| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | 2 | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  | 3 |  | 
|  | 4 | <html> | 
|  | 5 | <head> | 
|  | 6 | <title>Kaleidoscope: Implementing code generation to LLVM IR</title> | 
|  | 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | 8 | <meta name="author" content="Chris Lattner"> | 
|  | 9 | <meta name="author" content="Erick Tryzelaar"> | 
|  | 10 | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | 11 | </head> | 
|  | 12 |  | 
|  | 13 | <body> | 
|  | 14 |  | 
|  | 15 | <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> | 
|  | 16 |  | 
|  | 17 | <ul> | 
|  | 18 | <li><a href="index.html">Up to Tutorial Index</a></li> | 
|  | 19 | <li>Chapter 3 | 
|  | 20 | <ol> | 
|  | 21 | <li><a href="#intro">Chapter 3 Introduction</a></li> | 
|  | 22 | <li><a href="#basics">Code Generation Setup</a></li> | 
|  | 23 | <li><a href="#exprs">Expression Code Generation</a></li> | 
|  | 24 | <li><a href="#funcs">Function Code Generation</a></li> | 
|  | 25 | <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> | 
|  | 26 | <li><a href="#code">Full Code Listing</a></li> | 
|  | 27 | </ol> | 
|  | 28 | </li> | 
|  | 29 | <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer | 
|  | 30 | Support</li> | 
|  | 31 | </ul> | 
|  | 32 |  | 
|  | 33 | <div class="doc_author"> | 
|  | 34 | <p> | 
|  | 35 | Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
|  | 36 | and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> | 
|  | 37 | </p> | 
|  | 38 | </div> | 
|  | 39 |  | 
|  | 40 | <!-- *********************************************************************** --> | 
|  | 41 | <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div> | 
|  | 42 | <!-- *********************************************************************** --> | 
|  | 43 |  | 
|  | 44 | <div class="doc_text"> | 
|  | 45 |  | 
|  | 46 | <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language | 
|  | 47 | with LLVM</a>" tutorial.  This chapter shows you how to transform the <a | 
|  | 48 | href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into | 
|  | 49 | LLVM IR.  This will teach you a little bit about how LLVM does things, as well | 
|  | 50 | as demonstrate how easy it is to use.  It's much more work to build a lexer and | 
|  | 51 | parser than it is to generate LLVM IR code. :) | 
|  | 52 | </p> | 
|  | 53 |  | 
|  | 54 | <p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or | 
|  | 55 | LLVM SVN to work.  LLVM 2.2 and before will not work with it.</p> | 
|  | 56 |  | 
|  | 57 | </div> | 
|  | 58 |  | 
|  | 59 | <!-- *********************************************************************** --> | 
|  | 60 | <div class="doc_section"><a name="basics">Code Generation Setup</a></div> | 
|  | 61 | <!-- *********************************************************************** --> | 
|  | 62 |  | 
|  | 63 | <div class="doc_text"> | 
|  | 64 |  | 
|  | 65 | <p> | 
|  | 66 | In order to generate LLVM IR, we want some simple setup to get started.  First | 
|  | 67 | we define virtual code generation (codegen) methods in each AST class:</p> | 
|  | 68 |  | 
|  | 69 | <div class="doc_code"> | 
|  | 70 | <pre> | 
|  | 71 | let rec codegen_expr = function | 
|  | 72 | | Ast.Number n -> ... | 
|  | 73 | | Ast.Variable name -> ... | 
|  | 74 | </pre> | 
|  | 75 | </div> | 
|  | 76 |  | 
|  | 77 | <p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node | 
|  | 78 | along with all the things it depends on, and they all return an LLVM Value | 
|  | 79 | object.  "Value" is the class used to represent a "<a | 
|  | 80 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
|  | 81 | Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect | 
|  | 82 | of SSA values is that their value is computed as the related instruction | 
|  | 83 | executes, and it does not get a new value until (and if) the instruction | 
|  | 84 | re-executes.  In other words, there is no way to "change" an SSA value.  For | 
|  | 85 | more information, please read up on <a | 
|  | 86 | href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single | 
|  | 87 | Assignment</a> - the concepts are really quite natural once you grok them.</p> | 
|  | 88 |  | 
|  | 89 | <p>The | 
|  | 90 | second thing we want is an "Error" exception like we used for the parser, which | 
|  | 91 | will be used to report errors found during code generation (for example, use of | 
|  | 92 | an undeclared parameter):</p> | 
|  | 93 |  | 
|  | 94 | <div class="doc_code"> | 
|  | 95 | <pre> | 
|  | 96 | exception Error of string | 
|  | 97 |  | 
|  | 98 | let the_module = create_module "my cool jit" | 
|  | 99 | let builder = builder () | 
|  | 100 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 | 
|  | 101 | </pre> | 
|  | 102 | </div> | 
|  | 103 |  | 
|  | 104 | <p>The static variables will be used during code generation. | 
|  | 105 | <tt>Codgen.the_module</tt> is the LLVM construct that contains all of the | 
|  | 106 | functions and global variables in a chunk of code.  In many ways, it is the | 
|  | 107 | top-level structure that the LLVM IR uses to contain code.</p> | 
|  | 108 |  | 
|  | 109 | <p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to | 
|  | 110 | generate LLVM instructions.  Instances of the <a | 
| Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 111 | href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> | 
| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 112 | class keep track of the current place to insert instructions and has methods to | 
|  | 113 | create new instructions.</p> | 
|  | 114 |  | 
|  | 115 | <p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined | 
|  | 116 | in the current scope and what their LLVM representation is.  (In other words, it | 
|  | 117 | is a symbol table for the code).  In this form of Kaleidoscope, the only things | 
|  | 118 | that can be referenced are function parameters.  As such, function parameters | 
|  | 119 | will be in this map when generating code for their function body.</p> | 
|  | 120 |  | 
|  | 121 | <p> | 
|  | 122 | With these basics in place, we can start talking about how to generate code for | 
|  | 123 | each expression.  Note that this assumes that the <tt>Codgen.builder</tt> has | 
|  | 124 | been set up to generate code <em>into</em> something.  For now, we'll assume | 
