blob: 301e8c12ab452d46b83a1d4509b923144d71466c [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- TargetData.cpp - Data size & alignment routines --------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines target properties related to datatype size/offset/alignment
11// information.
12//
13// This structure should be created once, filled in if the defaults are not
14// correct and then passed around by const&. None of the members functions
15// require modification to the object.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Target/TargetData.h"
20#include "llvm/Module.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Constants.h"
23#include "llvm/Support/GetElementPtrTypeIterator.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/ManagedStatic.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/StringExtras.h"
28#include <algorithm>
29#include <cstdlib>
30#include <sstream>
31using namespace llvm;
32
33// Handle the Pass registration stuff necessary to use TargetData's.
34namespace {
35 // Register the default SparcV9 implementation...
36 RegisterPass<TargetData> X("targetdata", "Target Data Layout");
37}
38char TargetData::ID = 0;
39
40//===----------------------------------------------------------------------===//
41// Support for StructLayout
42//===----------------------------------------------------------------------===//
43
44StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
45 StructAlignment = 0;
46 StructSize = 0;
47 NumElements = ST->getNumElements();
48
49 // Loop over each of the elements, placing them in memory...
50 for (unsigned i = 0, e = NumElements; i != e; ++i) {
51 const Type *Ty = ST->getElementType(i);
52 unsigned TyAlign;
53 uint64_t TySize;
54 TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty));
55 TySize = TD.getTypeSize(Ty);
56
57 // Add padding if necessary to make the data element aligned properly...
58 if (StructSize % TyAlign != 0)
59 StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding...
60
61 // Keep track of maximum alignment constraint
62 StructAlignment = std::max(TyAlign, StructAlignment);
63
64 MemberOffsets[i] = StructSize;
65 StructSize += TySize; // Consume space for this data item
66 }
67
68 // Empty structures have alignment of 1 byte.
69 if (StructAlignment == 0) StructAlignment = 1;
70
71 // Add padding to the end of the struct so that it could be put in an array
72 // and all array elements would be aligned correctly.
73 if (StructSize % StructAlignment != 0)
74 StructSize = (StructSize/StructAlignment + 1) * StructAlignment;
75}
76
77
78/// getElementContainingOffset - Given a valid offset into the structure,
79/// return the structure index that contains it.
80unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
81 const uint64_t *SI =
82 std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
83 assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
84 --SI;
85 assert(*SI <= Offset && "upper_bound didn't work");
86 assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) &&
87 (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
88 "Upper bound didn't work!");
89 return SI-&MemberOffsets[0];
90}
91
92//===----------------------------------------------------------------------===//
93// TargetAlignElem, TargetAlign support
94//===----------------------------------------------------------------------===//
95
96TargetAlignElem
97TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
98 unsigned char pref_align, uint32_t bit_width) {
99 TargetAlignElem retval;
100 retval.AlignType = align_type;
101 retval.ABIAlign = abi_align;
102 retval.PrefAlign = pref_align;
103 retval.TypeBitWidth = bit_width;
104 return retval;
105}
106
107bool
108TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
109 return (AlignType == rhs.AlignType
110 && ABIAlign == rhs.ABIAlign
111 && PrefAlign == rhs.PrefAlign
112 && TypeBitWidth == rhs.TypeBitWidth);
113}
114
115std::ostream &
116TargetAlignElem::dump(std::ostream &os) const {
117 return os << AlignType
118 << TypeBitWidth
119 << ":" << (int) (ABIAlign * 8)
120 << ":" << (int) (PrefAlign * 8);
121}
122
123const TargetAlignElem TargetData::InvalidAlignmentElem =
124 TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
125
126//===----------------------------------------------------------------------===//
127// TargetData Class Implementation
128//===----------------------------------------------------------------------===//
129
130/*!
131 A TargetDescription string consists of a sequence of hyphen-delimited
132 specifiers for target endianness, pointer size and alignments, and various
133 primitive type sizes and alignments. A typical string looks something like:
134 <br><br>
135 "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
136 <br><br>
137 (note: this string is not fully specified and is only an example.)
138 \p
139 Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
140 below) dictates how a type will be aligned within an aggregate and when used
141 as an argument. Preferred alignment (pref_align, below) determines a type's
142 alignment when emitted as a global.
143 \p
144 Specifier string details:
145 <br><br>
146 <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
147 specifies a little-endian target data model.
148 <br><br>
149 <i>p:<size>:<abi_align>:<pref_align></i>: Pointer size, ABI and preferred
150 alignment.
151 <br><br>
152 <i><type><size>:<abi_align>:<pref_align></i>: Numeric type alignment. Type is
153 one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
154 packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits.
