Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame^] | 1 | //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the LLVM module linker. |
| 11 | // |
| 12 | // Specifically, this: |
| 13 | // * Merges global variables between the two modules |
| 14 | // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if != |
| 15 | // * Merges functions between two modules |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/Linker.h" |
| 20 | #include "llvm/Constants.h" |
| 21 | #include "llvm/DerivedTypes.h" |
| 22 | #include "llvm/Module.h" |
| 23 | #include "llvm/TypeSymbolTable.h" |
| 24 | #include "llvm/ValueSymbolTable.h" |
| 25 | #include "llvm/Instructions.h" |
| 26 | #include "llvm/Assembly/Writer.h" |
| 27 | #include "llvm/Support/Streams.h" |
| 28 | #include "llvm/System/Path.h" |
| 29 | #include <sstream> |
| 30 | using namespace llvm; |
| 31 | |
| 32 | // Error - Simple wrapper function to conditionally assign to E and return true. |
| 33 | // This just makes error return conditions a little bit simpler... |
| 34 | static inline bool Error(std::string *E, const std::string &Message) { |
| 35 | if (E) *E = Message; |
| 36 | return true; |
| 37 | } |
| 38 | |
| 39 | // ToStr - Simple wrapper function to convert a type to a string. |
| 40 | static std::string ToStr(const Type *Ty, const Module *M) { |
| 41 | std::ostringstream OS; |
| 42 | WriteTypeSymbolic(OS, Ty, M); |
| 43 | return OS.str(); |
| 44 | } |
| 45 | |
| 46 | // |
| 47 | // Function: ResolveTypes() |
| 48 | // |
| 49 | // Description: |
| 50 | // Attempt to link the two specified types together. |
| 51 | // |
| 52 | // Inputs: |
| 53 | // DestTy - The type to which we wish to resolve. |
| 54 | // SrcTy - The original type which we want to resolve. |
| 55 | // Name - The name of the type. |
| 56 | // |
| 57 | // Outputs: |
| 58 | // DestST - The symbol table in which the new type should be placed. |
| 59 | // |
| 60 | // Return value: |
| 61 | // true - There is an error and the types cannot yet be linked. |
| 62 | // false - No errors. |
| 63 | // |
| 64 | static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, |
| 65 | TypeSymbolTable *DestST, const std::string &Name) { |
| 66 | if (DestTy == SrcTy) return false; // If already equal, noop |
| 67 | |
| 68 | // Does the type already exist in the module? |
| 69 | if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists... |
| 70 | if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) { |
| 71 | const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy); |
| 72 | } else { |
| 73 | return true; // Cannot link types... neither is opaque and not-equal |
| 74 | } |
| 75 | } else { // Type not in dest module. Add it now. |
| 76 | if (DestTy) // Type _is_ in module, just opaque... |
| 77 | const_cast<OpaqueType*>(cast<OpaqueType>(DestTy)) |
| 78 | ->refineAbstractTypeTo(SrcTy); |
| 79 | else if (!Name.empty()) |
| 80 | DestST->insert(Name, const_cast<Type*>(SrcTy)); |
| 81 | } |
| 82 | return false; |
| 83 | } |
| 84 | |
| 85 | static const FunctionType *getFT(const PATypeHolder &TH) { |
| 86 | return cast<FunctionType>(TH.get()); |
| 87 | } |
| 88 | static const StructType *getST(const PATypeHolder &TH) { |
| 89 | return cast<StructType>(TH.get()); |
| 90 | } |
| 91 | |
| 92 | // RecursiveResolveTypes - This is just like ResolveTypes, except that it |
| 93 | // recurses down into derived types, merging the used types if the parent types |
| 94 | // are compatible. |
| 95 | static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, |
| 96 | const PATypeHolder &SrcTy, |
| 97 | TypeSymbolTable *DestST, |
| 98 | const std::string &Name, |
| 99 | std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) { |
| 100 | const Type *SrcTyT = SrcTy.get(); |
| 101 | const Type *DestTyT = DestTy.get(); |
| 102 | if (DestTyT == SrcTyT) return false; // If already equal, noop |
| 103 | |
| 104 | // If we found our opaque type, resolve it now! |
| 105 | if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT)) |
| 106 | return ResolveTypes(DestTyT, SrcTyT, DestST, Name); |
| 107 | |
| 108 | // Two types cannot be resolved together if they are of different primitive |
| 109 | // type. For example, we cannot resolve an int to a float. |
| 110 | if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true; |
| 111 | |
| 112 | // Otherwise, resolve the used type used by this derived type... |
| 113 | switch (DestTyT->getTypeID()) { |
| 114 | case Type::IntegerTyID: { |
| 115 | if (cast<IntegerType>(DestTyT)->getBitWidth() != |
| 116 | cast<IntegerType>(SrcTyT)->getBitWidth()) |
| 117 | return true; |
| 118 | return false; |
| 119 | } |
| 120 | case Type::FunctionTyID: { |
| 121 | if (cast<FunctionType>(DestTyT)->isVarArg() != |
| 122 | cast<FunctionType>(SrcTyT)->isVarArg() || |
| 123 | cast<FunctionType>(DestTyT)->getNumContainedTypes() != |
| 124 | cast<FunctionType>(SrcTyT)->getNumContainedTypes()) |
| 125 | return true; |
| 126 | for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) |
| 127 | if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), |
| 128 | getFT(SrcTy)->getContainedType(i), DestST, "", |
| 129 | Pointers)) |
| 130 | return true; |
| 131 | return false; |
| 132 | } |
| 133 | case Type::StructTyID: { |
| 134 | if (getST(DestTy)->getNumContainedTypes() != |
| 135 | getST(SrcTy)->getNumContainedTypes()) return 1; |
| 136 | for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) |
| 137 | if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), |
| 138 | getST(SrcTy)->getContainedType(i), DestST, "", |
| 139 | Pointers)) |
| 140 | return true; |
| 141 | return false; |
| 142 | } |
| 143 | case Type::ArrayTyID: { |
| 144 | const ArrayType *DAT = cast<ArrayType>(DestTy.get()); |
| 145 | const ArrayType *SAT = cast<ArrayType>(SrcTy.get()); |
| 146 | if (DAT->getNumElements() != SAT->getNumElements()) return true; |
| 147 | return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), |
| 148 | DestST, "", Pointers); |
