blob: 434e8d74726d48db5ac8443cb6a895c24bf8542f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions. Note that the machine may be running in 32-bit mode.
26def HasV9 : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions. Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate. In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11 : PatLeaf<(imm), [{
47 // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48 return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13 : PatLeaf<(imm), [{
52 // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53 return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57 return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61 // Transformation function: shift the immediate value down into the low bits.
62 return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66 return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let MIOperandInfo = (ops IntRegs, IntRegs);
77}
78def MEMri : Operand<i32> {
79 let PrintMethod = "printMemOperand";
80 let MIOperandInfo = (ops IntRegs, i32imm);
81}
82
83// Branch targets have OtherVT type.
84def brtarget : Operand<OtherVT>;
85def calltarget : Operand<i32>;
86
87// Operand for printing out a condition code.
88let PrintMethod = "printCCOperand" in
89 def CCOp : Operand<i32>;
90
91def SDTSPcmpfcc :
92SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
93def SDTSPbrcc :
94SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
95def SDTSPselectcc :
96SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
97def SDTSPFTOI :
98SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
99def SDTSPITOF :
100SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
101
102def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
103def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
104def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
105def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
106
107def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
108def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
109
110def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
111def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
112
113def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
114def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
115
116// These are target-independent nodes, but have target-specific formats.
117def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
118def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq,
119 [SDNPHasChain, SDNPOutFlag]>;
120def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeq,
121 [SDNPHasChain, SDNPOutFlag]>;
122
123def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
124def call : SDNode<"SPISD::CALL", SDT_SPCall,
125 [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
126
127def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
128def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
129 [SDNPHasChain, SDNPOptInFlag]>;
130
131//===----------------------------------------------------------------------===//
132// SPARC Flag Conditions
133//===----------------------------------------------------------------------===//
134
135// Note that these values must be kept in sync with the CCOp::CondCode enum
136// values.
137class ICC_VAL<int N> : PatLeaf<(i32 N)>;
138def ICC_NE : ICC_VAL< 9>; // Not Equal
139def ICC_E : ICC_VAL< 1>; // Equal
140def ICC_G : ICC_VAL<10>; // Greater
141def ICC_LE : ICC_VAL< 2>; // Less or Equal
142def ICC_GE : ICC_VAL<11>; // Greater or Equal
143def ICC_L : ICC_VAL< 3>; // Less
144def ICC_GU : ICC_VAL<12>; // Greater Unsigned
145def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
146def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
147def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
148def ICC_POS : ICC_VAL<14>; // Positive
149def ICC_NEG : ICC_VAL< 6>; // Negative
150def ICC_VC : ICC_VAL<15>; // Overflow Clear
151def ICC_VS : ICC_VAL< 7>; // Overflow Set
152
153class FCC_VAL<int N> : PatLeaf<(i32 N)>;
154def FCC_U : FCC_VAL<23>; // Unordered
155def FCC_G : FCC_VAL<22>; // Greater
156def FCC_UG : FCC_VAL<21>; // Unordered or Greater
157def FCC_L : FCC_VAL<20>; // Less
158def FCC_UL : FCC_VAL<19>; // Unordered or Less
159def FCC_LG : FCC_VAL<18>; // Less or Greater
160def FCC_NE : FCC_VAL<17>; // Not Equal
161def FCC_E : FCC_VAL<25>; // Equal
162def FCC_UE : FCC_VAL<24>; // Unordered or Equal
163def FCC_GE : FCC_VAL<25>; // Greater or Equal
164def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
165def FCC_LE : FCC_VAL<27>; // Less or Equal
166def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
167def FCC_O : FCC_VAL<29>; // Ordered
168
169//===----------------------------------------------------------------------===//
170// Instruction Class Templates
171//===----------------------------------------------------------------------===//
172
173/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
174multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
175 def rr : F3_1<2, Op3Val,
176 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
177 !strconcat(OpcStr, " $b, $c, $dst"),
178 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
179 def ri : F3_2<2, Op3Val,
180 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
181 !strconcat(OpcStr, " $b, $c, $dst"),
182 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
183}
184
185/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
186/// pattern.
187multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
188 def rr : F3_1<2, Op3Val,
189 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
190 !strconcat(OpcStr, " $b, $c, $dst"), []>;
191 def ri : F3_2<2, Op3Val,
192 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
193 !strconcat(OpcStr, " $b, $c, $dst"), []>;
194}
195
196//===----------------------------------------------------------------------===//
197// Instructions
198//===----------------------------------------------------------------------===//
199
200// Pseudo instructions.
