Andrew Trick | 14e8d71 | 2010-10-22 23:09:15 +0000 | [diff] [blame] | 1 | //===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the RegAllocBase class, which is the skeleton of a basic |
| 11 | // register allocation algorithm and interface for extending it. It provides the |
| 12 | // building blocks on which to construct other experimental allocators and test |
| 13 | // the validity of two principles: |
| 14 | // |
| 15 | // - If virtual and physical register liveness is modeled using intervals, then |
| 16 | // on-the-fly interference checking is cheap. Furthermore, interferences can be |
| 17 | // lazily cached and reused. |
| 18 | // |
| 19 | // - Register allocation complexity, and generated code performance is |
| 20 | // determined by the effectiveness of live range splitting rather than optimal |
| 21 | // coloring. |
| 22 | // |
| 23 | // Following the first principle, interfering checking revolves around the |
| 24 | // LiveIntervalUnion data structure. |
| 25 | // |
| 26 | // To fulfill the second principle, the basic allocator provides a driver for |
| 27 | // incremental splitting. It essentially punts on the problem of register |
| 28 | // coloring, instead driving the assignment of virtual to physical registers by |
| 29 | // the cost of splitting. The basic allocator allows for heuristic reassignment |
| 30 | // of registers, if a more sophisticated allocator chooses to do that. |
| 31 | // |
| 32 | // This framework provides a way to engineer the compile time vs. code |
| 33 | // quality trade-off without relying a particular theoretical solver. |
| 34 | // |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | #ifndef LLVM_CODEGEN_REGALLOCBASE |
| 38 | #define LLVM_CODEGEN_REGALLOCBASE |
| 39 | |
| 40 | #include "LiveIntervalUnion.h" |
| 41 | #include "VirtRegMap.h" |
| 42 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| 43 | #include "llvm/Target/TargetRegisterInfo.h" |
| 44 | #include "llvm/ADT/OwningPtr.h" |
| 45 | #include <vector> |
| 46 | #include <queue> |
| 47 | |
| 48 | namespace llvm { |
| 49 | |
| 50 | class VirtRegMap; |
| 51 | |
| 52 | /// RegAllocBase provides the register allocation driver and interface that can |
| 53 | /// be extended to add interesting heuristics. |
| 54 | /// |
| 55 | /// More sophisticated allocators must override the selectOrSplit() method to |
| 56 | /// implement live range splitting and must specify a comparator to determine |
| 57 | /// register assignment priority. LessSpillWeightPriority is provided as a |
| 58 | /// standard comparator. |
| 59 | class RegAllocBase { |
| 60 | protected: |
| 61 | typedef SmallVector<LiveInterval*, 4> LiveVirtRegs; |
| 62 | typedef LiveVirtRegs::iterator LVRIter; |
| 63 | |
| 64 | // Array of LiveIntervalUnions indexed by physical register. |
| 65 | class LIUArray { |
| 66 | unsigned nRegs_; |
| 67 | OwningArrayPtr<LiveIntervalUnion> array_; |
| 68 | public: |
| 69 | LIUArray(): nRegs_(0) {} |
| 70 | |
| 71 | unsigned numRegs() const { return nRegs_; } |
| 72 | |
| 73 | void init(unsigned nRegs); |
| 74 | |
| 75 | void clear(); |
| 76 | |
| 77 | LiveIntervalUnion& operator[](unsigned physReg) { |
| 78 | assert(physReg < nRegs_ && "physReg out of bounds"); |
| 79 | return array_[physReg]; |
| 80 | } |
| 81 | }; |
| 82 | |
| 83 | const TargetRegisterInfo *tri_; |
| 84 | VirtRegMap *vrm_; |
| 85 | LiveIntervals *lis_; |
| 86 | LIUArray physReg2liu_; |
| 87 | |
| 88 | RegAllocBase(): tri_(0), vrm_(0), lis_(0) {} |
| 89 | |
Andrew Trick | f433106 | 2010-10-22 23:33:19 +0000 | [diff] [blame^] | 90 | virtual ~RegAllocBase() {} |
| 91 | |
Andrew Trick | 14e8d71 | 2010-10-22 23:09:15 +0000 | [diff] [blame] | 92 | // A RegAlloc pass should call this before allocatePhysRegs. |
| 93 | void init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis); |
| 94 | |