| 149 | } |
| 150 | case Type::PointerTyID: { |
| 151 | // If this is a pointer type, check to see if we have already seen it. If |
| 152 | // so, we are in a recursive branch. Cut off the search now. We cannot use |
| 153 | // an associative container for this search, because the type pointers (keys |
| 154 | // in the container) change whenever types get resolved... |
| 155 | for (unsigned i = 0, e = Pointers.size(); i != e; ++i) |
| 156 | if (Pointers[i].first == DestTy) |
| 157 | return Pointers[i].second != SrcTy; |
| 158 | |
| 159 | // Otherwise, add the current pointers to the vector to stop recursion on |
| 160 | // this pair. |
| 161 | Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); |
| 162 | bool Result = |
| 163 | RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(), |
| 164 | cast<PointerType>(SrcTy.get())->getElementType(), |
| 165 | DestST, "", Pointers); |
| 166 | Pointers.pop_back(); |
| 167 | return Result; |
| 168 | } |
| 169 | default: assert(0 && "Unexpected type!"); return true; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | static bool RecursiveResolveTypes(const PATypeHolder &DestTy, |
| 174 | const PATypeHolder &SrcTy, |
| 175 | TypeSymbolTable *DestST, |
| 176 | const std::string &Name){ |
| 177 | std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes; |
| 178 | return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); |
| 179 | } |
| 180 | |
| 181 | |
| 182 | // LinkTypes - Go through the symbol table of the Src module and see if any |
| 183 | // types are named in the src module that are not named in the Dst module. |
| 184 | // Make sure there are no type name conflicts. |
| 185 | static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { |
| 186 | TypeSymbolTable *DestST = &Dest->getTypeSymbolTable(); |
| 187 | const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable(); |
| 188 | |
| 189 | // Look for a type plane for Type's... |
| 190 | TypeSymbolTable::const_iterator TI = SrcST->begin(); |
| 191 | TypeSymbolTable::const_iterator TE = SrcST->end(); |
| 192 | if (TI == TE) return false; // No named types, do nothing. |
| 193 | |
| 194 | // Some types cannot be resolved immediately because they depend on other |
| 195 | // types being resolved to each other first. This contains a list of types we |
| 196 | // are waiting to recheck. |
| 197 | std::vector<std::string> DelayedTypesToResolve; |
| 198 | |
| 199 | for ( ; TI != TE; ++TI ) { |
| 200 | const std::string &Name = TI->first; |
| 201 | const Type *RHS = TI->second; |
| 202 | |
| 203 | // Check to see if this type name is already in the dest module... |
| 204 | Type *Entry = DestST->lookup(Name); |
| 205 | |
| 206 | if (ResolveTypes(Entry, RHS, DestST, Name)) { |
| 207 | // They look different, save the types 'till later to resolve. |
| 208 | DelayedTypesToResolve.push_back(Name); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // Iteratively resolve types while we can... |
| 213 | while (!DelayedTypesToResolve.empty()) { |
| 214 | // Loop over all of the types, attempting to resolve them if possible... |
| 215 | unsigned OldSize = DelayedTypesToResolve.size(); |
| 216 | |
| 217 | // Try direct resolution by name... |
| 218 | for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { |
| 219 | const std::string &Name = DelayedTypesToResolve[i]; |
| 220 | Type *T1 = SrcST->lookup(Name); |
| 221 | Type *T2 = DestST->lookup(Name); |
| 222 | if (!ResolveTypes(T2, T1, DestST, Name)) { |
| 223 | // We are making progress! |
| 224 | DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); |
| 225 | --i; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // Did we not eliminate any types? |
| 230 | if (DelayedTypesToResolve.size() == OldSize) { |
| 231 | // Attempt to resolve subelements of types. This allows us to merge these |
| 232 | // two types: { int* } and { opaque* } |
| 233 | for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { |
| 234 | const std::string &Name = DelayedTypesToResolve[i]; |
| 235 | PATypeHolder T1(SrcST->lookup(Name)); |
| 236 | PATypeHolder T2(DestST->lookup(Name)); |
| 237 | |
| 238 | if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { |
| 239 | // We are making progress! |
| 240 | DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); |
| 241 | |
| 242 | // Go back to the main loop, perhaps we can resolve directly by name |
| 243 | // now... |
| 244 | break; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | // If we STILL cannot resolve the types, then there is something wrong. |
| 249 | if (DelayedTypesToResolve.size() == OldSize) { |
| 250 | // Remove the symbol name from the destination. |
| 251 | DelayedTypesToResolve.pop_back(); |
| 252 | } |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | static void PrintMap(const std::map<const Value*, Value*> &M) { |
| 261 | for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end(); |
| 262 | I != E; ++I) { |
| 263 | cerr << " Fr: " << (void*)I->first << " "; |
| 264 | I->first->dump(); |
| 265 | cerr << " To: " << (void*)I->second << " "; |
| 266 | I->second->dump(); |
| 267 | cerr << "\n"; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | |
| 272 | // RemapOperand - Use ValueMap to convert constants from one module to another. |
| 273 | static Value *RemapOperand(const Value *In, |
| 274 | std::map<const Value*, Value*> &ValueMap) { |
| 275 | std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In); |
| 276 | if (I != ValueMap.end()) |
| 277 | return I->second; |
| 278 | |
| 279 | // Check to see if it's a constant that we are interested in transforming. |
| 280 | Value *Result = 0; |
| 281 | if (const Constant *CPV = dyn_cast<Constant>(In)) { |
| 282 | if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) || |
| 283 | isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV)) |
| 284 | return const_cast<Constant*>(CPV); // Simple constants stay identical. |
| 285 | |
| 286 | if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) { |