201class Pseudo<dag ops, string asmstr, list<dag> pattern>
202 : InstSP<ops, asmstr, pattern>;
203
204def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
205 "!ADJCALLSTACKDOWN $amt",
206 [(callseq_start imm:$amt)]>, Imp<[O6],[O6]>;
207def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
208 "!ADJCALLSTACKUP $amt",
209 [(callseq_end imm:$amt)]>, Imp<[O6],[O6]>;
210def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
211 "!IMPLICIT_DEF $dst",
212 [(set IntRegs:$dst, (undef))]>;
213def IMPLICIT_DEF_FP : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
214 [(set FPRegs:$dst, (undef))]>;
215def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
216 [(set DFPRegs:$dst, (undef))]>;
217
218// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
219// fpmover pass.
220let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
221 def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
222 "!FpMOVD $src, $dst", []>;
223 def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
224 "!FpNEGD $src, $dst",
225 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
226 def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
227 "!FpABSD $src, $dst",
228 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
229}
230
231// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
232// scheduler into a branch sequence. This has to handle all permutations of
233// selection between i32/f32/f64 on ICC and FCC.
234let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
235 def SELECT_CC_Int_ICC
236 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
237 "; SELECT_CC_Int_ICC PSEUDO!",
238 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
239 imm:$Cond))]>;
240 def SELECT_CC_Int_FCC
241 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
242 "; SELECT_CC_Int_FCC PSEUDO!",
243 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
244 imm:$Cond))]>;
245 def SELECT_CC_FP_ICC
246 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
247 "; SELECT_CC_FP_ICC PSEUDO!",
248 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
249 imm:$Cond))]>;
250 def SELECT_CC_FP_FCC
251 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
252 "; SELECT_CC_FP_FCC PSEUDO!",
253 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
254 imm:$Cond))]>;
255 def SELECT_CC_DFP_ICC
256 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
257 "; SELECT_CC_DFP_ICC PSEUDO!",
258 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
259 imm:$Cond))]>;
260 def SELECT_CC_DFP_FCC
261 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
262 "; SELECT_CC_DFP_FCC PSEUDO!",
263 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
264 imm:$Cond))]>;
265}
266
267
268// Section A.3 - Synthetic Instructions, p. 85
269// special cases of JMPL:
270let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
271 let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
272 def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
273}
274
275// Section B.1 - Load Integer Instructions, p. 90
276def LDSBrr : F3_1<3, 0b001001,
277 (ops IntRegs:$dst, MEMrr:$addr),
278 "ldsb [$addr], $dst",
279 [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
280def LDSBri : F3_2<3, 0b001001,
281 (ops IntRegs:$dst, MEMri:$addr),
282 "ldsb [$addr], $dst",
283 [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
284def LDSHrr : F3_1<3, 0b001010,
285 (ops IntRegs:$dst, MEMrr:$addr),
286 "ldsh [$addr], $dst",
287 [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
288def LDSHri : F3_2<3, 0b001010,
289 (ops IntRegs:$dst, MEMri:$addr),
290 "ldsh [$addr], $dst",
291 [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
292def LDUBrr : F3_1<3, 0b000001,
293 (ops IntRegs:$dst, MEMrr:$addr),
294 "ldub [$addr], $dst",
295 [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
296def LDUBri : F3_2<3, 0b000001,
297 (ops IntRegs:$dst, MEMri:$addr),
298 "ldub [$addr], $dst",
299 [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
300def LDUHrr : F3_1<3, 0b000010,
301 (ops IntRegs:$dst, MEMrr:$addr),
302 "lduh [$addr], $dst",
303 [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
304def LDUHri : F3_2<3, 0b000010,
305 (ops IntRegs:$dst, MEMri:$addr),