|  | 125 | that this has already been done, and we'll just use it to emit code.</p> | 
|  | 126 |  | 
|  | 127 | </div> | 
|  | 128 |  | 
|  | 129 | <!-- *********************************************************************** --> | 
|  | 130 | <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> | 
|  | 131 | <!-- *********************************************************************** --> | 
|  | 132 |  | 
|  | 133 | <div class="doc_text"> | 
|  | 134 |  | 
|  | 135 | <p>Generating LLVM code for expression nodes is very straightforward: less | 
|  | 136 | than 30 lines of commented code for all four of our expression nodes.  First | 
|  | 137 | we'll do numeric literals:</p> | 
|  | 138 |  | 
|  | 139 | <div class="doc_code"> | 
|  | 140 | <pre> | 
|  | 141 | | Ast.Number n -> const_float double_type n | 
|  | 142 | </pre> | 
|  | 143 | </div> | 
|  | 144 |  | 
|  | 145 | <p>In the LLVM IR, numeric constants are represented with the | 
|  | 146 | <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> | 
|  | 147 | internally (<tt>APFloat</tt> has the capability of holding floating point | 
|  | 148 | constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just | 
|  | 149 | creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR | 
|  | 150 | that constants are all uniqued together and shared.  For this reason, the API | 
| Gabor Greif | 97e378e | 2008-05-21 18:30:15 +0000 | [diff] [blame] | 151 | uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p> | 
| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 152 |  | 
|  | 153 | <div class="doc_code"> | 
|  | 154 | <pre> | 
|  | 155 | | Ast.Variable name -> | 
|  | 156 | (try Hashtbl.find named_values name with | 
|  | 157 | | Not_found -> raise (Error "unknown variable name")) | 
|  | 158 | </pre> | 
|  | 159 | </div> | 
|  | 160 |  | 
|  | 161 | <p>References to variables are also quite simple using LLVM.  In the simple | 
|  | 162 | version of Kaleidoscope, we assume that the variable has already been emited | 
|  | 163 | somewhere and its value is available.  In practice, the only values that can be | 
|  | 164 | in the <tt>Codegen.named_values</tt> map are function arguments.  This code | 
|  | 165 | simply checks to see that the specified name is in the map (if not, an unknown | 
|  | 166 | variable is being referenced) and returns the value for it.  In future chapters, | 
|  | 167 | we'll add support for <a href="LangImpl5.html#for">loop induction variables</a> | 
|  | 168 | in the symbol table, and for <a href="LangImpl7.html#localvars">local | 
|  | 169 | variables</a>.</p> | 
|  | 170 |  | 
|  | 171 | <div class="doc_code"> | 
|  | 172 | <pre> | 
|  | 173 | | Ast.Binary (op, lhs, rhs) -> | 
|  | 174 | let lhs_val = codegen_expr lhs in | 
|  | 175 | let rhs_val = codegen_expr rhs in | 
|  | 176 | begin | 
|  | 177 | match op with | 
|  | 178 | | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
|  | 179 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
|  | 180 | | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
|  | 181 | | '<' -> | 
|  | 182 | (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
|  | 183 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
|  | 184 | build_uitofp i double_type "booltmp" builder | 
|  | 185 | | _ -> raise (Error "invalid binary operator") | 
| Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 186 | end | 
| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 187 | </pre> | 
|  | 188 | </div> | 
|  | 189 |  | 
|  | 190 | <p>Binary operators start to get more interesting.  The basic idea here is that | 
|  | 191 | we recursively emit code for the left-hand side of the expression, then the | 
|  | 192 | right-hand side, then we compute the result of the binary expression.  In this | 
|  | 193 | code, we do a simple switch on the opcode to create the right LLVM instruction. | 
|  | 194 | </p> | 
|  | 195 |  | 
|  | 196 | <p>In the example above, the LLVM builder class is starting to show its value. | 
| Duncan Sands | 89f6d88 | 2008-04-13 06:22:09 +0000 | [diff] [blame] | 197 | IRBuilder knows where to insert the newly created instruction, all you have to | 
| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 198 | do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>), | 
|  | 199 | which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally | 
|  | 200 | provide a name for the generated instruction.</p> | 
|  | 201 |  | 
|  | 202 | <p>One nice thing about LLVM is that the name is just a hint.  For instance, if | 
|  | 203 | the code above emits multiple "addtmp" variables, LLVM will automatically | 
|  | 204 | provide each one with an increasing, unique numeric suffix.  Local value names | 
|  | 205 | for instructions are purely optional, but it makes it much easier to read the | 
|  | 206 | IR dumps.</p> | 
|  | 207 |  | 
|  | 208 | <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by | 
|  | 209 | strict rules: for example, the Left and Right operators of | 
|  | 210 | an <a href="../LangRef.html#i_add">add instruction</a> must have the same | 
|  | 211 | type, and the result type of the add must match the operand types.  Because | 
|  | 212 | all values in Kaleidoscope are doubles, this makes for very simple code for add, | 
|  | 213 | sub and mul.</p> | 
|  | 214 |  | 
|  | 215 | <p>On the other hand, LLVM specifies that the <a | 
|  | 216 | href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value | 
|  | 217 | (a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with | 
|  | 218 | a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction | 
|  | 219 | converts its input integer into a floating point value by treating the input | 
|  | 220 | as an unsigned value.  In contrast, if we used the <a | 
|  | 221 | href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' | 
|  | 222 | operator would return 0.0 and -1.0, depending on the input value.</p> | 
|  | 223 |  | 
|  | 224 | <div class="doc_code"> | 
|  | 225 | <pre> | 
|  | 226 | | Ast.Call (callee, args) -> | 
|  | 227 | (* Look up the name in the module table. *) | 
|  | 228 | let callee = | 
|  | 229 | match lookup_function callee the_module with | 
|  | 230 | | Some callee -> callee | 
|  | 231 | | None -> raise (Error "unknown function referenced") | 
|  | 232 | in | 
|  | 233 | let params = params callee in | 
|  | 234 |  | 
|  | 235 | (* If argument mismatch error. *) | 