| 287 | std::vector<Constant*> Operands(CPA->getNumOperands()); |
| 288 | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| 289 | Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap)); |
| 290 | Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands); |
| 291 | } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) { |
| 292 | std::vector<Constant*> Operands(CPS->getNumOperands()); |
| 293 | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| 294 | Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap)); |
| 295 | Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands); |
| 296 | } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) { |
| 297 | Result = const_cast<Constant*>(CPV); |
| 298 | } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) { |
| 299 | std::vector<Constant*> Operands(CP->getNumOperands()); |
| 300 | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| 301 | Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap)); |
| 302 | Result = ConstantVector::get(Operands); |
| 303 | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| 304 | std::vector<Constant*> Ops; |
| 305 | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) |
| 306 | Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap))); |
| 307 | Result = CE->getWithOperands(Ops); |
| 308 | } else if (isa<GlobalValue>(CPV)) { |
| 309 | assert(0 && "Unmapped global?"); |
| 310 | } else { |
| 311 | assert(0 && "Unknown type of derived type constant value!"); |
| 312 | } |
| 313 | } else if (isa<InlineAsm>(In)) { |
| 314 | Result = const_cast<Value*>(In); |
| 315 | } |
| 316 | |
| 317 | // Cache the mapping in our local map structure |
| 318 | if (Result) { |
| 319 | ValueMap.insert(std::make_pair(In, Result)); |
| 320 | return Result; |
| 321 | } |
| 322 | |
| 323 | |
| 324 | cerr << "LinkModules ValueMap: \n"; |
| 325 | PrintMap(ValueMap); |
| 326 | |
| 327 | cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; |
| 328 | assert(0 && "Couldn't remap value!"); |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict |
| 333 | /// in the symbol table. This is good for all clients except for us. Go |
| 334 | /// through the trouble to force this back. |
| 335 | static void ForceRenaming(GlobalValue *GV, const std::string &Name) { |
| 336 | assert(GV->getName() != Name && "Can't force rename to self"); |
| 337 | ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable(); |
| 338 | |
| 339 | // If there is a conflict, rename the conflict. |
| 340 | if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) { |
| 341 | assert(ConflictGV->hasInternalLinkage() && |
| 342 | "Not conflicting with a static global, should link instead!"); |
| 343 | GV->takeName(ConflictGV); |
| 344 | ConflictGV->setName(Name); // This will cause ConflictGV to get renamed |
| 345 | assert(ConflictGV->getName() != Name && "ForceRenaming didn't work"); |
| 346 | } else { |
| 347 | GV->setName(Name); // Force the name back |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | /// CopyGVAttributes - copy additional attributes (those not needed to construct |
| 352 | /// a GlobalValue) from the SrcGV to the DestGV. |
| 353 | static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) { |
| 354 | // Propagate alignment, visibility and section info. |
| 355 | DestGV->setAlignment(std::max(DestGV->getAlignment(), SrcGV->getAlignment())); |
| 356 | DestGV->setSection(SrcGV->getSection()); |
| 357 | DestGV->setVisibility(SrcGV->getVisibility()); |
| 358 | if (const Function *SrcF = dyn_cast<Function>(SrcGV)) { |
| 359 | Function *DestF = cast<Function>(DestGV); |
| 360 | DestF->setCallingConv(SrcF->getCallingConv()); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | /// GetLinkageResult - This analyzes the two global values and determines what |
| 365 | /// the result will look like in the destination module. In particular, it |
| 366 | /// computes the resultant linkage type, computes whether the global in the |
| 367 | /// source should be copied over to the destination (replacing the existing |
| 368 | /// one), and computes whether this linkage is an error or not. It also performs |
| 369 | /// visibility checks: we cannot link together two symbols with different |
| 370 | /// visibilities. |
| 371 | static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src, |
| 372 | GlobalValue::LinkageTypes <, bool &LinkFromSrc, |
| 373 | std::string *Err) { |
| 374 | assert((!Dest || !Src->hasInternalLinkage()) && |
| 375 | "If Src has internal linkage, Dest shouldn't be set!"); |
| 376 | if (!Dest) { |
| 377 | // Linking something to nothing. |
| 378 | LinkFromSrc = true; |
| 379 | LT = Src->getLinkage(); |
| 380 | } else if (Src->isDeclaration()) { |
| 381 | // If Src is external or if both Src & Drc are external.. Just link the |
| 382 | // external globals, we aren't adding anything. |
| 383 | if (Src->hasDLLImportLinkage()) { |
| 384 | // If one of GVs has DLLImport linkage, result should be dllimport'ed. |
| 385 | if (Dest->isDeclaration()) { |
| 386 | LinkFromSrc = true; |
| 387 | LT = Src->getLinkage(); |
| 388 | } |
| 389 | } else if (Dest->hasExternalWeakLinkage()) { |
| 390 | //If the Dest is weak, use the source linkage |
| 391 | LinkFromSrc = true; |
| 392 | LT = Src->getLinkage(); |
| 393 | } else { |
| 394 | LinkFromSrc = false; |
| 395 | LT = Dest->getLinkage(); |
| 396 | } |
| 397 | } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) { |
| 398 | // If Dest is external but Src is not: |
| 399 | LinkFromSrc = true; |
| 400 | LT = Src->getLinkage(); |
| 401 | } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) { |
| 402 | if (Src->getLinkage() != Dest->getLinkage()) |
| 403 | return Error(Err, "Linking globals named '" + Src->getName() + |
| 404 | "': can only link appending global with another appending global!"); |
| 405 | LinkFromSrc = true; // Special cased. |
| 406 | LT = Src->getLinkage(); |
| 407 | } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) { |
