blob: 48af21890fdad107e4da720d613309cc62d15e67 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
52 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
53 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
56 // -1 indicates that the gcc number is undefined.
57 int DwarfNumber = -1;
58}
59
60// RegisterWithSubRegs - This can be used to define instances of Register which
61// need to specify sub-registers.
62// List "subregs" specifies which registers are sub-registers to this one. This
63// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
64// This allows the code generator to be careful not to put two values with
65// overlapping live ranges into registers which alias.
66class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
67 let SubRegs = subregs;
68}
69
70// SubRegSet - This can be used to define a specific mapping of registers to
71// indices, for use as named subregs of a particular physical register. Each
72// register in 'subregs' becomes an addressable subregister at index 'n' of the
73// corresponding register in 'regs'.
74class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
75 int index = n;
76
77 list<Register> From = regs;
78 list<Register> To = subregs;
79}
80
81// RegisterClass - Now that all of the registers are defined, and aliases
82// between registers are defined, specify which registers belong to which
83// register classes. This also defines the default allocation order of
84// registers by register allocators.
85//
86class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
87 list<Register> regList> {
88 string Namespace = namespace;
89
90 // RegType - Specify the list ValueType of the registers in this register
91 // class. Note that all registers in a register class must have the same
92 // ValueTypes. This is a list because some targets permit storing different
93 // types in same register, for example vector values with 128-bit total size,
94 // but different count/size of items, like SSE on x86.
95 //
96 list<ValueType> RegTypes = regTypes;
97
98 // Size - Specify the spill size in bits of the registers. A default value of
99 // zero lets tablgen pick an appropriate size.
100 int Size = 0;
101
102 // Alignment - Specify the alignment required of the registers when they are
103 // stored or loaded to memory.
104 //
105 int Alignment = alignment;
106
107 // MemberList - Specify which registers are in this class. If the
108 // allocation_order_* method are not specified, this also defines the order of
109 // allocation used by the register allocator.
110 //
111 list<Register> MemberList = regList;
112
113 // SubClassList - Specify which register classes correspond to subregisters
114 // of this class. The order should be by subregister set index.
115 list<RegisterClass> SubRegClassList = [];
116
117 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
118 // code into a generated register class. The normal usage of this is to
119 // overload virtual methods.
120 code MethodProtos = [{}];
121 code MethodBodies = [{}];
122}
123
124
125//===----------------------------------------------------------------------===//
126// DwarfRegNum - This class provides a mapping of the llvm register enumeration
127// to the register numbering used by gcc and gdb. These values are used by a
128// debug information writer (ex. DwarfWriter) to describe where values may be
129// located during execution.
130class DwarfRegNum<int N> {
131 // DwarfNumber - Number used internally by gcc/gdb to identify the register.
132 // These values can be determined by locating the <target>.h file in the
133 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
134 // order of these names correspond to the enumeration used by gcc. A value of
135 // -1 indicates that the gcc number is undefined.
136 int DwarfNumber = N;
137}
138
139//===----------------------------------------------------------------------===//
140// Pull in the common support for scheduling
141//
142include "TargetSchedule.td"
143
144class Predicate; // Forward def
145
146//===----------------------------------------------------------------------===//
147// Instruction set description - These classes correspond to the C++ classes in
148// the Target/TargetInstrInfo.h file.
149//
150class Instruction {
151 string Name = ""; // The opcode string for this instruction
152 string Namespace = "";
153
154 dag OperandList; // An dag containing the MI operand list.
155 string AsmString = ""; // The .s format to print the instruction with.
156
157 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
158 // otherwise, uninitialized.
159 list<dag> Pattern;
160
161 // The follow state will eventually be inferred automatically from the
162 // instruction pattern.
163
164 list<Register> Uses = []; // Default to using no non-operand registers
165 list<Register> Defs = []; // Default to modifying no non-operand registers
166
167 // Predicates - List of predicates which will be turned into isel matching
168 // code.
169 list<Predicate> Predicates = [];
170
171 // Code size.