|  | 236 | if Array.length params == Array.length args then () else | 
|  | 237 | raise (Error "incorrect # arguments passed"); | 
|  | 238 | let args = Array.map codegen_expr args in | 
|  | 239 | build_call callee args "calltmp" builder | 
|  | 240 | </pre> | 
|  | 241 | </div> | 
|  | 242 |  | 
|  | 243 | <p>Code generation for function calls is quite straightforward with LLVM.  The | 
|  | 244 | code above initially does a function name lookup in the LLVM Module's symbol | 
|  | 245 | table.  Recall that the LLVM Module is the container that holds all of the | 
|  | 246 | functions we are JIT'ing.  By giving each function the same name as what the | 
|  | 247 | user specifies, we can use the LLVM symbol table to resolve function names for | 
|  | 248 | us.</p> | 
|  | 249 |  | 
|  | 250 | <p>Once we have the function to call, we recursively codegen each argument that | 
|  | 251 | is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call | 
|  | 252 | instruction</a>.  Note that LLVM uses the native C calling conventions by | 
|  | 253 | default, allowing these calls to also call into standard library functions like | 
|  | 254 | "sin" and "cos", with no additional effort.</p> | 
|  | 255 |  | 
|  | 256 | <p>This wraps up our handling of the four basic expressions that we have so far | 
|  | 257 | in Kaleidoscope.  Feel free to go in and add some more.  For example, by | 
|  | 258 | browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find | 
|  | 259 | several other interesting instructions that are really easy to plug into our | 
|  | 260 | basic framework.</p> | 
|  | 261 |  | 
|  | 262 | </div> | 
|  | 263 |  | 
|  | 264 | <!-- *********************************************************************** --> | 
|  | 265 | <div class="doc_section"><a name="funcs">Function Code Generation</a></div> | 
|  | 266 | <!-- *********************************************************************** --> | 
|  | 267 |  | 
|  | 268 | <div class="doc_text"> | 
|  | 269 |  | 
|  | 270 | <p>Code generation for prototypes and functions must handle a number of | 
|  | 271 | details, which make their code less beautiful than expression code | 
|  | 272 | generation, but allows us to illustrate some important points.  First, lets | 
|  | 273 | talk about code generation for prototypes: they are used both for function | 
|  | 274 | bodies and external function declarations.  The code starts with:</p> | 
|  | 275 |  | 
|  | 276 | <div class="doc_code"> | 
|  | 277 | <pre> | 
|  | 278 | let codegen_proto = function | 
|  | 279 | | Ast.Prototype (name, args) -> | 
|  | 280 | (* Make the function type: double(double,double) etc. *) | 
|  | 281 | let doubles = Array.make (Array.length args) double_type in | 
|  | 282 | let ft = function_type double_type doubles in | 
| Erick Tryzelaar | 35295ff | 2008-03-31 08:44:50 +0000 | [diff] [blame] | 283 | let f = | 
| Erick Tryzelaar | 37c076b | 2008-03-30 09:57:12 +0000 | [diff] [blame] | 284 | match lookup_function name the_module with | 
|  | 285 | </pre> | 
|  | 286 | </div> | 
|  | 287 |  | 
|  | 288 | <p>This code packs a lot of power into a few lines.  Note first that this | 
|  | 289 | function returns a "Function*" instead of a "Value*" (although at the moment | 
|  | 290 | they both are modeled by <tt>llvalue</tt> in ocaml).  Because a "prototype" | 
|  | 291 | really talks about the external interface for a function (not the value computed | 
|  | 292 | by an expression), it makes sense for it to return the LLVM Function it | 
|  | 293 | corresponds to when codegen'd.</p> | 
|  | 294 |  | 
|  | 295 | <p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt> | 
|  | 296 | that should be used for a given Prototype.  Since all function arguments in | 
|  | 297 | Kaleidoscope are of type double, the first line creates a vector of "N" LLVM | 
|  | 298 | double types.  It then uses the <tt>Llvm.function_type</tt> method to create a | 
|  | 299 | function type that takes "N" doubles as arguments, returns one double as a | 
|  | 300 | result, and that is not vararg (that uses the function | 
|  | 301 | <tt>Llvm.var_arg_function_type</tt>).  Note that Types in LLVM are uniqued just | 
|  | 302 | like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p> | 
|  | 303 |  | 
|  | 304 | <p>The final line above checks if the function has already been defined in | 
|  | 305 | <tt>Codegen.the_module</tt>. If not, we will create it.</p> | 
|  | 306 |  | 
|  | 307 | <div class="doc_code"> | 
|  | 308 | <pre> | 
|  | 309 | | None -> declare_function name ft the_module | 
|  | 310 | </pre> | 
|  | 311 | </div> | 
|  | 312 |  | 
|  | 313 | <p>This indicates the type and name to use, as well as which module to insert | 
|  | 314 | into.  By default we assume a function has | 
|  | 315 | <tt>Llvm.Linkage.ExternalLinkage</tt>.  "<a href="LangRef.html#linkage">external | 
|  | 316 | linkage</a>" means that the function may be defined outside the current module | 
|  | 317 | and/or that it is callable by functions outside the module.  The "<tt>name</tt>" | 
|  | 318 | passed in is the name the user specified: this name is registered in | 
|  | 319 | "<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call | 
|  | 320 | code above.</p> | 
|  | 321 |  | 
|  | 322 | <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: | 
|  | 323 | first, we want to allow 'extern'ing a function more than once, as long as the | 
|  | 324 | prototypes for the externs match (since all arguments have the same type, we | 
|  | 325 | just have to check that the number of arguments match).  Second, we want to | 
|  | 326 | allow 'extern'ing a function and then definining a body for it.  This is useful | 
|  | 327 | when defining mutually recursive functions.</p> | 
|  | 328 |  | 
|  | 329 | <div class="doc_code"> | 
|  | 330 | <pre> | 
|  | 331 | (* If 'f' conflicted, there was already something named 'name'. If it | 
|  | 332 | * has a body, don't allow redefinition or reextern. *) | 
|  | 333 | | Some f -> | 
|  | 334 | (* If 'f' already has a body, reject this. *) | 
|  | 335 | if Array.length (basic_blocks f) == 0 then () else | 
|  | 336 | raise (Error "redefinition of function"); | 
|  | 337 |  | 
|  | 338 | (* If 'f' took a different number of arguments, reject. *) | 
|  | 339 | if Array.length (params f) == Array.length args then () else | 