| 408 | // At this point we know that Dest has LinkOnce, External*, Weak, or |
| 409 | // DLL* linkage. |
| 410 | if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) || |
| 411 | Dest->hasExternalWeakLinkage()) { |
| 412 | LinkFromSrc = true; |
| 413 | LT = Src->getLinkage(); |
| 414 | } else { |
| 415 | LinkFromSrc = false; |
| 416 | LT = Dest->getLinkage(); |
| 417 | } |
| 418 | } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) { |
| 419 | // At this point we know that Src has External* or DLL* linkage. |
| 420 | if (Src->hasExternalWeakLinkage()) { |
| 421 | LinkFromSrc = false; |
| 422 | LT = Dest->getLinkage(); |
| 423 | } else { |
| 424 | LinkFromSrc = true; |
| 425 | LT = GlobalValue::ExternalLinkage; |
| 426 | } |
| 427 | } else { |
| 428 | assert((Dest->hasExternalLinkage() || |
| 429 | Dest->hasDLLImportLinkage() || |
| 430 | Dest->hasDLLExportLinkage() || |
| 431 | Dest->hasExternalWeakLinkage()) && |
| 432 | (Src->hasExternalLinkage() || |
| 433 | Src->hasDLLImportLinkage() || |
| 434 | Src->hasDLLExportLinkage() || |
| 435 | Src->hasExternalWeakLinkage()) && |
| 436 | "Unexpected linkage type!"); |
| 437 | return Error(Err, "Linking globals named '" + Src->getName() + |
| 438 | "': symbol multiply defined!"); |
| 439 | } |
| 440 | |
| 441 | // Check visibility |
| 442 | if (Dest && Src->getVisibility() != Dest->getVisibility()) |
| 443 | return Error(Err, "Linking globals named '" + Src->getName() + |
| 444 | "': symbols have different visibilities!"); |
| 445 | return false; |
| 446 | } |
| 447 | |
| 448 | // LinkGlobals - Loop through the global variables in the src module and merge |
| 449 | // them into the dest module. |
| 450 | static bool LinkGlobals(Module *Dest, Module *Src, |
| 451 | std::map<const Value*, Value*> &ValueMap, |
| 452 | std::multimap<std::string, GlobalVariable *> &AppendingVars, |
| 453 | std::string *Err) { |
| 454 | // Loop over all of the globals in the src module, mapping them over as we go |
| 455 | for (Module::global_iterator I = Src->global_begin(), E = Src->global_end(); |
| 456 | I != E; ++I) { |
| 457 | GlobalVariable *SGV = I; |
| 458 | GlobalVariable *DGV = 0; |
| 459 | // Check to see if may have to link the global. |
| 460 | if (SGV->hasName() && !SGV->hasInternalLinkage()) { |
| 461 | DGV = Dest->getGlobalVariable(SGV->getName()); |
| 462 | if (DGV && DGV->getType() != SGV->getType()) |
| 463 | // If types don't agree due to opaque types, try to resolve them. |
| 464 | RecursiveResolveTypes(SGV->getType(), DGV->getType(), |
| 465 | &Dest->getTypeSymbolTable(), ""); |
| 466 | } |
| 467 | |
| 468 | if (DGV && DGV->hasInternalLinkage()) |
| 469 | DGV = 0; |
| 470 | |
| 471 | assert(SGV->hasInitializer() || SGV->hasExternalWeakLinkage() || |
| 472 | SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage() && |
| 473 | "Global must either be external or have an initializer!"); |
| 474 | |
| 475 | GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; |
| 476 | bool LinkFromSrc = false; |
| 477 | if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err)) |
| 478 | return true; |
| 479 | |
| 480 | if (!DGV) { |
| 481 | // No linking to be performed, simply create an identical version of the |
| 482 | // symbol over in the dest module... the initializer will be filled in |
| 483 | // later by LinkGlobalInits... |
| 484 | GlobalVariable *NewDGV = |
| 485 | new GlobalVariable(SGV->getType()->getElementType(), |
| 486 | SGV->isConstant(), SGV->getLinkage(), /*init*/0, |
| 487 | SGV->getName(), Dest, SGV->isThreadLocal()); |
| 488 | // Propagate alignment, visibility and section info. |
| 489 | CopyGVAttributes(NewDGV, SGV); |
| 490 | |
| 491 | // If the LLVM runtime renamed the global, but it is an externally visible |
| 492 | // symbol, DGV must be an existing global with internal linkage. Rename |
| 493 | // it. |
| 494 | if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()) |
| 495 | ForceRenaming(NewDGV, SGV->getName()); |
| 496 | |
| 497 | // Make sure to remember this mapping... |
| 498 | ValueMap.insert(std::make_pair(SGV, NewDGV)); |
| 499 | if (SGV->hasAppendingLinkage()) |
| 500 | // Keep track that this is an appending variable... |
| 501 | AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); |
| 502 | } else if (DGV->hasAppendingLinkage()) { |
| 503 | // No linking is performed yet. Just insert a new copy of the global, and |
| 504 | // keep track of the fact that it is an appending variable in the |
| 505 | // AppendingVars map. The name is cleared out so that no linkage is |
| 506 | // performed. |
| 507 | GlobalVariable *NewDGV = |
| 508 | new GlobalVariable(SGV->getType()->getElementType(), |
| 509 | SGV->isConstant(), SGV->getLinkage(), /*init*/0, |
| 510 | "", Dest, SGV->isThreadLocal()); |
| 511 | |
| 512 | // Propagate alignment, section and visibility info. |
| 513 | NewDGV->setAlignment(DGV->getAlignment()); |
| 514 | CopyGVAttributes(NewDGV, SGV); |
| 515 | |
| 516 | // Make sure to remember this mapping... |
| 517 | ValueMap.insert(std::make_pair(SGV, NewDGV)); |
| 518 | |
| 519 | // Keep track that this is an appending variable... |
| 520 | AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); |
| 521 | } else { |
| 522 | // Propagate alignment, section, and visibility info. |
| 523 | CopyGVAttributes(DGV, SGV); |
| 524 | |
| 525 | // Otherwise, perform the mapping as instructed by GetLinkageResult. If |
| 526 | // the types don't match, and if we are to link from the source, nuke DGV |
| 527 | // and create a new one of the appropriate type. |
| 528 | if (SGV->getType() != DGV->getType() && LinkFromSrc) { |
| 529 | GlobalVariable *NewDGV = |
| 530 | new GlobalVariable(SGV->getType()->getElementType(), |
| 531 | DGV->isConstant(), DGV->getLinkage()); |
| 532 | NewDGV->setThreadLocal(DGV->isThreadLocal()); |
| 533 | CopyGVAttributes(NewDGV, DGV); |
| 534 | Dest->getGlobalList().insert(DGV, NewDGV); |
| 535 | DGV->replaceAllUsesWith( |
| 536 | ConstantExpr::getBitCast(NewDGV, DGV->getType())); |
