blob: 07a96d3569100f069164942c65ad5dc38f033511 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22
23namespace llvm {
24 namespace X86ISD {
25 // X86 Specific DAG Nodes
26 enum NodeType {
27 // Start the numbering where the builtin ops leave off.
28 FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
29
30 /// SHLD, SHRD - Double shift instructions. These correspond to
31 /// X86::SHLDxx and X86::SHRDxx instructions.
32 SHLD,
33 SHRD,
34
35 /// FAND - Bitwise logical AND of floating point values. This corresponds
36 /// to X86::ANDPS or X86::ANDPD.
37 FAND,
38
39 /// FOR - Bitwise logical OR of floating point values. This corresponds
40 /// to X86::ORPS or X86::ORPD.
41 FOR,
42
43 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
44 /// to X86::XORPS or X86::XORPD.
45 FXOR,
46
47 /// FSRL - Bitwise logical right shift of floating point values. These
48 /// corresponds to X86::PSRLDQ.
49 FSRL,
50
51 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
52 /// integer source in memory and FP reg result. This corresponds to the
53 /// X86::FILD*m instructions. It has three inputs (token chain, address,
54 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
55 /// also produces a flag).
56 FILD,
57 FILD_FLAG,
58
59 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
60 /// integer destination in memory and a FP reg source. This corresponds
61 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
62 /// has two inputs (token chain and address) and two outputs (int value
63 /// and token chain).
64 FP_TO_INT16_IN_MEM,
65 FP_TO_INT32_IN_MEM,
66 FP_TO_INT64_IN_MEM,
67
68 /// FLD - This instruction implements an extending load to FP stack slots.
69 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
70 /// operand, ptr to load from, and a ValueType node indicating the type
71 /// to load to.
72 FLD,
73
74 /// FST - This instruction implements a truncating store to FP stack
75 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
76 /// chain operand, value to store, address, and a ValueType to store it
77 /// as.
78 FST,
79
80 /// FP_GET_RESULT - This corresponds to FpGETRESULT pseudo instruction
81 /// which copies from ST(0) to the destination. It takes a chain and
82 /// writes a RFP result and a chain.
83 FP_GET_RESULT,
84
85 /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instruction
86 /// which copies the source operand to ST(0). It takes a chain+value and
87 /// returns a chain and a flag.
88 FP_SET_RESULT,
89
90 /// CALL/TAILCALL - These operations represent an abstract X86 call
91 /// instruction, which includes a bunch of information. In particular the
92 /// operands of these node are:
93 ///
94 /// #0 - The incoming token chain
95 /// #1 - The callee
96 /// #2 - The number of arg bytes the caller pushes on the stack.
97 /// #3 - The number of arg bytes the callee pops off the stack.
98 /// #4 - The value to pass in AL/AX/EAX (optional)
99 /// #5 - The value to pass in DL/DX/EDX (optional)
100 ///
101 /// The result values of these nodes are:
102 ///
103 /// #0 - The outgoing token chain
104 /// #1 - The first register result value (optional)
105 /// #2 - The second register result value (optional)
106 ///
107 /// The CALL vs TAILCALL distinction boils down to whether the callee is
108 /// known not to modify the caller's stack frame, as is standard with
109 /// LLVM.
110 CALL,
111 TAILCALL,
112
113 /// RDTSC_DAG - This operation implements the lowering for
114 /// readcyclecounter
115 RDTSC_DAG,
116
117 /// X86 compare and logical compare instructions.
118 CMP, TEST, COMI, UCOMI,
119
120 /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
121 /// operand produced by a CMP instruction.
122 SETCC,
123
124 /// X86 conditional moves. Operand 1 and operand 2 are the two values
125 /// to select from (operand 1 is a R/W operand). Operand 3 is the
126 /// condition code, and operand 4 is the flag operand produced by a CMP
127 /// or TEST instruction. It also writes a flag result.
128 CMOV,
129
130 /// X86 conditional branches. Operand 1 is the chain operand, operand 2
131 /// is the block to branch if condition is true, operand 3 is the
132 /// condition code, and operand 4 is the flag operand produced by a CMP
133 /// or TEST instruction.