|  | 340 | raise (Error "redefinition of function with different # args"); | 
|  | 341 | f | 
|  | 342 | in | 
|  | 343 | </pre> | 
|  | 344 | </div> | 
|  | 345 |  | 
|  | 346 | <p>In order to verify the logic above, we first check to see if the pre-existing | 
|  | 347 | function is "empty".  In this case, empty means that it has no basic blocks in | 
|  | 348 | it, which means it has no body.  If it has no body, it is a forward | 
|  | 349 | declaration.  Since we don't allow anything after a full definition of the | 
|  | 350 | function, the code rejects this case.  If the previous reference to a function | 
|  | 351 | was an 'extern', we simply verify that the number of arguments for that | 
|  | 352 | definition and this one match up.  If not, we emit an error.</p> | 
|  | 353 |  | 
|  | 354 | <div class="doc_code"> | 
|  | 355 | <pre> | 
|  | 356 | (* Set names for all arguments. *) | 
|  | 357 | Array.iteri (fun i a -> | 
|  | 358 | let n = args.(i) in | 
|  | 359 | set_value_name n a; | 
|  | 360 | Hashtbl.add named_values n a; | 
|  | 361 | ) (params f); | 
|  | 362 | f | 
|  | 363 | </pre> | 
|  | 364 | </div> | 
|  | 365 |  | 
|  | 366 | <p>The last bit of code for prototypes loops over all of the arguments in the | 
|  | 367 | function, setting the name of the LLVM Argument objects to match, and registering | 
|  | 368 | the arguments in the <tt>Codegen.named_values</tt> map for future use by the | 
|  | 369 | <tt>Ast.Variable</tt> variant.  Once this is set up, it returns the Function | 
|  | 370 | object to the caller.  Note that we don't check for conflicting | 
|  | 371 | argument names here (e.g. "extern foo(a b a)").  Doing so would be very | 
|  | 372 | straight-forward with the mechanics we have already used above.</p> | 
|  | 373 |  | 
|  | 374 | <div class="doc_code"> | 
|  | 375 | <pre> | 
|  | 376 | let codegen_func = function | 
|  | 377 | | Ast.Function (proto, body) -> | 
|  | 378 | Hashtbl.clear named_values; | 
|  | 379 | let the_function = codegen_proto proto in | 
|  | 380 | </pre> | 
|  | 381 | </div> | 
|  | 382 |  | 
|  | 383 | <p>Code generation for function definitions starts out simply enough: we just | 
|  | 384 | codegen the prototype (Proto) and verify that it is ok.  We then clear out the | 
|  | 385 | <tt>Codegen.named_values</tt> map to make sure that there isn't anything in it | 
|  | 386 | from the last function we compiled.  Code generation of the prototype ensures | 
|  | 387 | that there is an LLVM Function object that is ready to go for us.</p> | 
|  | 388 |  | 
|  | 389 | <div class="doc_code"> | 
|  | 390 | <pre> | 
|  | 391 | (* Create a new basic block to start insertion into. *) | 
|  | 392 | let bb = append_block "entry" the_function in | 
|  | 393 | position_at_end bb builder; | 
|  | 394 |  | 
|  | 395 | try | 
|  | 396 | let ret_val = codegen_expr body in | 
|  | 397 | </pre> | 
|  | 398 | </div> | 
|  | 399 |  | 
|  | 400 | <p>Now we get to the point where the <tt>Codegen.builder</tt> is set up.  The | 
|  | 401 | first line creates a new | 
|  | 402 | <a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named | 
|  | 403 | "entry"), which is inserted into <tt>the_function</tt>.  The second line then | 
|  | 404 | tells the builder that new instructions should be inserted into the end of the | 
|  | 405 | new basic block.  Basic blocks in LLVM are an important part of functions that | 
|  | 406 | define the <a | 
|  | 407 | href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. | 
|  | 408 | Since we don't have any control flow, our functions will only contain one | 
|  | 409 | block at this point.  We'll fix this in <a href="OCamlLangImpl5.html">Chapter | 
|  | 410 | 5</a> :).</p> | 
|  | 411 |  | 
|  | 412 | <div class="doc_code"> | 
|  | 413 | <pre> | 
|  | 414 | let ret_val = codegen_expr body in | 
|  | 415 |  | 
|  | 416 | (* Finish off the function. *) | 
|  | 417 | let _ = build_ret ret_val builder in | 
|  | 418 |  | 
|  | 419 | (* Validate the generated code, checking for consistency. *) | 
|  | 420 | Llvm_analysis.assert_valid_function the_function; | 
|  | 421 |  | 
|  | 422 | the_function | 
|  | 423 | </pre> | 
|  | 424 | </div> | 
|  | 425 |  | 
|  | 426 | <p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt> | 
|  | 427 | method for the root expression of the function.  If no error happens, this emits | 
|  | 428 | code to compute the expression into the entry block and returns the value that | 
|  | 429 | was computed.  Assuming no error, we then create an LLVM <a | 
|  | 430 | href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. | 
|  | 431 | Once the function is built, we call | 
|  | 432 | <tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM.  This | 
|  | 433 | function does a variety of consistency checks on the generated code, to | 
|  | 434 | determine if our compiler is doing everything right.  Using this is important: | 
|  | 435 | it can catch a lot of bugs.  Once the function is finished and validated, we | 
|  | 436 | return it.</p> | 
|  | 437 |  | 
|  | 438 | <div class="doc_code"> | 
|  | 439 | <pre> | 
|  | 440 | with e -> | 
|  | 441 | delete_function the_function; | 
|  | 442 | raise e | 
|  | 443 | </pre> | 
|  | 444 | </div> | 
|  | 445 |  | 
|  | 446 | <p>The only piece left here is handling of the error case.  For simplicity, we | 
|  | 447 | handle this by merely deleting the function we produced with the | 
|  | 448 | <tt>Llvm.delete_function</tt> method.  This allows the user to redefine a | 
|  | 449 | function that they incorrectly typed in before: if we didn't delete it, it | 
|  | 450 | would live in the symbol table, with a body, preventing future redefinition.</p> | 
|  | 451 |  | 
|  | 452 | <p>This code does have a bug, though.  Since the <tt>Codegen.codegen_proto</tt> | 
|  | 453 | can return a previously defined forward declaration, our code can actually delete | 
|  | 454 | a forward declaration.  There are a number of ways to fix this bug, see what you | 
|  | 455 | can come up with!  Here is a testcase:</p> | 
|  | 456 |  | 
|  | 457 | <div class="doc_code"> | 
|  | 458 | <pre> | 
|  | 459 | extern foo(a b);     # ok, defines foo. | 
|  | 460 | def foo(a b) c;      # error, 'c' is invalid. | 
|  | 461 | def bar() foo(1, 2); # error, unknown function "foo" | 
|  | 462 | </pre> | 
|  | 463 | </div> | 
|  | 464 |  | 
|  | 465 | </div> | 