155 \p
156 The default string, fully specified is:
157 <br><br>
158 "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
159 "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
160 "-v64:64:64-v128:128:128"
161 <br><br>
162 Note that in the case of aggregates, 0 is the default ABI and preferred
163 alignment. This is a special case, where the aggregate's computed worst-case
164 alignment will be used.
165 */
166void TargetData::init(const std::string &TargetDescription) {
167 std::string temp = TargetDescription;
168
169 LittleEndian = false;
170 PointerMemSize = 8;
171 PointerABIAlign = 8;
172 PointerPrefAlign = PointerABIAlign;
173
174 // Default alignments
175 setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool
176 setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte
177 setAlignment(INTEGER_ALIGN, 2, 2, 16); // short
178 setAlignment(INTEGER_ALIGN, 4, 4, 32); // int
179 setAlignment(INTEGER_ALIGN, 4, 8, 64); // long
180 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
181 setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
182 setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32
183 setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
184 setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ...
185
186 while (!temp.empty()) {
187 std::string token = getToken(temp, "-");
188 std::string arg0 = getToken(token, ":");
189 const char *p = arg0.c_str();
190 switch(*p) {
191 case 'E':
192 LittleEndian = false;
193 break;
194 case 'e':
195 LittleEndian = true;
196 break;
197 case 'p':
198 PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
199 PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
200 PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
201 if (PointerPrefAlign == 0)
202 PointerPrefAlign = PointerABIAlign;
203 break;
204 case 'i':
205 case 'v':
206 case 'f':
207 case 'a': {
208 AlignTypeEnum align_type =
209 (*p == 'i' ? INTEGER_ALIGN : (*p == 'f' ? FLOAT_ALIGN :
210 (*p == 'v' ? VECTOR_ALIGN : AGGREGATE_ALIGN)));
211 uint32_t size = (uint32_t) atoi(++p);
212 unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8;
213 unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8;
214 if (pref_align == 0)
215 pref_align = abi_align;
216 setAlignment(align_type, abi_align, pref_align, size);
217 break;
218 }
219 default:
220 break;
221 }
222 }
223}
224
225TargetData::TargetData(const Module *M)
226 : ImmutablePass((intptr_t)&ID) {
227 init(M->getDataLayout());
228}
229
230void
231TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
232 unsigned char pref_align, uint32_t bit_width) {
233 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
234 if (Alignments[i].AlignType == align_type &&
235 Alignments[i].TypeBitWidth == bit_width) {
236 // Update the abi, preferred alignments.
237 Alignments[i].ABIAlign = abi_align;
238 Alignments[i].PrefAlign = pref_align;
239 return;
240 }
241 }
242
243 Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
244 pref_align, bit_width));
245}
246
247/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
248/// preferred if ABIInfo = false) the target wants for the specified datatype.
249unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
250 uint32_t BitWidth, bool ABIInfo) const {
251 // Check to see if we have an exact match and remember the best match we see.
252 int BestMatchIdx = -1;
253 int LargestInt = -1;
254 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
255 if (Alignments[i].AlignType == AlignType &&
256 Alignments[i].TypeBitWidth == BitWidth)
257 return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
258
259 // The best match so far depends on what we're looking for.
260 if (AlignType == VECTOR_ALIGN) {
261 // If this is a specification for a smaller vector type, we will fall back
262 // to it. This happens because <128 x double> can be implemented in terms
263 // of 64 <2 x double>.
264 if (Alignments[i].AlignType == VECTOR_ALIGN &&
265 Alignments[i].TypeBitWidth < BitWidth) {
266 // Verify that we pick the biggest of the fallbacks.
267 if (BestMatchIdx == -1 ||
268 Alignments[BestMatchIdx].TypeBitWidth < BitWidth)
269 BestMatchIdx = i;
270 }
271 } else if (AlignType == INTEGER_ALIGN &&
272 Alignments[i].AlignType == INTEGER_ALIGN) {
273 // The "best match" for integers is the smallest size that is larger than
274 // the BitWidth requested.
275 if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
276 Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
277 BestMatchIdx = i;
278 // However, if there isn't one that's larger, then we must use the
279 // largest one we have (see below)
280 if (LargestInt == -1 ||
281 Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
282 LargestInt = i;
283 }
284 }
285
286 // For integers, if we didn't find a best match, use the largest one found.
287 if (BestMatchIdx == -1)
288 BestMatchIdx = LargestInt;
289
290 // Okay, we didn't find an exact solution. Fall back here depending on what
291 // is being looked for.
292 assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!");
293
294 // Since we got a "best match" index, just return it.