| 537 | DGV->eraseFromParent(); |
| 538 | NewDGV->setName(SGV->getName()); |
| 539 | DGV = NewDGV; |
| 540 | } |
| 541 | |
| 542 | DGV->setLinkage(NewLinkage); |
| 543 | |
| 544 | if (LinkFromSrc) { |
| 545 | // Inherit const as appropriate |
| 546 | DGV->setConstant(SGV->isConstant()); |
| 547 | DGV->setInitializer(0); |
| 548 | } else { |
| 549 | if (SGV->isConstant() && !DGV->isConstant()) { |
| 550 | if (DGV->isDeclaration()) |
| 551 | DGV->setConstant(true); |
| 552 | } |
| 553 | SGV->setLinkage(GlobalValue::ExternalLinkage); |
| 554 | SGV->setInitializer(0); |
| 555 | } |
| 556 | |
| 557 | ValueMap.insert( |
| 558 | std::make_pair(SGV, ConstantExpr::getBitCast(DGV, SGV->getType()))); |
| 559 | } |
| 560 | } |
| 561 | return false; |
| 562 | } |
| 563 | |
| 564 | // LinkAlias - Loop through the alias in the src module and link them into the |
| 565 | // dest module. |
| 566 | static bool LinkAlias(Module *Dest, const Module *Src, std::string *Err) { |
| 567 | // Loop over all alias in the src module |
| 568 | for (Module::const_alias_iterator I = Src->alias_begin(), |
| 569 | E = Src->alias_end(); I != E; ++I) { |
| 570 | const GlobalAlias *GA = I; |
| 571 | |
| 572 | GlobalValue *NewAliased = NULL; |
| 573 | const GlobalValue *Aliased = GA->getAliasedGlobal(); |
| 574 | if (isa<GlobalVariable>(*Aliased)) |
| 575 | NewAliased = Dest->getGlobalVariable(Aliased->getName()); |
| 576 | else if (isa<Function>(*Aliased)) |
| 577 | NewAliased = Dest->getFunction(Aliased->getName()); |
| 578 | // FIXME: we should handle the bitcast alias. |
| 579 | assert(NewAliased && "Can't find the aliased GV."); |
| 580 | |
| 581 | GlobalAlias *NewGA = new GlobalAlias(GA->getType(), GA->getLinkage(), |
| 582 | GA->getName(), NewAliased, Dest); |
| 583 | CopyGVAttributes(NewGA, GA); |
| 584 | } |
| 585 | return false; |
| 586 | } |
| 587 | |
| 588 | |
| 589 | // LinkGlobalInits - Update the initializers in the Dest module now that all |
| 590 | // globals that may be referenced are in Dest. |
| 591 | static bool LinkGlobalInits(Module *Dest, const Module *Src, |
| 592 | std::map<const Value*, Value*> &ValueMap, |
| 593 | std::string *Err) { |
| 594 | |
| 595 | // Loop over all of the globals in the src module, mapping them over as we go |
| 596 | for (Module::const_global_iterator I = Src->global_begin(), |
| 597 | E = Src->global_end(); I != E; ++I) { |
| 598 | const GlobalVariable *SGV = I; |
| 599 | |
| 600 | if (SGV->hasInitializer()) { // Only process initialized GV's |
| 601 | // Figure out what the initializer looks like in the dest module... |
| 602 | Constant *SInit = |
| 603 | cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap)); |
| 604 | |
| 605 | GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]); |
| 606 | if (DGV->hasInitializer()) { |
| 607 | if (SGV->hasExternalLinkage()) { |
| 608 | if (DGV->getInitializer() != SInit) |
| 609 | return Error(Err, "Global Variable Collision on '" + |
| 610 | ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+ |
| 611 | " - Global variables have different initializers"); |
| 612 | } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) { |
| 613 | // Nothing is required, mapped values will take the new global |
| 614 | // automatically. |
| 615 | } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) { |
| 616 | // Nothing is required, mapped values will take the new global |
| 617 | // automatically. |
| 618 | } else if (DGV->hasAppendingLinkage()) { |
| 619 | assert(0 && "Appending linkage unimplemented!"); |
| 620 | } else { |
| 621 | assert(0 && "Unknown linkage!"); |
| 622 | } |
| 623 | } else { |
| 624 | // Copy the initializer over now... |
| 625 | DGV->setInitializer(SInit); |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | return false; |
| 630 | } |
| 631 | |
| 632 | // LinkFunctionProtos - Link the functions together between the two modules, |
| 633 | // without doing function bodies... this just adds external function prototypes |
| 634 | // to the Dest function... |
| 635 | // |
| 636 | static bool LinkFunctionProtos(Module *Dest, const Module *Src, |
| 637 | std::map<const Value*, Value*> &ValueMap, |
| 638 | std::string *Err) { |
| 639 | // Loop over all of the functions in the src module, mapping them over |
| 640 | for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { |
| 641 | const Function *SF = I; // SrcFunction |
| 642 | Function *DF = 0; |
| 643 | if (SF->hasName() && !SF->hasInternalLinkage()) { |
| 644 | // Check to see if may have to link the function. |
| 645 | DF = Dest->getFunction(SF->getName()); |
| 646 | if (DF && SF->getType() != DF->getType()) |
| 647 | // If types don't agree because of opaque, try to resolve them |
| 648 | RecursiveResolveTypes(SF->getType(), DF->getType(), |
| 649 | &Dest->getTypeSymbolTable(), ""); |
| 650 | } |
| 651 | |
| 652 | // Check visibility |
| 653 | if (DF && !DF->hasInternalLinkage() && |
| 654 | SF->getVisibility() != DF->getVisibility()) |
| 655 | return Error(Err, "Linking functions named '" + SF->getName() + |
| 656 | "': symbols have different visibilities!"); |
| 657 | |
| 658 | if (DF && DF->getType() != SF->getType()) { |
| 659 | if (DF->isDeclaration() && !SF->isDeclaration()) { |
| 660 | // We have a definition of the same name but different type in the |
| 661 | // source module. Copy the prototype to the destination and replace |
| 662 | // uses of the destination's prototype with the new prototype. |
| 663 | Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), |
| 664 | SF->getName(), Dest); |
| 665 | CopyGVAttributes(NewDF, SF); |
| 666 | |
| 667 | // Any uses of DF need to change to NewDF, with cast |
| 668 | DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DF->getType())); |
| 669 | |
| 670 | // DF will conflict with NewDF because they both had the same. We must |
| 671 | // erase this now so ForceRenaming doesn't assert because DF might |
| 672 | // not have internal linkage. |