|  | 466 |  | 
|  | 467 | <!-- *********************************************************************** --> | 
|  | 468 | <div class="doc_section"><a name="driver">Driver Changes and | 
|  | 469 | Closing Thoughts</a></div> | 
|  | 470 | <!-- *********************************************************************** --> | 
|  | 471 |  | 
|  | 472 | <div class="doc_text"> | 
|  | 473 |  | 
|  | 474 | <p> | 
|  | 475 | For now, code generation to LLVM doesn't really get us much, except that we can | 
|  | 476 | look at the pretty IR calls.  The sample code inserts calls to Codegen into the | 
|  | 477 | "<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR.  This gives a | 
|  | 478 | nice way to look at the LLVM IR for simple functions.  For example: | 
|  | 479 | </p> | 
|  | 480 |  | 
|  | 481 | <div class="doc_code"> | 
|  | 482 | <pre> | 
|  | 483 | ready> <b>4+5</b>; | 
|  | 484 | Read top-level expression: | 
|  | 485 | define double @""() { | 
|  | 486 | entry: | 
|  | 487 | %addtmp = add double 4.000000e+00, 5.000000e+00 | 
|  | 488 | ret double %addtmp | 
|  | 489 | } | 
|  | 490 | </pre> | 
|  | 491 | </div> | 
|  | 492 |  | 
|  | 493 | <p>Note how the parser turns the top-level expression into anonymous functions | 
|  | 494 | for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT | 
|  | 495 | support</a> in the next chapter.  Also note that the code is very literally | 
|  | 496 | transcribed, no optimizations are being performed.  We will | 
|  | 497 | <a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly | 
|  | 498 | in the next chapter.</p> | 
|  | 499 |  | 
|  | 500 | <div class="doc_code"> | 
|  | 501 | <pre> | 
|  | 502 | ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> | 
|  | 503 | Read function definition: | 
|  | 504 | define double @foo(double %a, double %b) { | 
|  | 505 | entry: | 
|  | 506 | %multmp = mul double %a, %a | 
|  | 507 | %multmp1 = mul double 2.000000e+00, %a | 
|  | 508 | %multmp2 = mul double %multmp1, %b | 
|  | 509 | %addtmp = add double %multmp, %multmp2 | 
|  | 510 | %multmp3 = mul double %b, %b | 
|  | 511 | %addtmp4 = add double %addtmp, %multmp3 | 
|  | 512 | ret double %addtmp4 | 
|  | 513 | } | 
|  | 514 | </pre> | 
|  | 515 | </div> | 
|  | 516 |  | 
|  | 517 | <p>This shows some simple arithmetic. Notice the striking similarity to the | 
|  | 518 | LLVM builder calls that we use to create the instructions.</p> | 
|  | 519 |  | 
|  | 520 | <div class="doc_code"> | 
|  | 521 | <pre> | 
|  | 522 | ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> | 
|  | 523 | Read function definition: | 
|  | 524 | define double @bar(double %a) { | 
|  | 525 | entry: | 
|  | 526 | %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
|  | 527 | %calltmp1 = call double @bar( double 3.133700e+04 ) | 
|  | 528 | %addtmp = add double %calltmp, %calltmp1 | 
|  | 529 | ret double %addtmp | 
|  | 530 | } | 
|  | 531 | </pre> | 
|  | 532 | </div> | 
|  | 533 |  | 
|  | 534 | <p>This shows some function calls.  Note that this function will take a long | 
|  | 535 | time to execute if you call it.  In the future we'll add conditional control | 
|  | 536 | flow to actually make recursion useful :).</p> | 
|  | 537 |  | 
|  | 538 | <div class="doc_code"> | 
|  | 539 | <pre> | 
|  | 540 | ready> <b>extern cos(x);</b> | 
|  | 541 | Read extern: | 
|  | 542 | declare double @cos(double) | 
|  | 543 |  | 
|  | 544 | ready> <b>cos(1.234);</b> | 
|  | 545 | Read top-level expression: | 
|  | 546 | define double @""() { | 
|  | 547 | entry: | 
|  | 548 | %calltmp = call double @cos( double 1.234000e+00 ) | 
|  | 549 | ret double %calltmp | 
|  | 550 | } | 
|  | 551 | </pre> | 
|  | 552 | </div> | 
|  | 553 |  | 
|  | 554 | <p>This shows an extern for the libm "cos" function, and a call to it.</p> | 
|  | 555 |  | 
|  | 556 |  | 
|  | 557 | <div class="doc_code"> | 
|  | 558 | <pre> | 
|  | 559 | ready> <b>^D</b> | 
|  | 560 | ; ModuleID = 'my cool jit' | 
|  | 561 |  | 
|  | 562 | define double @""() { | 
|  | 563 | entry: | 
|  | 564 | %addtmp = add double 4.000000e+00, 5.000000e+00 | 
|  | 565 | ret double %addtmp | 
|  | 566 | } | 
|  | 567 |  | 
|  | 568 | define double @foo(double %a, double %b) { | 
|  | 569 | entry: | 
|  | 570 | %multmp = mul double %a, %a | 
|  | 571 | %multmp1 = mul double 2.000000e+00, %a | 
|  | 572 | %multmp2 = mul double %multmp1, %b | 
|  | 573 | %addtmp = add double %multmp, %multmp2 | 
|  | 574 | %multmp3 = mul double %b, %b | 
|  | 575 | %addtmp4 = add double %addtmp, %multmp3 | 
|  | 576 | ret double %addtmp4 | 
|  | 577 | } | 
|  | 578 |  | 
|  | 579 | define double @bar(double %a) { | 
|  | 580 | entry: | 
|  | 581 | %calltmp = call double @foo( double %a, double 4.000000e+00 ) | 
|  | 582 | %calltmp1 = call double @bar( double 3.133700e+04 ) | 
|  | 583 | %addtmp = add double %calltmp, %calltmp1 | 
|  | 584 | ret double %addtmp | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | declare double @cos(double) | 
|  | 588 |  | 
|  | 589 | define double @""() { | 
|  | 590 | entry: | 
|  | 591 | %calltmp = call double @cos( double 1.234000e+00 ) | 
|  | 592 | ret double %calltmp | 
|  | 593 | } | 
|  | 594 | </pre> | 
|  | 595 | </div> | 
|  | 596 |  | 
|  | 597 | <p>When you quit the current demo, it dumps out the IR for the entire module | 
|  | 598 | generated.  Here you can see the big picture with all the functions referencing | 
|  | 599 | each other.</p> | 
|  | 600 |  | 
|  | 601 | <p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll | 
|  | 602 | describe how to <a href="LangImpl4.html">add JIT codegen and optimizer | 
|  | 603 | support</a> to this so we can actually start running code!</p> | 
|  | 604 |  | 
|  | 605 | </div> | 
|  | 606 |  | 
|  | 607 |  | 
|  | 608 | <!-- *********************************************************************** --> | 
|  | 609 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | 610 | <!-- *********************************************************************** --> | 
|  | 611 |  | 
|  | 612 | <div class="doc_text"> | 
|  | 613 |  | 
|  | 614 | <p> | 
|  | 615 | Here is the complete code listing for our running example, enhanced with the | 
|  | 616 | LLVM code generator.    Because this uses the LLVM libraries, we need to link | 
|  | 617 | them in.  To do this, we use the <a | 
|  | 618 | href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform | 
