blob: 603f8ec14adeaeebd57d1729ea6a0ba901908569 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/CodeGen/MachineCodeEmitter.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/Support/MutexGuard.h"
26#include "llvm/System/DynamicLibrary.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetJITInfo.h"
30using namespace llvm;
31
32#ifdef __APPLE__
33#include <AvailabilityMacros.h>
34#if defined(MAC_OS_X_VERSION_10_4) && \
35 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
36 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
37 __APPLE_CC__ >= 5330))
38// __dso_handle is resolved by Mac OS X dynamic linker.
39extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
40#endif
41#endif
42
43static struct RegisterJIT {
44 RegisterJIT() { JIT::Register(); }
45} JITRegistrator;
46
47namespace llvm {
48 void LinkInJIT() {
49 }
50}
51
52JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
53 : ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) {
54 setTargetData(TM.getTargetData());
55
56 // Initialize MCE
57 MCE = createEmitter(*this);
58
59 // Add target data
60 MutexGuard locked(lock);
61 FunctionPassManager &PM = jitstate.getPM(locked);
62 PM.add(new TargetData(*TM.getTargetData()));
63
64 // Turn the machine code intermediate representation into bytes in memory that
65 // may be executed.
66 if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
67 cerr << "Target does not support machine code emission!\n";
68 abort();
69 }
70
71 // Initialize passes.
72 PM.doInitialization();
73}
74
75JIT::~JIT() {
76 delete MCE;
77 delete &TM;
78}
79
80/// run - Start execution with the specified function and arguments.
81///
82GenericValue JIT::runFunction(Function *F,
83 const std::vector<GenericValue> &ArgValues) {
84 assert(F && "Function *F was null at entry to run()");
85
86 void *FPtr = getPointerToFunction(F);
87 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
88 const FunctionType *FTy = F->getFunctionType();
89 const Type *RetTy = FTy->getReturnType();
90
91 assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
92 "Too many arguments passed into function!");
93 assert(FTy->getNumParams() == ArgValues.size() &&
94 "This doesn't support passing arguments through varargs (yet)!");
95
96 // Handle some common cases first. These cases correspond to common `main'
97 // prototypes.
98 if (RetTy == Type::Int32Ty || RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
99 switch (ArgValues.size()) {
100 case 3:
101 if ((FTy->getParamType(0) == Type::Int32Ty ||
102 FTy->getParamType(0) == Type::Int32Ty) &&
103 isa<PointerType>(FTy->getParamType(1)) &&
104 isa<PointerType>(FTy->getParamType(2))) {
105 int (*PF)(int, char **, const char **) =
106 (int(*)(int, char **, const char **))(intptr_t)FPtr;
107
108 // Call the function.
109 GenericValue rv;
110 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
111 (char **)GVTOP(ArgValues[1]),
112 (const char **)GVTOP(ArgValues[2])));
113 return rv;
114 }
115 break;
116 case 2:
117 if ((FTy->getParamType(0) == Type::Int32Ty ||
118 FTy->getParamType(0) == Type::Int32Ty) &&
119 isa<PointerType>(FTy->getParamType(1))) {
120 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
121
122 // Call the function.
123 GenericValue rv;
124 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
125 (char **)GVTOP(ArgValues[1])));
126 return rv;
127 }
128 break;
129 case 1:
130 if (FTy->getNumParams() == 1 &&
131 (FTy->getParamType(0) == Type::Int32Ty ||
132 FTy->getParamType(0) == Type::Int32Ty)) {
133 GenericValue rv;
134 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
135 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
136 return rv;
137 }
138 break;
139 }
140 }
141
142 // Handle cases where no arguments are passed first.
143 if (ArgValues.empty()) {
144 GenericValue rv;
145 switch (RetTy->getTypeID()) {
146 default: assert(0 && "Unknown return type for function call!");
147 case Type::IntegerTyID: {
148 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
149 if (BitWidth == 1)
150 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
151 else if (BitWidth <= 8)
152 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
153 else if (BitWidth <= 16)
154 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
155 else if (BitWidth <= 32)
156 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
157 else if (BitWidth <= 64)
158 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
159 else
160 assert(0 && "Integer types > 64 bits not supported");
161 return rv;
162 }
163 case Type::VoidTyID:
164 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
165 return rv;
166 case Type::FloatTyID:
167 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
168 return rv;
169 case Type::DoubleTyID:
170 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
171 return rv;
172 case Type::PointerTyID:
173 return PTOGV(((void*(*)())(intptr_t)FPtr)());
174 }
175 }
176
177 // Okay, this is not one of our quick and easy cases. Because we don't have a
178 // full FFI, we have to codegen a nullary stub function that just calls the
179 // function we are interested in, passing in constants for all of the
180 // arguments. Make this function and return.
181
182 // First, create the function.
183 FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
184 Function *Stub = new Function(STy, Function::InternalLinkage, "",
185 F->getParent());
186
187 // Insert a basic block.
188 BasicBlock *StubBB = new BasicBlock("", Stub);
189
190 // Convert all of the GenericValue arguments over to constants. Note that we
191 // currently don't support varargs.
192 SmallVector<Value*, 8> Args;
193 for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
194 Constant *C = 0;
195 const Type *ArgTy = FTy->getParamType(i);
196 const GenericValue &AV = ArgValues[i];
197 switch (ArgTy->getTypeID()) {
198 default: assert(0 && "Unknown argument type for function call!");
199 case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break;
200 case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break;
201 case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break;
202 case Type::PointerTyID:
203 void *ArgPtr = GVTOP(AV);
204 if (sizeof(void*) == 4) {
205 C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
206 } else {
207 C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
208 }
209 C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
210 break;
211 }
212 Args.push_back(C);
213 }
214
215 CallInst *TheCall = new CallInst(F, &Args[0], Args.size(), "", StubBB);
216 TheCall->setTailCall();
217 if (TheCall->getType() != Type::VoidTy)
218 new ReturnInst(TheCall, StubBB); // Return result of the call.