| 673 | DF->eraseFromParent(); |
| 674 | |
| 675 | // If the symbol table renamed the function, but it is an externally |
| 676 | // visible symbol, DF must be an existing function with internal |
| 677 | // linkage. Rename it. |
| 678 | if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) |
| 679 | ForceRenaming(NewDF, SF->getName()); |
| 680 | |
| 681 | // Remember this mapping so uses in the source module get remapped |
| 682 | // later by RemapOperand. |
| 683 | ValueMap[SF] = NewDF; |
| 684 | } else if (SF->isDeclaration()) { |
| 685 | // We have two functions of the same name but different type and the |
| 686 | // source is a declaration while the destination is not. Any use of |
| 687 | // the source must be mapped to the destination, with a cast. |
| 688 | ValueMap[SF] = ConstantExpr::getBitCast(DF, SF->getType()); |
| 689 | } else { |
| 690 | // We have two functions of the same name but different types and they |
| 691 | // are both definitions. This is an error. |
| 692 | return Error(Err, "Function '" + DF->getName() + "' defined as both '" + |
| 693 | ToStr(SF->getFunctionType(), Src) + "' and '" + |
| 694 | ToStr(DF->getFunctionType(), Dest) + "'"); |
| 695 | } |
| 696 | } else if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { |
| 697 | // Function does not already exist, simply insert an function signature |
| 698 | // identical to SF into the dest module... |
| 699 | Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), |
| 700 | SF->getName(), Dest); |
| 701 | CopyGVAttributes(NewDF, SF); |
| 702 | |
| 703 | // If the LLVM runtime renamed the function, but it is an externally |
| 704 | // visible symbol, DF must be an existing function with internal linkage. |
| 705 | // Rename it. |
| 706 | if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) |
| 707 | ForceRenaming(NewDF, SF->getName()); |
| 708 | |
| 709 | // ... and remember this mapping... |
| 710 | ValueMap.insert(std::make_pair(SF, NewDF)); |
| 711 | } else if (SF->isDeclaration()) { |
| 712 | // If SF is a declaration or if both SF & DF are declarations, just link |
| 713 | // the declarations, we aren't adding anything. |
| 714 | if (SF->hasDLLImportLinkage()) { |
| 715 | if (DF->isDeclaration()) { |
| 716 | ValueMap.insert(std::make_pair(SF, DF)); |
| 717 | DF->setLinkage(SF->getLinkage()); |
| 718 | } |
| 719 | } else { |
| 720 | ValueMap.insert(std::make_pair(SF, DF)); |
| 721 | } |
| 722 | } else if (DF->isDeclaration() && !DF->hasDLLImportLinkage()) { |
| 723 | // If DF is external but SF is not... |
| 724 | // Link the external functions, update linkage qualifiers |
| 725 | ValueMap.insert(std::make_pair(SF, DF)); |
| 726 | DF->setLinkage(SF->getLinkage()); |
| 727 | } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) { |
| 728 | // At this point we know that DF has LinkOnce, Weak, or External* linkage. |
| 729 | ValueMap.insert(std::make_pair(SF, DF)); |
| 730 | |
| 731 | // Linkonce+Weak = Weak |
| 732 | // *+External Weak = * |
| 733 | if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) || |
| 734 | DF->hasExternalWeakLinkage()) |
| 735 | DF->setLinkage(SF->getLinkage()); |
| 736 | } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) { |
| 737 | // At this point we know that SF has LinkOnce or External* linkage. |
| 738 | ValueMap.insert(std::make_pair(SF, DF)); |
| 739 | if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage()) |
| 740 | // Don't inherit linkonce & external weak linkage |
| 741 | DF->setLinkage(SF->getLinkage()); |
| 742 | } else if (SF->getLinkage() != DF->getLinkage()) { |
| 743 | return Error(Err, "Functions named '" + SF->getName() + |
| 744 | "' have different linkage specifiers!"); |
| 745 | } else if (SF->hasExternalLinkage()) { |
| 746 | // The function is defined identically in both modules!! |
| 747 | return Error(Err, "Function '" + |
| 748 | ToStr(SF->getFunctionType(), Src) + "':\"" + |
| 749 | SF->getName() + "\" - Function is already defined!"); |
| 750 | } else { |
| 751 | assert(0 && "Unknown linkage configuration found!"); |
| 752 | } |
| 753 | } |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | // LinkFunctionBody - Copy the source function over into the dest function and |
| 758 | // fix up references to values. At this point we know that Dest is an external |
| 759 | // function, and that Src is not. |
| 760 | static bool LinkFunctionBody(Function *Dest, Function *Src, |
| 761 | std::map<const Value*, Value*> &ValueMap, |
| 762 | std::string *Err) { |
| 763 | assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration()); |
| 764 | |
| 765 | // Go through and convert function arguments over, remembering the mapping. |
| 766 | Function::arg_iterator DI = Dest->arg_begin(); |
| 767 | for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| 768 | I != E; ++I, ++DI) { |
| 769 | DI->setName(I->getName()); // Copy the name information over... |
| 770 | |
| 771 | // Add a mapping to our local map |
| 772 | ValueMap.insert(std::make_pair(I, DI)); |
| 773 | } |
| 774 | |
| 775 | // Splice the body of the source function into the dest function. |
| 776 | Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList()); |
| 777 | |
| 778 | // At this point, all of the instructions and values of the function are now |
| 779 | // copied over. The only problem is that they are still referencing values in |
| 780 | // the Source function as operands. Loop through all of the operands of the |
| 781 | // functions and patch them up to point to the local versions... |
| 782 | // |
| 783 | for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB) |
| 784 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 785 | for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); |
| 786 | OI != OE; ++OI) |
| 787 | if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI)) |
| 788 | *OI = RemapOperand(*OI, ValueMap); |
| 789 | |
| 790 | // There is no need to map the arguments anymore. |