172 int CodeSize = 0;
173
174 // Added complexity passed onto matching pattern.
175 int AddedComplexity = 0;
176
177 // These bits capture information about the high-level semantics of the
178 // instruction.
179 bit isReturn = 0; // Is this instruction a return instruction?
180 bit isBranch = 0; // Is this instruction a branch instruction?
181 bit isBarrier = 0; // Can control flow fall through this instruction?
182 bit isCall = 0; // Is this instruction a call instruction?
183 bit isLoad = 0; // Is this instruction a load instruction?
184 bit isStore = 0; // Is this instruction a store instruction?
185 bit isTwoAddress = 0; // Is this a two address instruction?
186 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
187 bit isCommutable = 0; // Is this 3 operand instruction commutable?
188 bit isTerminator = 0; // Is this part of the terminator for a basic block?
189 bit isReMaterializable = 0; // Is this instruction re-materializable?
190 bit isPredicable = 0; // Is this instruction predicable?
191 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
192 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
193 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
194 bit noResults = 0; // Does this instruction produce no results?
195 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
196
197 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
198
199 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
200
201 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
202 /// be encoded into the output machineinstr.
203 string DisableEncoding = "";
204}
205
206/// Imp - Helper class for specifying the implicit uses/defs set for an
207/// instruction.
208class Imp<list<Register> uses, list<Register> defs> {
209 list<Register> Uses = uses;
210 list<Register> Defs = defs;
211}
212
213/// Predicates - These are extra conditionals which are turned into instruction
214/// selector matching code. Currently each predicate is just a string.
215class Predicate<string cond> {
216 string CondString = cond;
217}
218
219/// NoHonorSignDependentRounding - This predicate is true if support for
220/// sign-dependent-rounding is not enabled.
221def NoHonorSignDependentRounding
222 : Predicate<"!HonorSignDependentRoundingFPMath()">;
223
224class Requires<list<Predicate> preds> {
225 list<Predicate> Predicates = preds;
226}
227
228/// ops definition - This is just a simple marker used to identify the operands
229/// list for an instruction. This should be used like this:
230/// (ops R32:$dst, R32:$src) or something similar.
231def ops;
232
233/// variable_ops definition - Mark this instruction as taking a variable number
234/// of operands.
235def variable_ops;
236
237/// ptr_rc definition - Mark this operand as being a pointer value whose
238/// register class is resolved dynamically via a callback to TargetInstrInfo.
239/// FIXME: We should probably change this to a class which contain a list of
240/// flags. But currently we have but one flag.
241def ptr_rc;
242
243/// Operand Types - These provide the built-in operand types that may be used
244/// by a target. Targets can optionally provide their own operand types as
245/// needed, though this should not be needed for RISC targets.
246class Operand<ValueType ty> {
247 ValueType Type = ty;
248 string PrintMethod = "printOperand";
249 dag MIOperandInfo = (ops);
250}
251
252def i1imm : Operand<i1>;
253def i8imm : Operand<i8>;
254def i16imm : Operand<i16>;
255def i32imm : Operand<i32>;
256def i64imm : Operand<i64>;
257
258/// zero_reg definition - Special node to stand for the zero register.
259///
260def zero_reg;
261
262/// PredicateOperand - This can be used to define a predicate operand for an
263/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
264/// AlwaysVal specifies the value of this predicate when set to "always
265/// execute".
266class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
267 : Operand<ty> {
268 let MIOperandInfo = OpTypes;
269 dag DefaultOps = AlwaysVal;
270}
271
272/// OptionalDefOperand - This is used to define a optional definition operand
273/// for an instruction. DefaultOps is the register the operand represents if none
274/// is supplied, e.g. zero_reg.
275class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
276 : Operand<ty> {
277 let MIOperandInfo = OpTypes;
278 dag DefaultOps = defaultops;
279}
280
281
282// InstrInfo - This class should only be instantiated once to provide parameters
283// which are global to the the target machine.
284//
285class InstrInfo {
286 // If the target wants to associate some target-specific information with each
287 // instruction, it should provide these two lists to indicate how to assemble
288 // the target specific information into the 32 bits available.