|  | 619 | our makefile/command line about which options to use:</p> | 
|  | 620 |  | 
|  | 621 | <div class="doc_code"> | 
|  | 622 | <pre> | 
|  | 623 | # Compile | 
|  | 624 | ocamlbuild toy.byte | 
|  | 625 | # Run | 
|  | 626 | ./toy.byte | 
|  | 627 | </pre> | 
|  | 628 | </div> | 
|  | 629 |  | 
|  | 630 | <p>Here is the code:</p> | 
|  | 631 |  | 
|  | 632 | <dl> | 
|  | 633 | <dt>_tags:</dt> | 
|  | 634 | <dd class="doc_code"> | 
|  | 635 | <pre> | 
|  | 636 | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) | 
|  | 637 | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis | 
|  | 638 | </pre> | 
|  | 639 | </dd> | 
|  | 640 |  | 
|  | 641 | <dt>myocamlbuild.ml:</dt> | 
|  | 642 | <dd class="doc_code"> | 
|  | 643 | <pre> | 
|  | 644 | open Ocamlbuild_plugin;; | 
|  | 645 |  | 
|  | 646 | ocaml_lib ~extern:true "llvm";; | 
|  | 647 | ocaml_lib ~extern:true "llvm_analysis";; | 
|  | 648 |  | 
|  | 649 | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; | 
|  | 650 | </pre> | 
|  | 651 | </dd> | 
|  | 652 |  | 
|  | 653 | <dt>token.ml:</dt> | 
|  | 654 | <dd class="doc_code"> | 
|  | 655 | <pre> | 
|  | 656 | (*===----------------------------------------------------------------------=== | 
|  | 657 | * Lexer Tokens | 
|  | 658 | *===----------------------------------------------------------------------===*) | 
|  | 659 |  | 
|  | 660 | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of | 
|  | 661 | * these others for known things. *) | 
|  | 662 | type token = | 
|  | 663 | (* commands *) | 
|  | 664 | | Def | Extern | 
|  | 665 |  | 
|  | 666 | (* primary *) | 
|  | 667 | | Ident of string | Number of float | 
|  | 668 |  | 
|  | 669 | (* unknown *) | 
|  | 670 | | Kwd of char | 
|  | 671 | </pre> | 
|  | 672 | </dd> | 
|  | 673 |  | 
|  | 674 | <dt>lexer.ml:</dt> | 
|  | 675 | <dd class="doc_code"> | 
|  | 676 | <pre> | 
|  | 677 | (*===----------------------------------------------------------------------=== | 
|  | 678 | * Lexer | 
|  | 679 | *===----------------------------------------------------------------------===*) | 
|  | 680 |  | 
|  | 681 | let rec lex = parser | 
|  | 682 | (* Skip any whitespace. *) | 
|  | 683 | | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream | 
|  | 684 |  | 
|  | 685 | (* identifier: [a-zA-Z][a-zA-Z0-9] *) | 
|  | 686 | | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> | 
|  | 687 | let buffer = Buffer.create 1 in | 
|  | 688 | Buffer.add_char buffer c; | 
|  | 689 | lex_ident buffer stream | 
|  | 690 |  | 
|  | 691 | (* number: [0-9.]+ *) | 
|  | 692 | | [< ' ('0' .. '9' as c); stream >] -> | 
|  | 693 | let buffer = Buffer.create 1 in | 
|  | 694 | Buffer.add_char buffer c; | 
|  | 695 | lex_number buffer stream | 
|  | 696 |  | 
|  | 697 | (* Comment until end of line. *) | 
|  | 698 | | [< ' ('#'); stream >] -> | 
|  | 699 | lex_comment stream | 
|  | 700 |  | 
|  | 701 | (* Otherwise, just return the character as its ascii value. *) | 
|  | 702 | | [< 'c; stream >] -> | 
|  | 703 | [< 'Token.Kwd c; lex stream >] | 
|  | 704 |  | 
|  | 705 | (* end of stream. *) | 
|  | 706 | | [< >] -> [< >] | 
|  | 707 |  | 
|  | 708 | and lex_number buffer = parser | 
|  | 709 | | [< ' ('0' .. '9' | '.' as c); stream >] -> | 
|  | 710 | Buffer.add_char buffer c; | 
|  | 711 | lex_number buffer stream | 
|  | 712 | | [< stream=lex >] -> | 
|  | 713 | [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] | 
|  | 714 |  | 
|  | 715 | and lex_ident buffer = parser | 
|  | 716 | | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> | 
|  | 717 | Buffer.add_char buffer c; | 
|  | 718 | lex_ident buffer stream | 
|  | 719 | | [< stream=lex >] -> | 
|  | 720 | match Buffer.contents buffer with | 
|  | 721 | | "def" -> [< 'Token.Def; stream >] | 
|  | 722 | | "extern" -> [< 'Token.Extern; stream >] | 
|  | 723 | | id -> [< 'Token.Ident id; stream >] | 
|  | 724 |  | 
|  | 725 | and lex_comment = parser | 
|  | 726 | | [< ' ('\n'); stream=lex >] -> stream | 
|  | 727 | | [< 'c; e=lex_comment >] -> e | 
|  | 728 | | [< >] -> [< >] | 
|  | 729 | </pre> | 
|  | 730 | </dd> | 
|  | 731 |  | 
|  | 732 | <dt>ast.ml:</dt> | 
|  | 733 | <dd class="doc_code"> | 
|  | 734 | <pre> | 
|  | 735 | (*===----------------------------------------------------------------------=== | 
|  | 736 | * Abstract Syntax Tree (aka Parse Tree) | 
|  | 737 | *===----------------------------------------------------------------------===*) | 
|  | 738 |  | 
|  | 739 | (* expr - Base type for all expression nodes. *) | 
|  | 740 | type expr = | 
|  | 741 | (* variant for numeric literals like "1.0". *) | 
|  | 742 | | Number of float | 
|  | 743 |  | 
|  | 744 | (* variant for referencing a variable, like "a". *) | 
|  | 745 | | Variable of string | 
|  | 746 |  | 
|  | 747 | (* variant for a binary operator. *) | 
|  | 748 | | Binary of char * expr * expr | 
|  | 749 |  | 
|  | 750 | (* variant for function calls. *) | 
|  | 751 | | Call of string * expr array | 
|  | 752 |  | 
|  | 753 | (* proto - This type represents the "prototype" for a function, which captures | 
|  | 754 | * its name, and its argument names (thus implicitly the number of arguments the | 
|  | 755 | * function takes). *) | 
|  | 756 | type proto = Prototype of string * string array | 
|  | 757 |  | 
|  | 758 | (* func - This type represents a function definition itself. *) | 
|  | 759 | type func = Function of proto * expr | 
|  | 760 | </pre> | 
|  | 761 | </dd> | 
|  | 762 |  | 
|  | 763 | <dt>parser.ml:</dt> | 
|  | 764 | <dd class="doc_code"> | 
|  | 765 | <pre> | 
|  | 766 | (*===---------------------------------------------------------------------=== | 
|  | 767 | * Parser | 
|  | 768 | *===---------------------------------------------------------------------===*) | 
|  | 769 |  | 
|  | 770 | (* binop_precedence - This holds the precedence for each binary operator that is | 
|  | 771 | * defined *) | 
|  | 772 | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 | 
|  | 773 |  | 
|  | 774 | (* precedence - Get the precedence of the pending binary operator token. *) | 
|  | 775 | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 | 
|  | 776 |  | 
|  | 777 | (* primary | 
|  | 778 | *   ::= identifier | 
|  | 779 | *   ::= numberexpr | 
|  | 780 | *   ::= parenexpr *) | 
|  | 781 | let rec parse_primary = parser | 
|  | 782 | (* numberexpr ::= number *) | 