134 BRCOND,
135
136 /// Return with a flag operand. Operand 1 is the chain operand, operand
137 /// 2 is the number of bytes of stack to pop.
138 RET_FLAG,
139
140 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
141 REP_STOS,
142
143 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
144 REP_MOVS,
145
146 /// LOAD_PACK Load a 128-bit packed float / double value. It has the same
147 /// operands as a normal load.
148 LOAD_PACK,
149
150 /// LOAD_UA Load an unaligned 128-bit value. It has the same operands as
151 /// a normal load.
152 LOAD_UA,
153
154 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
155 /// at function entry, used for PIC code.
156 GlobalBaseReg,
157
158 /// Wrapper - A wrapper node for TargetConstantPool,
159 /// TargetExternalSymbol, and TargetGlobalAddress.
160 Wrapper,
161
162 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
163 /// relative displacements.
164 WrapperRIP,
165
166 /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not
167 /// have to match the operand type.
168 S2VEC,
169
170 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
171 /// i32, corresponds to X86::PEXTRW.
172 PEXTRW,
173
174 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRW.
176 PINSRW,
177
178 /// FMAX, FMIN - Floating point max and min.
179 ///
180 FMAX, FMIN,
181
182 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
183 /// approximation. Note that these typically require refinement
184 /// in order to obtain suitable precision.
185 FRSQRT, FRCP,
186
187 // Thread Local Storage
188 TLSADDR, THREAD_POINTER,
189
190 // Exception Handling helpers
191 EH_RETURN
192 };
193 }
194
195 /// Define some predicates that are used for node matching.
196 namespace X86 {
197 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
198 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
199 bool isPSHUFDMask(SDNode *N);
200
201 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
202 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
203 bool isPSHUFHWMask(SDNode *N);
204
205 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
206 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
207 bool isPSHUFLWMask(SDNode *N);
208
209 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
210 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
211 bool isSHUFPMask(SDNode *N);
212
213 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
214 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
215 bool isMOVHLPSMask(SDNode *N);
216
217 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
218 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
219 /// <2, 3, 2, 3>
220 bool isMOVHLPS_v_undef_Mask(SDNode *N);
221
222 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
223 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
224 bool isMOVLPMask(SDNode *N);
225
226 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
227 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
228 /// as well as MOVLHPS.
229 bool isMOVHPMask(SDNode *N);
230
231 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
232 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
233 bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);
234
235 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
236 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
237 bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);
238
239 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
240 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
241 /// <0, 0, 1, 1>
242 bool isUNPCKL_v_undef_Mask(SDNode *N);
243
244 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
245 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
246 /// <2, 2, 3, 3>
247 bool isUNPCKH_v_undef_Mask(SDNode *N);
248
249 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
250 /// specifies a shuffle of elements that is suitable for input to MOVSS,
251 /// MOVSD, and MOVD, i.e. setting the lowest element.
252 bool isMOVLMask(SDNode *N);
253
254 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
255 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
256 bool isMOVSHDUPMask(SDNode *N);
257
258 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
259 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
260 bool isMOVSLDUPMask(SDNode *N);
261
262 /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
263 /// specifies a splat of a single element.
264 bool isSplatMask(SDNode *N);
265
266 /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
267 /// specifies a splat of zero element.
268 bool isSplatLoMask(SDNode *N);
269
270 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
271 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
272 /// instructions.
273 unsigned getShuffleSHUFImmediate(SDNode *N);
274
275 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
276 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
277 /// instructions.
278 unsigned getShufflePSHUFHWImmediate(SDNode *N);
279
280 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
281 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
282 /// instructions.
283 unsigned getShufflePSHUFLWImmediate(SDNode *N);
284 }
285
286 //===--------------------------------------------------------------------===//
287 // X86TargetLowering - X86 Implementation of the TargetLowering interface
288 class X86TargetLowering : public TargetLowering {
289 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
290 int RegSaveFrameIndex; // X86-64 vararg func register save area.
291 unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
292 unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
293 int ReturnAddrIndex; // FrameIndex for return slot.
294 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
295 int BytesCallerReserves; // Number of arg bytes caller makes.