295 return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
296 : Alignments[BestMatchIdx].PrefAlign;
297}
298
299/// LayoutInfo - The lazy cache of structure layout information maintained by
300/// TargetData. Note that the struct types must have been free'd before
301/// llvm_shutdown is called (and thus this is deallocated) because all the
302/// targets with cached elements should have been destroyed.
303///
304typedef std::pair<const TargetData*,const StructType*> LayoutKey;
305
306struct DenseMapLayoutKeyInfo {
307 static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); }
308 static inline LayoutKey getTombstoneKey() {
309 return LayoutKey((TargetData*)(intptr_t)-1, 0);
310 }
311 static unsigned getHashValue(const LayoutKey &Val) {
312 return DenseMapKeyInfo<void*>::getHashValue(Val.first) ^
313 DenseMapKeyInfo<void*>::getHashValue(Val.second);
314 }
315 static bool isPod() { return true; }
316};
317
318typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
319static ManagedStatic<LayoutInfoTy> LayoutInfo;
320
321
322TargetData::~TargetData() {
323 if (LayoutInfo.isConstructed()) {
324 // Remove any layouts for this TD.
325 LayoutInfoTy &TheMap = *LayoutInfo;
326 for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end();
327 I != E; ) {
328 if (I->first.first == this) {
329 I->second->~StructLayout();
330 free(I->second);
331 TheMap.erase(I++);
332 } else {
333 ++I;
334 }
335 }
336 }
337}
338
339const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
340 LayoutInfoTy &TheMap = *LayoutInfo;
341
342 StructLayout *&SL = TheMap[LayoutKey(this, Ty)];
343 if (SL) return SL;
344
345 // Otherwise, create the struct layout. Because it is variable length, we
346 // malloc it, then use placement new.
347 int NumElts = Ty->getNumElements();
348 StructLayout *L =
349 (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t));
350
351 // Set SL before calling StructLayout's ctor. The ctor could cause other
352 // entries to be added to TheMap, invalidating our reference.
353 SL = L;
354
355 new (L) StructLayout(Ty, *this);
356 return L;
357}
358
359/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
360/// objects. If a TargetData object is alive when types are being refined and
361/// removed, this method must be called whenever a StructType is removed to
362/// avoid a dangling pointer in this cache.
363void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
364 if (!LayoutInfo.isConstructed()) return; // No cache.
365
366 LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
367 if (I != LayoutInfo->end()) {
368 I->second->~StructLayout();
369 free(I->second);
370 LayoutInfo->erase(I);
371 }
372}
373
374
375std::string TargetData::getStringRepresentation() const {
376 std::string repr;
377 repr.append(LittleEndian ? "e" : "E");
378 repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))).
379 append(":").append(itostr((int64_t) (PointerABIAlign * 8))).
380 append(":").append(itostr((int64_t) (PointerPrefAlign * 8)));
381 for (align_const_iterator I = Alignments.begin();
382 I != Alignments.end();
383 ++I) {
384 repr.append("-").append(1, (char) I->AlignType).
385 append(utostr((int64_t) I->TypeBitWidth)).
386 append(":").append(utostr((uint64_t) (I->ABIAlign * 8))).
387 append(":").append(utostr((uint64_t) (I->PrefAlign * 8)));
388 }
389 return repr;
390}
391
392
393uint64_t TargetData::getTypeSize(const Type *Ty) const {
394 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
395 switch (Ty->getTypeID()) {
396 case Type::LabelTyID:
397 case Type::PointerTyID:
398 return getPointerSize();
399 case Type::ArrayTyID: {
400 const ArrayType *ATy = cast<ArrayType>(Ty);
401 uint64_t Size;
402 unsigned char Alignment;
403 Size = getTypeSize(ATy->getElementType());
404 Alignment = getABITypeAlignment(ATy->getElementType());
405 uint64_t AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
406 return AlignedSize*ATy->getNumElements();
407 }
408 case Type::StructTyID: {
409 // Get the layout annotation... which is lazily created on demand.
410 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
411 return Layout->getSizeInBytes();
412 }
413 case Type::IntegerTyID: {
414 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
415 if (BitWidth <= 8) {
416 return 1;
417 } else if (BitWidth <= 16) {
418 return 2;
419 } else if (BitWidth <= 32) {
420 return 4;
421 } else if (BitWidth <= 64) {
422 return 8;
423 } else {
424 // The size of this > 64 bit type is chosen as a multiple of the
425 // preferred alignment of the largest "native" size the target supports.
426 // We first obtain the the alignment info for this type and then compute
427 // the next largest multiple of that size.