306 "lduh [$addr], $dst",
307 [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
308def LDrr : F3_1<3, 0b000000,
309 (ops IntRegs:$dst, MEMrr:$addr),
310 "ld [$addr], $dst",
311 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
312def LDri : F3_2<3, 0b000000,
313 (ops IntRegs:$dst, MEMri:$addr),
314 "ld [$addr], $dst",
315 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
316
317// Section B.2 - Load Floating-point Instructions, p. 92
318def LDFrr : F3_1<3, 0b100000,
319 (ops FPRegs:$dst, MEMrr:$addr),
320 "ld [$addr], $dst",
321 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
322def LDFri : F3_2<3, 0b100000,
323 (ops FPRegs:$dst, MEMri:$addr),
324 "ld [$addr], $dst",
325 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
326def LDDFrr : F3_1<3, 0b100011,
327 (ops DFPRegs:$dst, MEMrr:$addr),
328 "ldd [$addr], $dst",
329 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
330def LDDFri : F3_2<3, 0b100011,
331 (ops DFPRegs:$dst, MEMri:$addr),
332 "ldd [$addr], $dst",
333 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
334
335// Section B.4 - Store Integer Instructions, p. 95
336def STBrr : F3_1<3, 0b000101,
337 (ops MEMrr:$addr, IntRegs:$src),
338 "stb $src, [$addr]",
339 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
340def STBri : F3_2<3, 0b000101,
341 (ops MEMri:$addr, IntRegs:$src),
342 "stb $src, [$addr]",
343 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
344def STHrr : F3_1<3, 0b000110,
345 (ops MEMrr:$addr, IntRegs:$src),
346 "sth $src, [$addr]",
347 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
348def STHri : F3_2<3, 0b000110,
349 (ops MEMri:$addr, IntRegs:$src),
350 "sth $src, [$addr]",
351 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
352def STrr : F3_1<3, 0b000100,
353 (ops MEMrr:$addr, IntRegs:$src),
354 "st $src, [$addr]",
355 [(store IntRegs:$src, ADDRrr:$addr)]>;
356def STri : F3_2<3, 0b000100,
357 (ops MEMri:$addr, IntRegs:$src),
358 "st $src, [$addr]",
359 [(store IntRegs:$src, ADDRri:$addr)]>;
360
361// Section B.5 - Store Floating-point Instructions, p. 97
362def STFrr : F3_1<3, 0b100100,
363 (ops MEMrr:$addr, FPRegs:$src),
364 "st $src, [$addr]",
365 [(store FPRegs:$src, ADDRrr:$addr)]>;
366def STFri : F3_2<3, 0b100100,
367 (ops MEMri:$addr, FPRegs:$src),
368 "st $src, [$addr]",
369 [(store FPRegs:$src, ADDRri:$addr)]>;
370def STDFrr : F3_1<3, 0b100111,
371 (ops MEMrr:$addr, DFPRegs:$src),
372 "std $src, [$addr]",
373 [(store DFPRegs:$src, ADDRrr:$addr)]>;
374def STDFri : F3_2<3, 0b100111,
375 (ops MEMri:$addr, DFPRegs:$src),
376 "std $src, [$addr]",
377 [(store DFPRegs:$src, ADDRri:$addr)]>;
378
379// Section B.9 - SETHI Instruction, p. 104
380def SETHIi: F2_1<0b100,
381 (ops IntRegs:$dst, i32imm:$src),
382 "sethi $src, $dst",
383 [(set IntRegs:$dst, SETHIimm:$src)]>;
384
385// Section B.10 - NOP Instruction, p. 105
386// (It's a special case of SETHI)
387let rd = 0, imm22 = 0 in
388 def NOP : F2_1<0b100, (ops), "nop", []>;
389
390// Section B.11 - Logical Instructions, p. 106
391defm AND : F3_12<"and", 0b000001, and>;
392
393def ANDNrr : F3_1<2, 0b000101,
394 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
395 "andn $b, $c, $dst",
396 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
397def ANDNri : F3_2<2, 0b000101,
398 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
399 "andn $b, $c, $dst", []>;
400
401defm OR : F3_12<"or", 0b000010, or>;
402
403def ORNrr : F3_1<2, 0b000110,
404 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
405 "orn $b, $c, $dst",
406 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
407def ORNri : F3_2<2, 0b000110,
408 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
409 "orn $b, $c, $dst", []>;
410defm XOR : F3_12<"xor", 0b000011, xor>;
411
412def XNORrr : F3_1<2, 0b000111,
413 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
414 "xnor $b, $c, $dst",
415 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
416def XNORri : F3_2<2, 0b000111,
417 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
418 "xnor $b, $c, $dst", []>;
419
420// Section B.12 - Shift Instructions, p. 107
421defm SLL : F3_12<"sll", 0b100101, shl>;
422defm SRL : F3_12<"srl", 0b100110, srl>;