|  | 783 | | [< 'Token.Number n >] -> Ast.Number n | 
|  | 784 |  | 
|  | 785 | (* parenexpr ::= '(' expression ')' *) | 
|  | 786 | | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e | 
|  | 787 |  | 
|  | 788 | (* identifierexpr | 
|  | 789 | *   ::= identifier | 
|  | 790 | *   ::= identifier '(' argumentexpr ')' *) | 
|  | 791 | | [< 'Token.Ident id; stream >] -> | 
|  | 792 | let rec parse_args accumulator = parser | 
|  | 793 | | [< e=parse_expr; stream >] -> | 
|  | 794 | begin parser | 
|  | 795 | | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e | 
|  | 796 | | [< >] -> e :: accumulator | 
|  | 797 | end stream | 
|  | 798 | | [< >] -> accumulator | 
|  | 799 | in | 
|  | 800 | let rec parse_ident id = parser | 
|  | 801 | (* Call. *) | 
|  | 802 | | [< 'Token.Kwd '('; | 
|  | 803 | args=parse_args []; | 
|  | 804 | 'Token.Kwd ')' ?? "expected ')'">] -> | 
|  | 805 | Ast.Call (id, Array.of_list (List.rev args)) | 
|  | 806 |  | 
|  | 807 | (* Simple variable ref. *) | 
|  | 808 | | [< >] -> Ast.Variable id | 
|  | 809 | in | 
|  | 810 | parse_ident id stream | 
|  | 811 |  | 
|  | 812 | | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") | 
|  | 813 |  | 
|  | 814 | (* binoprhs | 
|  | 815 | *   ::= ('+' primary)* *) | 
|  | 816 | and parse_bin_rhs expr_prec lhs stream = | 
|  | 817 | match Stream.peek stream with | 
|  | 818 | (* If this is a binop, find its precedence. *) | 
|  | 819 | | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> | 
|  | 820 | let token_prec = precedence c in | 
|  | 821 |  | 
|  | 822 | (* If this is a binop that binds at least as tightly as the current binop, | 
|  | 823 | * consume it, otherwise we are done. *) | 
|  | 824 | if token_prec < expr_prec then lhs else begin | 
|  | 825 | (* Eat the binop. *) | 
|  | 826 | Stream.junk stream; | 
|  | 827 |  | 
|  | 828 | (* Parse the primary expression after the binary operator. *) | 
|  | 829 | let rhs = parse_primary stream in | 
|  | 830 |  | 
|  | 831 | (* Okay, we know this is a binop. *) | 
|  | 832 | let rhs = | 
|  | 833 | match Stream.peek stream with | 
|  | 834 | | Some (Token.Kwd c2) -> | 
|  | 835 | (* If BinOp binds less tightly with rhs than the operator after | 
|  | 836 | * rhs, let the pending operator take rhs as its lhs. *) | 
|  | 837 | let next_prec = precedence c2 in | 
|  | 838 | if token_prec < next_prec | 
|  | 839 | then parse_bin_rhs (token_prec + 1) rhs stream | 
|  | 840 | else rhs | 
|  | 841 | | _ -> rhs | 
|  | 842 | in | 
|  | 843 |  | 
|  | 844 | (* Merge lhs/rhs. *) | 
|  | 845 | let lhs = Ast.Binary (c, lhs, rhs) in | 
|  | 846 | parse_bin_rhs expr_prec lhs stream | 
|  | 847 | end | 
|  | 848 | | _ -> lhs | 
|  | 849 |  | 
|  | 850 | (* expression | 
|  | 851 | *   ::= primary binoprhs *) | 
|  | 852 | and parse_expr = parser | 
|  | 853 | | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream | 
|  | 854 |  | 
|  | 855 | (* prototype | 
|  | 856 | *   ::= id '(' id* ')' *) | 
|  | 857 | let parse_prototype = | 
|  | 858 | let rec parse_args accumulator = parser | 
|  | 859 | | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e | 
|  | 860 | | [< >] -> accumulator | 
|  | 861 | in | 
|  | 862 |  | 
|  | 863 | parser | 
|  | 864 | | [< 'Token.Ident id; | 
|  | 865 | 'Token.Kwd '(' ?? "expected '(' in prototype"; | 
|  | 866 | args=parse_args []; | 
|  | 867 | 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
|  | 868 | (* success. *) | 
|  | 869 | Ast.Prototype (id, Array.of_list (List.rev args)) | 
|  | 870 |  | 
|  | 871 | | [< >] -> | 
|  | 872 | raise (Stream.Error "expected function name in prototype") | 
|  | 873 |  | 
|  | 874 | (* definition ::= 'def' prototype expression *) | 
|  | 875 | let parse_definition = parser | 
|  | 876 | | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> | 
|  | 877 | Ast.Function (p, e) | 
|  | 878 |  | 
|  | 879 | (* toplevelexpr ::= expression *) | 
|  | 880 | let parse_toplevel = parser | 
|  | 881 | | [< e=parse_expr >] -> | 
|  | 882 | (* Make an anonymous proto. *) | 
|  | 883 | Ast.Function (Ast.Prototype ("", [||]), e) | 
|  | 884 |  | 
|  | 885 | (*  external ::= 'extern' prototype *) | 
|  | 886 | let parse_extern = parser | 
|  | 887 | | [< 'Token.Extern; e=parse_prototype >] -> e | 
|  | 888 | </pre> | 
|  | 889 | </dd> | 
|  | 890 |  | 
|  | 891 | <dt>codegen.ml:</dt> | 
|  | 892 | <dd class="doc_code"> | 
|  | 893 | <pre> | 
|  | 894 | (*===----------------------------------------------------------------------=== | 
|  | 895 | * Code Generation | 
|  | 896 | *===----------------------------------------------------------------------===*) | 
|  | 897 |  | 
|  | 898 | open Llvm | 
|  | 899 |  | 
|  | 900 | exception Error of string | 
|  | 901 |  | 
|  | 902 | let the_module = create_module "my cool jit" | 
|  | 903 | let builder = builder () | 
|  | 904 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 | 
|  | 905 |  | 
|  | 906 | let rec codegen_expr = function | 
|  | 907 | | Ast.Number n -> const_float double_type n | 
|  | 908 | | Ast.Variable name -> | 
|  | 909 | (try Hashtbl.find named_values name with | 
|  | 910 | | Not_found -> raise (Error "unknown variable name")) | 
|  | 911 | | Ast.Binary (op, lhs, rhs) -> | 
|  | 912 | let lhs_val = codegen_expr lhs in | 
|  | 913 | let rhs_val = codegen_expr rhs in | 
|  | 914 | begin | 
|  | 915 | match op with | 
|  | 916 | | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
|  | 917 | | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
|  | 918 | | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
|  | 919 | | '<' -> | 
|  | 920 | (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
|  | 921 | let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
|  | 922 | build_uitofp i double_type "booltmp" builder | 
|  | 923 | | _ -> raise (Error "invalid binary operator") | 
|  | 924 | end | 
|  | 925 | | Ast.Call (callee, args) -> | 
|  | 926 | (* Look up the name in the module table. *) | 
|  | 927 | let callee = | 
|  | 928 | match lookup_function callee the_module with | 
|  | 929 | | Some callee -> callee | 
|  | 930 | | None -> raise (Error "unknown function referenced") | 
|  | 931 | in | 
|  | 932 | let params = params callee in | 
|  | 933 |  | 
|  | 934 | (* If argument mismatch error. *) | 
|  | 935 | if Array.length params == Array.length args then () else | 