428 uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8;
429 return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8;
430 }
431 break;
432 }
433 case Type::VoidTyID:
434 return 1;
435 case Type::FloatTyID:
436 return 4;
437 case Type::DoubleTyID:
438 return 8;
439 case Type::VectorTyID: {
440 const VectorType *PTy = cast<VectorType>(Ty);
441 return PTy->getBitWidth() / 8;
442 }
443 default:
444 assert(0 && "TargetData::getTypeSize(): Unsupported type");
445 break;
446 }
447 return 0;
448}
449
450uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
451 if (Ty->isInteger())
452 return cast<IntegerType>(Ty)->getBitWidth();
453 else
454 return getTypeSize(Ty) * 8;
455}
456
457
458/*!
459 \param abi_or_pref Flag that determines which alignment is returned. true
460 returns the ABI alignment, false returns the preferred alignment.
461 \param Ty The underlying type for which alignment is determined.
462
463 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
464 == false) for the requested type \a Ty.
465 */
466unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
467 int AlignType = -1;
468
469 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
470 switch (Ty->getTypeID()) {
471 /* Early escape for the non-numeric types */
472 case Type::LabelTyID:
473 case Type::PointerTyID:
474 return (abi_or_pref
475 ? getPointerABIAlignment()
476 : getPointerPrefAlignment());
477 case Type::ArrayTyID:
478 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
479
480 case Type::StructTyID: {
481 // Packed structure types always have an ABI alignment of one.
482 if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
483 return 1;
484
485 // Get the layout annotation... which is lazily created on demand.
486 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
487 unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref);
488 return std::max(Align, (unsigned)Layout->getAlignment());
489 }
490 case Type::IntegerTyID:
491 case Type::VoidTyID:
492 AlignType = INTEGER_ALIGN;
493 break;
494 case Type::FloatTyID:
495 case Type::DoubleTyID:
496 AlignType = FLOAT_ALIGN;
497 break;
498 case Type::VectorTyID: {
499 const VectorType *VTy = cast<VectorType>(Ty);
500 // Degenerate vectors are assumed to be scalar-ized
501 if (VTy->getNumElements() == 1)
502 return getAlignment(VTy->getElementType(), abi_or_pref);
503 else
504 AlignType = VECTOR_ALIGN;
505 break;
506 }
507 default:
508 assert(0 && "Bad type for getAlignment!!!");
509 break;
510 }
511
512 return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8,
513 abi_or_pref);
514}
515
516unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
517 return getAlignment(Ty, true);
518}
519
520unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
521 return getAlignment(Ty, false);
522}
523
524unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
525 unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
526 assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
527 return Log2_32(Align);
528}
529
530/// getIntPtrType - Return an unsigned integer type that is the same size or
531/// greater to the host pointer size.
532const Type *TargetData::getIntPtrType() const {
533 switch (getPointerSize()) {
534 default: assert(0 && "Unknown pointer size!");
535 case 2: return Type::Int16Ty;
536 case 4: return Type::Int32Ty;
537 case 8: return Type::Int64Ty;
538 }
539}
540
541
542uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
543 unsigned NumIndices) const {
544 const Type *Ty = ptrTy;
545 assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
546 uint64_t Result = 0;
547
548 generic_gep_type_iterator<Value* const*>
549 TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
550 for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
551 if (const StructType *STy = dyn_cast<StructType>(*TI)) {
552 assert(Indices[CurIDX]->getType() == Type::Int32Ty &&
553 "Illegal struct idx");
554 unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
555
556 // Get structure layout information...
557 const StructLayout *Layout = getStructLayout(STy);
558
559 // Add in the offset, as calculated by the structure layout info...
560 Result += Layout->getElementOffset(FieldNo);
561
562 // Update Ty to refer to current element
563 Ty = STy->getElementType(FieldNo);
564 } else {
565 // Update Ty to refer to current element
566 Ty = cast<SequentialType>(Ty)->getElementType();
567
568 // Get the array index and the size of each array element.
569 int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
570 Result += arrayIdx * (int64_t)getTypeSize(Ty);
571 }
572 }
573
574 return Result;
575}
576
577/// getPreferredAlignmentLog - Return the preferred alignment of the
578/// specified global, returned in log form. This includes an explicitly
579/// requested alignment (if the global has one).
580unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
581 const Type *ElemType = GV->getType()->getElementType();
582 unsigned Alignment = getPreferredTypeAlignmentShift(ElemType);
583 if (GV->getAlignment() > (1U << Alignment))
584 Alignment = Log2_32(GV->getAlignment());
585
586 if (GV->hasInitializer()) {
587 if (Alignment < 4) {
588 // If the global is not external, see if it is large. If so, give it a
589 // larger alignment.
590 if (getTypeSize(ElemType) > 128)
591 Alignment = 4; // 16-byte alignment.
592 }
593 }
594 return Alignment;
595}