423defm SRA : F3_12<"sra", 0b100111, sra>;
424
425// Section B.13 - Add Instructions, p. 108
426defm ADD : F3_12<"add", 0b000000, add>;
427
428// "LEA" forms of add (patterns to make tblgen happy)
429def LEA_ADDri : F3_2<2, 0b000000,
430 (ops IntRegs:$dst, MEMri:$addr),
431 "add ${addr:arith}, $dst",
432 [(set IntRegs:$dst, ADDRri:$addr)]>;
433
434defm ADDCC : F3_12<"addcc", 0b010000, addc>;
435defm ADDX : F3_12<"addx", 0b001000, adde>;
436
437// Section B.15 - Subtract Instructions, p. 110
438defm SUB : F3_12 <"sub" , 0b000100, sub>;
439defm SUBX : F3_12 <"subx" , 0b001100, sube>;
440defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
441
442def SUBXCCrr: F3_1<2, 0b011100,
443 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
444 "subxcc $b, $c, $dst", []>;
445
446// Section B.18 - Multiply Instructions, p. 113
447defm UMUL : F3_12np<"umul", 0b001010>;
448defm SMUL : F3_12 <"smul", 0b001011, mul>;
449
450
451// Section B.19 - Divide Instructions, p. 115
452defm UDIV : F3_12np<"udiv", 0b001110>;
453defm SDIV : F3_12np<"sdiv", 0b001111>;
454
455// Section B.20 - SAVE and RESTORE, p. 117
456defm SAVE : F3_12np<"save" , 0b111100>;
457defm RESTORE : F3_12np<"restore", 0b111101>;
458
459// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
460
461// conditional branch class:
462class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
463 : F2_2<cc, 0b010, ops, asmstr, pattern> {
464 let isBranch = 1;
465 let isTerminator = 1;
466 let hasDelaySlot = 1;
467 let noResults = 1;
468}
469
470let isBarrier = 1 in
471 def BA : BranchSP<0b1000, (ops brtarget:$dst),
472 "ba $dst",
473 [(br bb:$dst)]>;
474
475// FIXME: the encoding for the JIT should look at the condition field.
476def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
477 "b$cc $dst",
478 [(SPbricc bb:$dst, imm:$cc)]>;
479
480
481// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
482
483// floating-point conditional branch class:
484class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
485 : F2_2<cc, 0b110, ops, asmstr, pattern> {
486 let isBranch = 1;
487 let isTerminator = 1;
488 let hasDelaySlot = 1;
489 let noResults = 1;
490}
491
492// FIXME: the encoding for the JIT should look at the condition field.
493def FBCOND : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
494 "fb$cc $dst",
495 [(SPbrfcc bb:$dst, imm:$cc)]>;
496
497
498// Section B.24 - Call and Link Instruction, p. 125
499// This is the only Format 1 instruction
500let Uses = [O0, O1, O2, O3, O4, O5],
501 hasDelaySlot = 1, isCall = 1, noResults = 1,
502 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
503 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in {
504 def CALL : InstSP<(ops calltarget:$dst),
505 "call $dst", []> {
506 bits<30> disp;
507 let op = 1;
508 let Inst{29-0} = disp;
509 }
510
511 // indirect calls
512 def JMPLrr : F3_1<2, 0b111000,
513 (ops MEMrr:$ptr),
514 "call $ptr",
515 [(call ADDRrr:$ptr)]>;
516 def JMPLri : F3_2<2, 0b111000,
517 (ops MEMri:$ptr),
518 "call $ptr",
519 [(call ADDRri:$ptr)]>;
520}
521
522// Section B.28 - Read State Register Instructions
523def RDY : F3_1<2, 0b101000,
524 (ops IntRegs:$dst),
525 "rd %y, $dst", []>;
526
527// Section B.29 - Write State Register Instructions
528def WRYrr : F3_1<2, 0b110000,
529 (ops IntRegs:$b, IntRegs:$c),
530 "wr $b, $c, %y", []>;
531def WRYri : F3_2<2, 0b110000,
532 (ops IntRegs:$b, i32imm:$c),
533 "wr $b, $c, %y", []>;
534
535// Convert Integer to Floating-point Instructions, p. 141
536def FITOS : F3_3<2, 0b110100, 0b011000100,
537 (ops FPRegs:$dst, FPRegs:$src),
538 "fitos $src, $dst",
539 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
540def FITOD : F3_3<2, 0b110100, 0b011001000,
541 (ops DFPRegs:$dst, FPRegs:$src),
542 "fitod $src, $dst",
543 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
544
545// Convert Floating-point to Integer Instructions, p. 142
546def FSTOI : F3_3<2, 0b110100, 0b011010001,
547 (ops FPRegs:$dst, FPRegs:$src),
548 "fstoi $src, $dst",
549 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
550def FDTOI : F3_3<2, 0b110100, 0b011010010,
551 (ops FPRegs:$dst, DFPRegs:$src),
552 "fdtoi $src, $dst",