219 else
220 new ReturnInst(StubBB); // Just return void.
221
222 // Finally, return the value returned by our nullary stub function.
223 return runFunction(Stub, std::vector<GenericValue>());
224}
225
226/// runJITOnFunction - Run the FunctionPassManager full of
227/// just-in-time compilation passes on F, hopefully filling in
228/// GlobalAddress[F] with the address of F's machine code.
229///
230void JIT::runJITOnFunction(Function *F) {
231 static bool isAlreadyCodeGenerating = false;
232 assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
233
234 MutexGuard locked(lock);
235
236 // JIT the function
237 isAlreadyCodeGenerating = true;
238 jitstate.getPM(locked).run(*F);
239 isAlreadyCodeGenerating = false;
240
241 // If the function referred to a global variable that had not yet been
242 // emitted, it allocates memory for the global, but doesn't emit it yet. Emit
243 // all of these globals now.
244 while (!jitstate.getPendingGlobals(locked).empty()) {
245 const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back();
246 jitstate.getPendingGlobals(locked).pop_back();
247 EmitGlobalVariable(GV);
248 }
249}
250
251/// getPointerToFunction - This method is used to get the address of the
252/// specified function, compiling it if neccesary.
253///
254void *JIT::getPointerToFunction(Function *F) {
255 MutexGuard locked(lock);
256
257 if (void *Addr = getPointerToGlobalIfAvailable(F))
258 return Addr; // Check if function already code gen'd
259
260 // Make sure we read in the function if it exists in this Module.
261 if (F->hasNotBeenReadFromBitcode()) {
262 // Determine the module provider this function is provided by.
263 Module *M = F->getParent();
264 ModuleProvider *MP = 0;
265 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
266 if (Modules[i]->getModule() == M) {
267 MP = Modules[i];
268 break;
269 }
270 }
271 assert(MP && "Function isn't in a module we know about!");
272
273 std::string ErrorMsg;
274 if (MP->materializeFunction(F, &ErrorMsg)) {
275 cerr << "Error reading function '" << F->getName()
276 << "' from bitcode file: " << ErrorMsg << "\n";
277 abort();
278 }
279 }
280
281 if (F->isDeclaration()) {
282 void *Addr = getPointerToNamedFunction(F->getName());
283 addGlobalMapping(F, Addr);
284 return Addr;
285 }
286
287 runJITOnFunction(F);
288
289 void *Addr = getPointerToGlobalIfAvailable(F);
290 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
291 return Addr;
292}
293
294/// getOrEmitGlobalVariable - Return the address of the specified global
295/// variable, possibly emitting it to memory if needed. This is used by the
296/// Emitter.
297void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
298 MutexGuard locked(lock);
299
300 void *Ptr = getPointerToGlobalIfAvailable(GV);
301 if (Ptr) return Ptr;
302
303 // If the global is external, just remember the address.
304 if (GV->isDeclaration()) {
305#if defined(__APPLE__) && defined(MAC_OS_X_VERSION_10_4) && \
306 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
307 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
308 __APPLE_CC__ >= 5330))
309 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
310 // of atexit). It passes the address of linker generated symbol __dso_handle
311 // to the function.
312 // This configuration change happened at version 5330.
313 if (GV->getName() == "__dso_handle")
314 return (void*)&__dso_handle;
315#endif
316 Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
317 if (Ptr == 0) {
318 cerr << "Could not resolve external global address: "
319 << GV->getName() << "\n";
320 abort();
321 }
322 } else {
323 // If the global hasn't been emitted to memory yet, allocate space. We will
324 // actually initialize the global after current function has finished
325 // compilation.
326 const Type *GlobalType = GV->getType()->getElementType();
327 size_t S = getTargetData()->getTypeSize(GlobalType);
328 size_t A = getTargetData()->getPrefTypeAlignment(GlobalType);
329 if (A <= 8) {
330 Ptr = malloc(S);
331 } else {
332 // Allocate S+A bytes of memory, then use an aligned pointer within that
333 // space.
334 Ptr = malloc(S+A);
335 unsigned MisAligned = ((intptr_t)Ptr & (A-1));
336 Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
337 }
338 jitstate.getPendingGlobals(locked).push_back(GV);
339 }
340 addGlobalMapping(GV, Ptr);
341 return Ptr;
342}
343
344
345/// recompileAndRelinkFunction - This method is used to force a function
346/// which has already been compiled, to be compiled again, possibly
347/// after it has been modified. Then the entry to the old copy is overwritten
348/// with a branch to the new copy. If there was no old copy, this acts
349/// just like JIT::getPointerToFunction().
350///
351void *JIT::recompileAndRelinkFunction(Function *F) {
352 void *OldAddr = getPointerToGlobalIfAvailable(F);
353
354 // If it's not already compiled there is no reason to patch it up.
355 if (OldAddr == 0) { return getPointerToFunction(F); }
356
357 // Delete the old function mapping.
358 addGlobalMapping(F, 0);
359
360 // Recodegen the function
361 runJITOnFunction(F);
362
363 // Update state, forward the old function to the new function.
364 void *Addr = getPointerToGlobalIfAvailable(F);
365 assert(Addr && "Code generation didn't add function to GlobalAddress table!");
366 TJI.replaceMachineCodeForFunction(OldAddr, Addr);
367 return Addr;
368}
369