296 public:
297 X86TargetLowering(TargetMachine &TM);
298
299 // Return the number of bytes that a function should pop when it returns (in
300 // addition to the space used by the return address).
301 //
302 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
303
304 // Return the number of bytes that the caller reserves for arguments passed
305 // to this function.
306 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
307
308 /// getStackPtrReg - Return the stack pointer register we are using: either
309 /// ESP or RSP.
310 unsigned getStackPtrReg() const { return X86StackPtr; }
311
312 /// LowerOperation - Provide custom lowering hooks for some operations.
313 ///
314 virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
315
316 virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
317
318 virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI,
319 MachineBasicBlock *MBB);
320
321 /// getTargetNodeName - This method returns the name of a target specific
322 /// DAG node.
323 virtual const char *getTargetNodeName(unsigned Opcode) const;
324
325 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
326 /// in Mask are known to be either zero or one and return them in the
327 /// KnownZero/KnownOne bitsets.
328 virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
329 uint64_t Mask,
330 uint64_t &KnownZero,
331 uint64_t &KnownOne,
332 const SelectionDAG &DAG,
333 unsigned Depth = 0) const;
334
335 SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
336
337 ConstraintType getConstraintType(const std::string &Constraint) const;
338
339 std::vector<unsigned>
340 getRegClassForInlineAsmConstraint(const std::string &Constraint,
341 MVT::ValueType VT) const;
342 /// isOperandValidForConstraint - Return the specified operand (possibly
343 /// modified) if the specified SDOperand is valid for the specified target
344 /// constraint letter, otherwise return null.
345 SDOperand isOperandValidForConstraint(SDOperand Op, char ConstraintLetter,
346 SelectionDAG &DAG);
347
348 /// getRegForInlineAsmConstraint - Given a physical register constraint
349 /// (e.g. {edx}), return the register number and the register class for the
350 /// register. This should only be used for C_Register constraints. On
351 /// error, this returns a register number of 0.
352 std::pair<unsigned, const TargetRegisterClass*>
353 getRegForInlineAsmConstraint(const std::string &Constraint,
354 MVT::ValueType VT) const;
355
356 /// isLegalAddressingMode - Return true if the addressing mode represented
357 /// by AM is legal for this target, for a load/store of the specified type.
358 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
359
360 /// isShuffleMaskLegal - Targets can use this to indicate that they only
361 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
362 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
363 /// values are assumed to be legal.
364 virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
365
366 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
367 /// used by Targets can use this to indicate if there is a suitable
368 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
369 /// pool entry.
370 virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
371 MVT::ValueType EVT,
372 SelectionDAG &DAG) const;
373 private:
374 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
375 /// make the right decision when generating code for different targets.
376 const X86Subtarget *Subtarget;
377 const MRegisterInfo *RegInfo;
378
379 /// X86StackPtr - X86 physical register used as stack ptr.
380 unsigned X86StackPtr;
381
382 /// X86ScalarSSE - Select between SSE2 or x87 floating point ops.
383 bool X86ScalarSSE;
384
385 SDNode *LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode*TheCall,
386 unsigned CallingConv, SelectionDAG &DAG);
387
388 // C and StdCall Calling Convention implementation.
389 SDOperand LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
390 bool isStdCall = false);
391 SDOperand LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);
392
393 // X86-64 C Calling Convention implementation.
394 SDOperand LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG);
395 SDOperand LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,unsigned CC);
396
397 // Fast and FastCall Calling Convention implementation.
398 SDOperand LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG);
399 SDOperand LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG, unsigned CC);
400
401 SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
402 SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
403 SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
404 SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
405 SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
406 SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
407 SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
408 SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
409 SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
410 SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
411 SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
412 SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
413 SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
414 SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
415 SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG);
416 SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG, SDOperand Chain);
417 SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
418 SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
419 SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
420 SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG);
421 SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
422 SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
423 SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
424 SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG);
425 SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
426 SDOperand LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG);
427 SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
428 SDOperand LowerVACOPY(SDOperand Op, SelectionDAG &DAG);
429 SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
430 SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
431 SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
432 SDOperand LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, SelectionDAG &DAG);
433 SDOperand LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG);
434 };
435}
436
437#endif // X86ISELLOWERING_H