553 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
554
555// Convert between Floating-point Formats Instructions, p. 143
556def FSTOD : F3_3<2, 0b110100, 0b011001001,
557 (ops DFPRegs:$dst, FPRegs:$src),
558 "fstod $src, $dst",
559 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
560def FDTOS : F3_3<2, 0b110100, 0b011000110,
561 (ops FPRegs:$dst, DFPRegs:$src),
562 "fdtos $src, $dst",
563 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
564
565// Floating-point Move Instructions, p. 144
566def FMOVS : F3_3<2, 0b110100, 0b000000001,
567 (ops FPRegs:$dst, FPRegs:$src),
568 "fmovs $src, $dst", []>;
569def FNEGS : F3_3<2, 0b110100, 0b000000101,
570 (ops FPRegs:$dst, FPRegs:$src),
571 "fnegs $src, $dst",
572 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
573def FABSS : F3_3<2, 0b110100, 0b000001001,
574 (ops FPRegs:$dst, FPRegs:$src),
575 "fabss $src, $dst",
576 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
577
578
579// Floating-point Square Root Instructions, p.145
580def FSQRTS : F3_3<2, 0b110100, 0b000101001,
581 (ops FPRegs:$dst, FPRegs:$src),
582 "fsqrts $src, $dst",
583 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
584def FSQRTD : F3_3<2, 0b110100, 0b000101010,
585 (ops DFPRegs:$dst, DFPRegs:$src),
586 "fsqrtd $src, $dst",
587 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
588
589
590
591// Floating-point Add and Subtract Instructions, p. 146
592def FADDS : F3_3<2, 0b110100, 0b001000001,
593 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
594 "fadds $src1, $src2, $dst",
595 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
596def FADDD : F3_3<2, 0b110100, 0b001000010,
597 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
598 "faddd $src1, $src2, $dst",
599 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
600def FSUBS : F3_3<2, 0b110100, 0b001000101,
601 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
602 "fsubs $src1, $src2, $dst",
603 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
604def FSUBD : F3_3<2, 0b110100, 0b001000110,
605 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
606 "fsubd $src1, $src2, $dst",
607 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
608
609// Floating-point Multiply and Divide Instructions, p. 147
610def FMULS : F3_3<2, 0b110100, 0b001001001,
611 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
612 "fmuls $src1, $src2, $dst",
613 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
614def FMULD : F3_3<2, 0b110100, 0b001001010,
615 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
616 "fmuld $src1, $src2, $dst",
617 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
618def FSMULD : F3_3<2, 0b110100, 0b001101001,
619 (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
620 "fsmuld $src1, $src2, $dst",
621 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
622 (fextend FPRegs:$src2)))]>;
623def FDIVS : F3_3<2, 0b110100, 0b001001101,
624 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
625 "fdivs $src1, $src2, $dst",
626 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
627def FDIVD : F3_3<2, 0b110100, 0b001001110,
628 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
629 "fdivd $src1, $src2, $dst",
630 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
631
632// Floating-point Compare Instructions, p. 148
633// Note: the 2nd template arg is different for these guys.
634// Note 2: the result of a FCMP is not available until the 2nd cycle
635// after the instr is retired, but there is no interlock. This behavior
636// is modelled with a forced noop after the instruction.
637def FCMPS : F3_3<2, 0b110101, 0b001010001,
638 (ops FPRegs:$src1, FPRegs:$src2),
639 "fcmps $src1, $src2\n\tnop",
640 [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
641def FCMPD : F3_3<2, 0b110101, 0b001010010,
642 (ops DFPRegs:$src1, DFPRegs:$src2),
643 "fcmpd $src1, $src2\n\tnop",
644 [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
645
646
647//===----------------------------------------------------------------------===//
648// V9 Instructions
649//===----------------------------------------------------------------------===//
650
651// V9 Conditional Moves.