| 95 | // The top-level driver. Specialize with the comparator that determines the |
| 96 | // priority of assigning live virtual registers. The output is a VirtRegMap |
| 97 | // that us updated with physical register assignments. |
| 98 | template<typename LICompare> |
| 99 | void allocatePhysRegs(LICompare liCompare); |
| 100 | |
| 101 | // A RegAlloc pass should override this to provide the allocation heuristics. |
| 102 | // Each call must guarantee forward progess by returning an available |
| 103 | // PhysReg or new set of split LiveVirtRegs. It is up to the splitter to |
| 104 | // converge quickly toward fully spilled live ranges. |
| 105 | virtual unsigned selectOrSplit(LiveInterval &lvr, |
| 106 | LiveVirtRegs &splitLVRs) = 0; |
| 107 | |
| 108 | // A RegAlloc pass should call this when PassManager releases its memory. |
| 109 | virtual void releaseMemory(); |
| 110 | |
| 111 | // Helper for checking interference between a live virtual register and a |
| 112 | // physical register, including all its register aliases. |
| 113 | bool checkPhysRegInterference(LiveIntervalUnion::Query &query, unsigned preg); |
| 114 | |
| 115 | private: |
| 116 | template<typename PQ> |
| 117 | void seedLiveVirtRegs(PQ &lvrQ); |
| 118 | }; |
| 119 | |
| 120 | // Heuristic that determines the priority of assigning virtual to physical |
| 121 | // registers. The main impact of the heuristic is expected to be compile time. |
| 122 | // The default is to simply compare spill weights. |
| 123 | struct LessSpillWeightPriority |
| 124 | : public std::binary_function<LiveInterval,LiveInterval, bool> { |
| 125 | bool operator()(const LiveInterval *left, const LiveInterval *right) const { |
| 126 | return left->weight < right->weight; |
| 127 | } |
| 128 | }; |
| 129 | |
| 130 | // Visit all the live virtual registers. If they are already assigned to a |
| 131 | // physical register, unify them with the corresponding LiveIntervalUnion, |
| 132 | // otherwise push them on the priority queue for later assignment. |
| 133 | template<typename PQ> |
| 134 | void RegAllocBase::seedLiveVirtRegs(PQ &lvrQ) { |
| 135 | for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end(); |
| 136 | liItr != liEnd; ++liItr) { |
| 137 | unsigned reg = liItr->first; |
| 138 | LiveInterval &li = *liItr->second; |
| 139 | if (TargetRegisterInfo::isPhysicalRegister(reg)) { |
| 140 | physReg2liu_[reg].unify(li); |
| 141 | } |
| 142 | else { |
| 143 | lvrQ.push(&li); |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | // Top-level driver to manage the queue of unassigned LiveVirtRegs and call the |
| 149 | // selectOrSplit implementation. |
| 150 | template<typename LICompare> |
| 151 | void RegAllocBase::allocatePhysRegs(LICompare liCompare) { |
| 152 | typedef std::priority_queue |
| 153 | <LiveInterval*, std::vector<LiveInterval*>, LICompare> LiveVirtRegQueue; |
| 154 | |
| 155 | LiveVirtRegQueue lvrQ(liCompare); |
| 156 | seedLiveVirtRegs(lvrQ); |
| 157 | while (!lvrQ.empty()) { |
| 158 | LiveInterval *lvr = lvrQ.top(); |
| 159 | lvrQ.pop(); |
| 160 | LiveVirtRegs splitLVRs; |
| 161 | unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs); |
| 162 | if (availablePhysReg) { |
| 163 | assert(splitLVRs.empty() && "inconsistent splitting"); |
| 164 | assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions"); |
| 165 | vrm_->assignVirt2Phys(lvr->reg, availablePhysReg); |
| 166 | physReg2liu_[availablePhysReg].unify(*lvr); |
| 167 | } |
| 168 | else { |
| 169 | for (LVRIter lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end(); |
| 170 | lvrI != lvrEnd; ++lvrI ) { |
| 171 | assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) && |
| 172 | "expect split value in virtual register"); |
| 173 | lvrQ.push(*lvrI); |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | } // end namespace llvm |
| 180 | |
| 181 | #endif // !defined(LLVM_CODEGEN_REGALLOCBASE) |