| 791 | for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| 792 | I != E; ++I) |
| 793 | ValueMap.erase(I); |
| 794 | |
| 795 | return false; |
| 796 | } |
| 797 | |
| 798 | |
| 799 | // LinkFunctionBodies - Link in the function bodies that are defined in the |
| 800 | // source module into the DestModule. This consists basically of copying the |
| 801 | // function over and fixing up references to values. |
| 802 | static bool LinkFunctionBodies(Module *Dest, Module *Src, |
| 803 | std::map<const Value*, Value*> &ValueMap, |
| 804 | std::string *Err) { |
| 805 | |
| 806 | // Loop over all of the functions in the src module, mapping them over as we |
| 807 | // go |
| 808 | for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) { |
| 809 | if (!SF->isDeclaration()) { // No body if function is external |
| 810 | Function *DF = cast<Function>(ValueMap[SF]); // Destination function |
| 811 | |
| 812 | // DF not external SF external? |
| 813 | if (DF->isDeclaration()) |
| 814 | // Only provide the function body if there isn't one already. |
| 815 | if (LinkFunctionBody(DF, SF, ValueMap, Err)) |
| 816 | return true; |
| 817 | } |
| 818 | } |
| 819 | return false; |
| 820 | } |
| 821 | |
| 822 | // LinkAppendingVars - If there were any appending global variables, link them |
| 823 | // together now. Return true on error. |
| 824 | static bool LinkAppendingVars(Module *M, |
| 825 | std::multimap<std::string, GlobalVariable *> &AppendingVars, |
| 826 | std::string *ErrorMsg) { |
| 827 | if (AppendingVars.empty()) return false; // Nothing to do. |
| 828 | |
| 829 | // Loop over the multimap of appending vars, processing any variables with the |
| 830 | // same name, forming a new appending global variable with both of the |
| 831 | // initializers merged together, then rewrite references to the old variables |
| 832 | // and delete them. |
| 833 | std::vector<Constant*> Inits; |
| 834 | while (AppendingVars.size() > 1) { |
| 835 | // Get the first two elements in the map... |
| 836 | std::multimap<std::string, |
| 837 | GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++; |
| 838 | |
| 839 | // If the first two elements are for different names, there is no pair... |
| 840 | // Otherwise there is a pair, so link them together... |
| 841 | if (First->first == Second->first) { |
| 842 | GlobalVariable *G1 = First->second, *G2 = Second->second; |
| 843 | const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType()); |
| 844 | const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType()); |
| 845 | |
| 846 | // Check to see that they two arrays agree on type... |
| 847 | if (T1->getElementType() != T2->getElementType()) |
| 848 | return Error(ErrorMsg, |
| 849 | "Appending variables with different element types need to be linked!"); |
| 850 | if (G1->isConstant() != G2->isConstant()) |
| 851 | return Error(ErrorMsg, |
| 852 | "Appending variables linked with different const'ness!"); |
| 853 | |
| 854 | if (G1->getAlignment() != G2->getAlignment()) |
| 855 | return Error(ErrorMsg, |
| 856 | "Appending variables with different alignment need to be linked!"); |
| 857 | |
| 858 | if (G1->getVisibility() != G2->getVisibility()) |
| 859 | return Error(ErrorMsg, |
| 860 | "Appending variables with different visibility need to be linked!"); |
| 861 | |
| 862 | if (G1->getSection() != G2->getSection()) |
| 863 | return Error(ErrorMsg, |
| 864 | "Appending variables with different section name need to be linked!"); |
| 865 | |
| 866 | unsigned NewSize = T1->getNumElements() + T2->getNumElements(); |
| 867 | ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize); |
| 868 | |
| 869 | G1->setName(""); // Clear G1's name in case of a conflict! |
| 870 | |
| 871 | // Create the new global variable... |
| 872 | GlobalVariable *NG = |
| 873 | new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(), |
| 874 | /*init*/0, First->first, M, G1->isThreadLocal()); |
| 875 | |
| 876 | // Propagate alignment, visibility and section info. |
| 877 | CopyGVAttributes(NG, G1); |
| 878 | |
| 879 | // Merge the initializer... |
| 880 | Inits.reserve(NewSize); |
| 881 | if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) { |
| 882 | for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) |
| 883 | Inits.push_back(I->getOperand(i)); |
| 884 | } else { |
| 885 | assert(isa<ConstantAggregateZero>(G1->getInitializer())); |
| 886 | Constant *CV = Constant::getNullValue(T1->getElementType()); |
| 887 | for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) |
| 888 | Inits.push_back(CV); |
| 889 | } |
| 890 | if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) { |
| 891 | for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) |
| 892 | Inits.push_back(I->getOperand(i)); |
| 893 | } else { |
| 894 | assert(isa<ConstantAggregateZero>(G2->getInitializer())); |
| 895 | Constant *CV = Constant::getNullValue(T2->getElementType()); |
| 896 | for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) |
| 897 | Inits.push_back(CV); |
| 898 | } |
| 899 | NG->setInitializer(ConstantArray::get(NewType, Inits)); |
| 900 | Inits.clear(); |
| 901 | |
| 902 | // Replace any uses of the two global variables with uses of the new |
| 903 | // global... |
| 904 | |
| 905 | // FIXME: This should rewrite simple/straight-forward uses such as |
| 906 | // getelementptr instructions to not use the Cast! |
| 907 | G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G1->getType())); |
| 908 | G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, G2->getType())); |
| 909 | |
| 910 | // Remove the two globals from the module now... |
| 911 | M->getGlobalList().erase(G1); |
| 912 | M->getGlobalList().erase(G2); |
| 913 | |
| 914 | // Put the new global into the AppendingVars map so that we can handle |
| 915 | // linking of more than two vars... |
| 916 | Second->second = NG; |
| 917 | } |
| 918 | AppendingVars.erase(First); |
| 919 | } |
| 920 | |
| 921 | return false; |
| 922 | } |
| 923 | |
| 924 | |