652let Predicates = [HasV9], isTwoAddress = 1 in {
653 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
654 // FIXME: Add instruction encodings for the JIT some day.
655 def MOVICCrr
656 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
657 "mov$cc %icc, $F, $dst",
658 [(set IntRegs:$dst,
659 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
660 def MOVICCri
661 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
662 "mov$cc %icc, $F, $dst",
663 [(set IntRegs:$dst,
664 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
665
666 def MOVFCCrr
667 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
668 "mov$cc %fcc0, $F, $dst",
669 [(set IntRegs:$dst,
670 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
671 def MOVFCCri
672 : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
673 "mov$cc %fcc0, $F, $dst",
674 [(set IntRegs:$dst,
675 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
676
677 def FMOVS_ICC
678 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
679 "fmovs$cc %icc, $F, $dst",
680 [(set FPRegs:$dst,
681 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
682 def FMOVD_ICC
683 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
684 "fmovd$cc %icc, $F, $dst",
685 [(set DFPRegs:$dst,
686 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
687 def FMOVS_FCC
688 : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
689 "fmovs$cc %fcc0, $F, $dst",
690 [(set FPRegs:$dst,
691 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
692 def FMOVD_FCC
693 : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
694 "fmovd$cc %fcc0, $F, $dst",
695 [(set DFPRegs:$dst,
696 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
697
698}
699
700// Floating-Point Move Instructions, p. 164 of the V9 manual.
701let Predicates = [HasV9] in {
702 def FMOVD : F3_3<2, 0b110100, 0b000000010,
703 (ops DFPRegs:$dst, DFPRegs:$src),
704 "fmovd $src, $dst", []>;
705 def FNEGD : F3_3<2, 0b110100, 0b000000110,
706 (ops DFPRegs:$dst, DFPRegs:$src),
707 "fnegd $src, $dst",
708 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
709 def FABSD : F3_3<2, 0b110100, 0b000001010,
710 (ops DFPRegs:$dst, DFPRegs:$src),
711 "fabsd $src, $dst",
712 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
713}
714
715// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
716// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
717def POPCrr : F3_1<2, 0b101110,
718 (ops IntRegs:$dst, IntRegs:$src),
719 "popc $src, $dst", []>, Requires<[HasV9]>;
720def : Pat<(ctpop IntRegs:$src),
721 (POPCrr (SLLri IntRegs:$src, 0))>;
722
723//===----------------------------------------------------------------------===//
724// Non-Instruction Patterns
725//===----------------------------------------------------------------------===//
726
727// Small immediates.
728def : Pat<(i32 simm13:$val),
729 (ORri G0, imm:$val)>;
730// Arbitrary immediates.
731def : Pat<(i32 imm:$val),
732 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
733
734// subc
735def : Pat<(subc IntRegs:$b, IntRegs:$c),
736 (SUBCCrr IntRegs:$b, IntRegs:$c)>;
737def : Pat<(subc IntRegs:$b, simm13:$val),
738 (SUBCCri IntRegs:$b, imm:$val)>;
739
740// Global addresses, constant pool entries
741def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
742def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
743def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
744def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
745
746// Add reg, lo. This is used when taking the addr of a global/constpool entry.
747def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
748 (ADDri IntRegs:$r, tglobaladdr:$in)>;
749def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
750 (ADDri IntRegs:$r, tconstpool:$in)>;
751
752// Calls:
753def : Pat<(call tglobaladdr:$dst),
754 (CALL tglobaladdr:$dst)>;
755def : Pat<(call texternalsym:$dst),
756 (CALL texternalsym:$dst)>;
757
758def : Pat<(ret), (RETL)>;
759
760// Map integer extload's to zextloads.
761def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
762def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
763def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
764def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
765def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
766def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
767
768// zextload bool -> zextload byte
769def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
770def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
771
772// truncstore bool -> truncstore byte.
773def : Pat<(truncstorei1 IntRegs:$src, ADDRrr:$addr),
774 (STBrr ADDRrr:$addr, IntRegs:$src)>;
775def : Pat<(truncstorei1 IntRegs:$src, ADDRri:$addr),
776 (STBri ADDRri:$addr, IntRegs:$src)>;