Tom Stellard | f98f2ce | 2012-12-11 21:25:42 +0000 | [diff] [blame^] | 1 | //===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
| 11 | /// \brief This pass lowers the pseudo control flow instructions (SI_IF_NZ, ELSE, ENDIF) |
| 12 | /// to predicated instructions. |
| 13 | /// |
| 14 | /// All control flow (except loops) is handled using predicated instructions and |
| 15 | /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector |
| 16 | /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs |
| 17 | /// by writting to the 64-bit EXEC register (each bit corresponds to a |
| 18 | /// single vector ALU). Typically, for predicates, a vector ALU will write |
| 19 | /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each |
| 20 | /// Vector ALU) and then the ScalarALU will AND the VCC register with the |
| 21 | /// EXEC to update the predicates. |
| 22 | /// |
| 23 | /// For example: |
| 24 | /// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2 |
| 25 | /// SI_IF_NZ %VCC |
| 26 | /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 |
| 27 | /// ELSE |
| 28 | /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0 |
| 29 | /// ENDIF |
| 30 | /// |
| 31 | /// becomes: |
| 32 | /// |
| 33 | /// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask |
| 34 | /// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask |
| 35 | /// S_CBRANCH_EXECZ label0 // This instruction is an |
| 36 | /// // optimization which allows us to |
| 37 | /// // branch if all the bits of |
| 38 | /// // EXEC are zero. |
| 39 | /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch |
| 40 | /// |
| 41 | /// label0: |
| 42 | /// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block |
| 43 | /// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask |
| 44 | /// S_BRANCH_EXECZ label1 // Use our branch optimization |
| 45 | /// // instruction again. |
| 46 | /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block |
| 47 | /// label1: |
| 48 | /// %EXEC = S_OR_B64 %EXEC, %SGPR2 // Re-enable saved exec mask bits |
| 49 | //===----------------------------------------------------------------------===// |
| 50 | |
| 51 | #include "AMDGPU.h" |
| 52 | #include "SIInstrInfo.h" |
| 53 | #include "SIMachineFunctionInfo.h" |
| 54 | #include "llvm/CodeGen/MachineFunction.h" |
| 55 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 56 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 57 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 58 | |
| 59 | using namespace llvm; |
| 60 | |
| 61 | namespace { |
| 62 | |
| 63 | class SILowerControlFlowPass : public MachineFunctionPass { |
| 64 | |
| 65 | private: |
| 66 | static char ID; |
| 67 | const TargetInstrInfo *TII; |
| 68 | std::vector<unsigned> PredicateStack; |
| 69 | std::vector<unsigned> UnusedRegisters; |
| 70 | |
| 71 | unsigned allocReg(); |
| 72 | void freeReg(unsigned Reg); |
| 73 | |
| 74 | public: |
| 75 | SILowerControlFlowPass(TargetMachine &tm) : |
| 76 | MachineFunctionPass(ID), TII(tm.getInstrInfo()) { } |
| 77 | |
| 78 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 79 | |
| 80 | const char *getPassName() const { |
| 81 | return "SI Lower control flow instructions"; |
| 82 | } |
| 83 | |
| 84 | }; |
| 85 | |
| 86 | } // End anonymous namespace |
| 87 | |
| 88 | char SILowerControlFlowPass::ID = 0; |
| 89 | |
| 90 | FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) { |
| 91 | return new SILowerControlFlowPass(tm); |
| 92 | } |
| 93 | |
| 94 | bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) { |
| 95 | |
| 96 | // Find all the unused registers that can be used for the predicate stack. |
| 97 | for (TargetRegisterClass::iterator I = AMDGPU::SReg_64RegClass.begin(), |
| 98 | S = AMDGPU::SReg_64RegClass.end(); |
| 99 | I != S; ++I) { |
| 100 | unsigned Reg = *I; |
| 101 | if (!MF.getRegInfo().isPhysRegUsed(Reg)) { |
| 102 | UnusedRegisters.insert(UnusedRegisters.begin(), Reg); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end(); |
| 107 | BB != BB_E; ++BB) { |
| 108 | MachineBasicBlock &MBB = *BB; |
| 109 | for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I); |
| 110 | I != MBB.end(); I = Next) { |
| 111 | Next = llvm::next(I); |
| 112 | MachineInstr &MI = *I; |
| 113 | unsigned Reg; |
| 114 | switch (MI.getOpcode()) { |
| 115 | default: break; |
| 116 | case AMDGPU::SI_IF_NZ: |
| 117 | Reg = allocReg(); |
| 118 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), |
| 119 | Reg) |
| 120 | .addOperand(MI.getOperand(0)); // VCC |
| 121 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64), |
| 122 | Reg) |
| 123 | .addReg(Reg) |
| 124 | .addReg(AMDGPU::EXEC); |
| 125 | MI.eraseFromParent(); |
| 126 | PredicateStack.push_back(Reg); |
| 127 | break; |
| 128 | |
| 129 | case AMDGPU::ELSE: |
| 130 | Reg = PredicateStack.back(); |
| 131 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_SAVEEXEC_B64), |
| 132 | Reg) |
| 133 | .addReg(Reg); |
| 134 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_XOR_B64), |
| 135 | AMDGPU::EXEC) |
| 136 | .addReg(Reg) |
| 137 | .addReg(AMDGPU::EXEC); |
| 138 | MI.eraseFromParent(); |
| 139 | break; |
| 140 | |
| 141 | case AMDGPU::ENDIF: |
| 142 | Reg = PredicateStack.back(); |
| 143 | PredicateStack.pop_back(); |
| 144 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_OR_B64), |
| 145 | AMDGPU::EXEC) |
| 146 | .addReg(AMDGPU::EXEC) |
| 147 | .addReg(Reg); |
| 148 | freeReg(Reg); |
| 149 | |
| 150 | if (MF.getInfo<SIMachineFunctionInfo>()->ShaderType == ShaderType::PIXEL && |
| 151 | PredicateStack.empty()) { |
| 152 | // If the exec mask is non-zero, skip the next two instructions |
| 153 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_CBRANCH_EXECNZ)) |
| 154 | .addImm(3) |
| 155 | .addReg(AMDGPU::EXEC); |
| 156 | |
| 157 | // Exec mask is zero: Export to NULL target... |
| 158 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::EXP)) |
| 159 | .addImm(0) |
| 160 | .addImm(0x09) // V_008DFC_SQ_EXP_NULL |
| 161 | .addImm(0) |
| 162 | .addImm(1) |
| 163 | .addImm(1) |
| 164 | .addReg(AMDGPU::SREG_LIT_0) |
| 165 | .addReg(AMDGPU::SREG_LIT_0) |
| 166 | .addReg(AMDGPU::SREG_LIT_0) |
| 167 | .addReg(AMDGPU::SREG_LIT_0); |
| 168 | |
| 169 | // ... and terminate wavefront |
| 170 | BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::S_ENDPGM)); |
| 171 | } |
| 172 | MI.eraseFromParent(); |
| 173 | break; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | return true; |
| 178 | } |
| 179 | |
| 180 | unsigned SILowerControlFlowPass::allocReg() { |
| 181 | |
| 182 | assert(!UnusedRegisters.empty() && "Ran out of registers for predicate stack"); |
| 183 | unsigned Reg = UnusedRegisters.back(); |
| 184 | UnusedRegisters.pop_back(); |
| 185 | return Reg; |
| 186 | } |
| 187 | |
| 188 | void SILowerControlFlowPass::freeReg(unsigned Reg) { |
| 189 | |
| 190 | UnusedRegisters.push_back(Reg); |
| 191 | } |