289 //
290 list<string> TSFlagsFields = [];
291 list<int> TSFlagsShifts = [];
292
293 // Target can specify its instructions in either big or little-endian formats.
294 // For instance, while both Sparc and PowerPC are big-endian platforms, the
295 // Sparc manual specifies its instructions in the format [31..0] (big), while
296 // PowerPC specifies them using the format [0..31] (little).
297 bit isLittleEndianEncoding = 0;
298}
299
300// Standard Instructions.
301def PHI : Instruction {
302 let OperandList = (ops variable_ops);
303 let AsmString = "PHINODE";
304 let Namespace = "TargetInstrInfo";
305}
306def INLINEASM : Instruction {
307 let OperandList = (ops variable_ops);
308 let AsmString = "";
309 let Namespace = "TargetInstrInfo";
310}
311def LABEL : Instruction {
312 let OperandList = (ops i32imm:$id);
313 let AsmString = "";
314 let Namespace = "TargetInstrInfo";
315 let hasCtrlDep = 1;
316}
317
318//===----------------------------------------------------------------------===//
319// AsmWriter - This class can be implemented by targets that need to customize
320// the format of the .s file writer.
321//
322// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
323// on X86 for example).
324//
325class AsmWriter {
326 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
327 // class. Generated AsmWriter classes are always prefixed with the target
328 // name.
329 string AsmWriterClassName = "AsmPrinter";
330
331 // InstFormatName - AsmWriters can specify the name of the format string to
332 // print instructions with.
333 string InstFormatName = "AsmString";
334
335 // Variant - AsmWriters can be of multiple different variants. Variants are
336 // used to support targets that need to emit assembly code in ways that are
337 // mostly the same for different targets, but have minor differences in
338 // syntax. If the asmstring contains {|} characters in them, this integer
339 // will specify which alternative to use. For example "{x|y|z}" with Variant
340 // == 1, will expand to "y".
341 int Variant = 0;
342}
343def DefaultAsmWriter : AsmWriter;
344
345
346//===----------------------------------------------------------------------===//
347// Target - This class contains the "global" target information
348//
349class Target {
350 // InstructionSet - Instruction set description for this target.
351 InstrInfo InstructionSet;
352
353 // AssemblyWriters - The AsmWriter instances available for this target.
354 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
355}
356
357//===----------------------------------------------------------------------===//
358// SubtargetFeature - A characteristic of the chip set.
359//
360class SubtargetFeature<string n, string a, string v, string d,
361 list<SubtargetFeature> i = []> {
362 // Name - Feature name. Used by command line (-mattr=) to determine the
363 // appropriate target chip.
364 //
365 string Name = n;
366
367 // Attribute - Attribute to be set by feature.
368 //
369 string Attribute = a;
370
371 // Value - Value the attribute to be set to by feature.
372 //
373 string Value = v;
374
375 // Desc - Feature description. Used by command line (-mattr=) to display help
376 // information.
377 //
378 string Desc = d;
379
380 // Implies - Features that this feature implies are present. If one of those
381 // features isn't set, then this one shouldn't be set either.
382 //
383 list<SubtargetFeature> Implies = i;
384}
385
386//===----------------------------------------------------------------------===//
387// Processor chip sets - These values represent each of the chip sets supported
388// by the scheduler. Each Processor definition requires corresponding
389// instruction itineraries.
390//
391class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
392 // Name - Chip set name. Used by command line (-mcpu=) to determine the
393 // appropriate target chip.
394 //
395 string Name = n;
396
397 // ProcItin - The scheduling information for the target processor.
398 //
399 ProcessorItineraries ProcItin = pi;
400
401 // Features - list of
402 list<SubtargetFeature> Features = f;
403}
404
405//===----------------------------------------------------------------------===//
406// Pull in the common support for calling conventions.
407//
408include "TargetCallingConv.td"
409
410//===----------------------------------------------------------------------===//
411// Pull in the common support for DAG isel generation.
412//
413include "TargetSelectionDAG.td"