|  | 936 | raise (Error "incorrect # arguments passed"); | 
|  | 937 | let args = Array.map codegen_expr args in | 
|  | 938 | build_call callee args "calltmp" builder | 
|  | 939 |  | 
|  | 940 | let codegen_proto = function | 
|  | 941 | | Ast.Prototype (name, args) -> | 
|  | 942 | (* Make the function type: double(double,double) etc. *) | 
|  | 943 | let doubles = Array.make (Array.length args) double_type in | 
|  | 944 | let ft = function_type double_type doubles in | 
|  | 945 | let f = | 
|  | 946 | match lookup_function name the_module with | 
|  | 947 | | None -> declare_function name ft the_module | 
|  | 948 |  | 
|  | 949 | (* If 'f' conflicted, there was already something named 'name'. If it | 
|  | 950 | * has a body, don't allow redefinition or reextern. *) | 
|  | 951 | | Some f -> | 
|  | 952 | (* If 'f' already has a body, reject this. *) | 
|  | 953 | if block_begin f <> At_end f then | 
|  | 954 | raise (Error "redefinition of function"); | 
|  | 955 |  | 
|  | 956 | (* If 'f' took a different number of arguments, reject. *) | 
|  | 957 | if element_type (type_of f) <> ft then | 
|  | 958 | raise (Error "redefinition of function with different # args"); | 
|  | 959 | f | 
|  | 960 | in | 
|  | 961 |  | 
|  | 962 | (* Set names for all arguments. *) | 
|  | 963 | Array.iteri (fun i a -> | 
|  | 964 | let n = args.(i) in | 
|  | 965 | set_value_name n a; | 
|  | 966 | Hashtbl.add named_values n a; | 
|  | 967 | ) (params f); | 
|  | 968 | f | 
|  | 969 |  | 
|  | 970 | let codegen_func = function | 
|  | 971 | | Ast.Function (proto, body) -> | 
|  | 972 | Hashtbl.clear named_values; | 
|  | 973 | let the_function = codegen_proto proto in | 
|  | 974 |  | 
|  | 975 | (* Create a new basic block to start insertion into. *) | 
|  | 976 | let bb = append_block "entry" the_function in | 
|  | 977 | position_at_end bb builder; | 
|  | 978 |  | 
|  | 979 | try | 
|  | 980 | let ret_val = codegen_expr body in | 
|  | 981 |  | 
|  | 982 | (* Finish off the function. *) | 
|  | 983 | let _ = build_ret ret_val builder in | 
|  | 984 |  | 
|  | 985 | (* Validate the generated code, checking for consistency. *) | 
|  | 986 | Llvm_analysis.assert_valid_function the_function; | 
|  | 987 |  | 
|  | 988 | the_function | 
|  | 989 | with e -> | 
|  | 990 | delete_function the_function; | 
|  | 991 | raise e | 
|  | 992 | </pre> | 
|  | 993 | </dd> | 
|  | 994 |  | 
|  | 995 | <dt>toplevel.ml:</dt> | 
|  | 996 | <dd class="doc_code"> | 
|  | 997 | <pre> | 
|  | 998 | (*===----------------------------------------------------------------------=== | 
|  | 999 | * Top-Level parsing and JIT Driver | 
|  | 1000 | *===----------------------------------------------------------------------===*) | 
|  | 1001 |  | 
|  | 1002 | open Llvm | 
|  | 1003 |  | 
|  | 1004 | (* top ::= definition | external | expression | ';' *) | 
|  | 1005 | let rec main_loop stream = | 
|  | 1006 | match Stream.peek stream with | 
|  | 1007 | | None -> () | 
|  | 1008 |  | 
|  | 1009 | (* ignore top-level semicolons. *) | 
|  | 1010 | | Some (Token.Kwd ';') -> | 
|  | 1011 | Stream.junk stream; | 
|  | 1012 | main_loop stream | 
|  | 1013 |  | 
|  | 1014 | | Some token -> | 
|  | 1015 | begin | 
|  | 1016 | try match token with | 
|  | 1017 | | Token.Def -> | 
|  | 1018 | let e = Parser.parse_definition stream in | 
|  | 1019 | print_endline "parsed a function definition."; | 
|  | 1020 | dump_value (Codegen.codegen_func e); | 
|  | 1021 | | Token.Extern -> | 
|  | 1022 | let e = Parser.parse_extern stream in | 
|  | 1023 | print_endline "parsed an extern."; | 
|  | 1024 | dump_value (Codegen.codegen_proto e); | 
|  | 1025 | | _ -> | 
|  | 1026 | (* Evaluate a top-level expression into an anonymous function. *) | 
|  | 1027 | let e = Parser.parse_toplevel stream in | 
|  | 1028 | print_endline "parsed a top-level expr"; | 
|  | 1029 | dump_value (Codegen.codegen_func e); | 
|  | 1030 | with Stream.Error s | Codegen.Error s -> | 
|  | 1031 | (* Skip token for error recovery. *) | 
|  | 1032 | Stream.junk stream; | 
|  | 1033 | print_endline s; | 
|  | 1034 | end; | 
|  | 1035 | print_string "ready> "; flush stdout; | 
|  | 1036 | main_loop stream | 
|  | 1037 | </pre> | 
|  | 1038 | </dd> | 
|  | 1039 |  | 
|  | 1040 | <dt>toy.ml:</dt> | 
|  | 1041 | <dd class="doc_code"> | 
|  | 1042 | <pre> | 
|  | 1043 | (*===----------------------------------------------------------------------=== | 
|  | 1044 | * Main driver code. | 
|  | 1045 | *===----------------------------------------------------------------------===*) | 
|  | 1046 |  | 
|  | 1047 | open Llvm | 
|  | 1048 |  | 
|  | 1049 | let main () = | 
|  | 1050 | (* Install standard binary operators. | 
|  | 1051 | * 1 is the lowest precedence. *) | 
|  | 1052 | Hashtbl.add Parser.binop_precedence '<' 10; | 
|  | 1053 | Hashtbl.add Parser.binop_precedence '+' 20; | 
|  | 1054 | Hashtbl.add Parser.binop_precedence '-' 20; | 
|  | 1055 | Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *) | 
|  | 1056 |  | 
|  | 1057 | (* Prime the first token. *) | 
|  | 1058 | print_string "ready> "; flush stdout; | 
|  | 1059 | let stream = Lexer.lex (Stream.of_channel stdin) in | 
|  | 1060 |  | 
|  | 1061 | (* Run the main "interpreter loop" now. *) | 
|  | 1062 | Toplevel.main_loop stream; | 
|  | 1063 |  | 
|  | 1064 | (* Print out all the generated code. *) | 
|  | 1065 | dump_module Codegen.the_module | 
|  | 1066 | ;; | 
|  | 1067 |  | 
|  | 1068 | main () | 
|  | 1069 | </pre> | 
|  | 1070 | </dd> | 
|  | 1071 | </dl> | 
|  | 1072 |  | 
|  | 1073 | <a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a> | 
|  | 1074 | </div> | 
|  | 1075 |  | 
|  | 1076 | <!-- *********************************************************************** --> | 
|  | 1077 | <hr> | 
|  | 1078 | <address> | 
|  | 1079 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | 1080 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | 1081 | <a href="http://validator.w3.org/check/referer"><img | 
|  | 1082 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
|  | 1083 |  | 
|  | 1084 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | 1085 | <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> | 
|  | 1086 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | 1087 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
|  | 1088 | </address> | 
|  | 1089 | </body> | 
|  | 1090 | </html> |