| 925 | // LinkModules - This function links two modules together, with the resulting |
| 926 | // left module modified to be the composite of the two input modules. If an |
| 927 | // error occurs, true is returned and ErrorMsg (if not null) is set to indicate |
| 928 | // the problem. Upon failure, the Dest module could be in a modified state, and |
| 929 | // shouldn't be relied on to be consistent. |
| 930 | bool |
| 931 | Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) { |
| 932 | assert(Dest != 0 && "Invalid Destination module"); |
| 933 | assert(Src != 0 && "Invalid Source Module"); |
| 934 | |
| 935 | if (Dest->getDataLayout().empty()) { |
| 936 | if (!Src->getDataLayout().empty()) { |
| 937 | Dest->setDataLayout(Src->getDataLayout()); |
| 938 | } else { |
| 939 | std::string DataLayout; |
| 940 | |
| 941 | if (Dest->getEndianness() == Module::AnyEndianness) |
| 942 | if (Src->getEndianness() == Module::BigEndian) |
| 943 | DataLayout.append("E"); |
| 944 | else if (Src->getEndianness() == Module::LittleEndian) |
| 945 | DataLayout.append("e"); |
| 946 | if (Dest->getPointerSize() == Module::AnyPointerSize) |
| 947 | if (Src->getPointerSize() == Module::Pointer64) |
| 948 | DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64"); |
| 949 | else if (Src->getPointerSize() == Module::Pointer32) |
| 950 | DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32"); |
| 951 | Dest->setDataLayout(DataLayout); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | // COpy the target triple from the source to dest if the dest's is empty |
| 956 | if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty()) |
| 957 | Dest->setTargetTriple(Src->getTargetTriple()); |
| 958 | |
| 959 | if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() && |
| 960 | Src->getDataLayout() != Dest->getDataLayout()) |
| 961 | cerr << "WARNING: Linking two modules of different data layouts!\n"; |
| 962 | if (!Src->getTargetTriple().empty() && |
| 963 | Dest->getTargetTriple() != Src->getTargetTriple()) |
| 964 | cerr << "WARNING: Linking two modules of different target triples!\n"; |
| 965 | |
| 966 | // Append the module inline asm string |
| 967 | if (!Src->getModuleInlineAsm().empty()) { |
| 968 | if (Dest->getModuleInlineAsm().empty()) |
| 969 | Dest->setModuleInlineAsm(Src->getModuleInlineAsm()); |
| 970 | else |
| 971 | Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+ |
| 972 | Src->getModuleInlineAsm()); |
| 973 | } |
| 974 | |
| 975 | // Update the destination module's dependent libraries list with the libraries |
| 976 | // from the source module. There's no opportunity for duplicates here as the |
| 977 | // Module ensures that duplicate insertions are discarded. |
| 978 | Module::lib_iterator SI = Src->lib_begin(); |
| 979 | Module::lib_iterator SE = Src->lib_end(); |
| 980 | while ( SI != SE ) { |
| 981 | Dest->addLibrary(*SI); |
| 982 | ++SI; |
| 983 | } |
| 984 | |
| 985 | // LinkTypes - Go through the symbol table of the Src module and see if any |
| 986 | // types are named in the src module that are not named in the Dst module. |
| 987 | // Make sure there are no type name conflicts. |
| 988 | if (LinkTypes(Dest, Src, ErrorMsg)) |
| 989 | return true; |
| 990 | |
| 991 | // ValueMap - Mapping of values from what they used to be in Src, to what they |
| 992 | // are now in Dest. |
| 993 | std::map<const Value*, Value*> ValueMap; |
| 994 | |
| 995 | // AppendingVars - Keep track of global variables in the destination module |
| 996 | // with appending linkage. After the module is linked together, they are |
| 997 | // appended and the module is rewritten. |
| 998 | std::multimap<std::string, GlobalVariable *> AppendingVars; |
| 999 | for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end(); |
| 1000 | I != E; ++I) { |
| 1001 | // Add all of the appending globals already in the Dest module to |
| 1002 | // AppendingVars. |
| 1003 | if (I->hasAppendingLinkage()) |
| 1004 | AppendingVars.insert(std::make_pair(I->getName(), I)); |
| 1005 | } |
| 1006 | |
| 1007 | // Insert all of the globals in src into the Dest module... without linking |
| 1008 | // initializers (which could refer to functions not yet mapped over). |
| 1009 | if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) |
| 1010 | return true; |
| 1011 | |
| 1012 | // Link the functions together between the two modules, without doing function |
| 1013 | // bodies... this just adds external function prototypes to the Dest |
| 1014 | // function... We do this so that when we begin processing function bodies, |
| 1015 | // all of the global values that may be referenced are available in our |
| 1016 | // ValueMap. |
| 1017 | if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg)) |
| 1018 | return true; |
| 1019 | |
| 1020 | // Update the initializers in the Dest module now that all globals that may |
| 1021 | // be referenced are in Dest. |
| 1022 | if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true; |
| 1023 | |
| 1024 | // Link in the function bodies that are defined in the source module into the |
| 1025 | // DestModule. This consists basically of copying the function over and |
| 1026 | // fixing up references to values. |
| 1027 | if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; |
| 1028 | |
| 1029 | // If there were any appending global variables, link them together now. |
| 1030 | if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; |
| 1031 | |
| 1032 | // If there were any alias, link them now. |
| 1033 | if (LinkAlias(Dest, Src, ErrorMsg)) return true; |
| 1034 | |
| 1035 | // If the source library's module id is in the dependent library list of the |
| 1036 | // destination library, remove it since that module is now linked in. |
| 1037 | sys::Path modId; |
| 1038 | modId.set(Src->getModuleIdentifier()); |
| 1039 | if (!modId.isEmpty()) |
| 1040 | Dest->removeLibrary(modId.getBasename()); |
| 1041 | |
| 1042 | return false; |
| 1043 | } |
| 1044 | |
| 1045 | // vim: sw=2 |