malloc(S); |
| 331 | } else { |
| 332 | // Allocate S+A bytes of memory, then use an aligned pointer within that |
| 333 | // space. |
| 334 | Ptr = malloc(S+A); |
| 335 | unsigned MisAligned = ((intptr_t)Ptr & (A-1)); |
| 336 | Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0); |
| 337 | } |
| 338 | jitstate.getPendingGlobals(locked).push_back(GV); |
| 339 | } |
| 340 | addGlobalMapping(GV, Ptr); |
| 341 | return Ptr; |
| 342 | } |
| 343 | |
| 344 | |
| 345 | /// recompileAndRelinkFunction - This method is used to force a function |
| 346 | /// which has already been compiled, to be compiled again, possibly |
| 347 | /// after it has been modified. Then the entry to the old copy is overwritten |
| 348 | /// with a branch to the new copy. If there was no old copy, this acts |
| 349 | /// just like JIT::getPointerToFunction(). |
| 350 | /// |
| 351 | void *JIT::recompileAndRelinkFunction(Function *F) { |
| 352 | void *OldAddr = getPointerToGlobalIfAvailable(F); |
| 353 | |
| 354 | // If it's not already compiled there is no reason to patch it up. |
| 355 | if (OldAddr == 0) { return getPointerToFunction(F); } |
| 356 | |
| 357 | // Delete the old function mapping. |
| 358 | addGlobalMapping(F, 0); |
| 359 | |
| 360 | // Recodegen the function |
| 361 | runJITOnFunction(F); |
| 362 | |
| 363 | // Update state, forward the old function to the new function. |
| 364 | void *Addr = getPointerToGlobalIfAvailable(F); |
| 365 | assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| 366 | TJI.replaceMachineCodeForFunction(OldAddr, Addr); |
| 367 | return Addr; |
| 368 | } |
| 369 | |