blob: dbe4eec35463d1848fdce2ab9560cd5749590b4d [file] [log] [blame]
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "ptrace.h"
#include <asm/unistd.h>
#include <assert.h>
#include "common.h"
/* If the system headers did not provide the constants, hard-code the normal
values. */
#ifndef PTRACE_EVENT_FORK
#define PTRACE_OLDSETOPTIONS 21
#define PTRACE_SETOPTIONS 0x4200
#define PTRACE_GETEVENTMSG 0x4201
/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD 0x00000001
#define PTRACE_O_TRACEFORK 0x00000002
#define PTRACE_O_TRACEVFORK 0x00000004
#define PTRACE_O_TRACECLONE 0x00000008
#define PTRACE_O_TRACEEXEC 0x00000010
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEEXIT 0x00000040
/* Wait extended result codes for the above trace options. */
#define PTRACE_EVENT_FORK 1
#define PTRACE_EVENT_VFORK 2
#define PTRACE_EVENT_CLONE 3
#define PTRACE_EVENT_EXEC 4
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_EXIT 6
#endif /* PTRACE_EVENT_FORK */
#ifdef ARCH_HAVE_UMOVELONG
extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
int
umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
return arch_umovelong (proc, addr, result, info);
}
#else
/* Read a single long from the process's memory address 'addr' */
int
umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
long pointed_to;
errno = 0;
pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
if (pointed_to == -1 && errno)
return -errno;
*result = pointed_to;
if (info) {
switch(info->type) {
case ARGTYPE_INT:
*result &= 0x00000000ffffffffUL;
default:
break;
};
}
return 0;
}
#endif
void
trace_me(void) {
debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
perror("PTRACE_TRACEME");
exit(1);
}
}
int
trace_pid(pid_t pid) {
debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
return -1;
}
/* man ptrace: PTRACE_ATTACH attaches to the process specified
in pid. The child is sent a SIGSTOP, but will not
necessarily have stopped by the completion of this call;
use wait() to wait for the child to stop. */
if (waitpid (pid, NULL, __WALL) != pid) {
perror ("trace_pid: waitpid");
return -1;
}
return 0;
}
void
trace_set_options(Process *proc, pid_t pid) {
if (proc->tracesysgood & 0x80)
return;
debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
PTRACE_O_TRACEEXEC;
if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
perror("PTRACE_SETOPTIONS");
return;
}
proc->tracesysgood |= 0x80;
}
void
untrace_pid(pid_t pid) {
debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
ptrace(PTRACE_DETACH, pid, 1, 0);
}
void
continue_after_signal(pid_t pid, int signum) {
Process *proc;
debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
proc = pid2proc(pid);
ptrace(PTRACE_SYSCALL, pid, 0, signum);
}
static enum ecb_status
event_for_pid(Event * event, void * data)
{
if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
return ecb_yield;
return ecb_cont;
}
static int
have_events_for(pid_t pid)
{
return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
}
void
continue_process(pid_t pid)
{
debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
/* Only really continue the process if there are no events in
the queue for this process. Otherwise just for the other
events to arrive. */
if (!have_events_for(pid))
/* We always trace syscalls to control fork(),
* clone(), execve()... */
ptrace(PTRACE_SYSCALL, pid, 0, 0);
else
debug(DEBUG_PROCESS,
"putting off the continue, events in que.");
}
/**
* This is used for bookkeeping related to PIDs that the event
* handlers work with.
*/
struct pid_task {
pid_t pid; /* This may be 0 for tasks that exited
* mid-handling. */
int sigstopped;
int got_event;
int delivered;
} * pids;
struct pid_set {
struct pid_task * tasks;
size_t count;
size_t alloc;
};
/**
* Breakpoint re-enablement. When we hit a breakpoint, we must
* disable it, single-step, and re-enable it. That single-step can be
* done only by one task in a task group, while others are stopped,
* otherwise the processes would race for who sees the breakpoint
* disabled and who doesn't. The following is to keep track of it
* all.
*/
struct process_stopping_handler
{
Event_Handler super;
/* The task that is doing the re-enablement. */
Process * task_enabling_breakpoint;
/* The pointer being re-enabled. */
Breakpoint * breakpoint_being_enabled;
enum {
/* We are waiting for everyone to land in t/T. */
psh_stopping = 0,
/* We are doing the PTRACE_SINGLESTEP. */
psh_singlestep,
/* We are waiting for all the SIGSTOPs to arrive so
* that we can sink them. */
psh_sinking,
} state;
struct pid_set pids;
};
static enum pcb_status
task_stopped(Process * task, void * data)
{
/* If the task is already stopped, don't worry about it.
* Likewise if it managed to become a zombie or terminate in
* the meantime. This can happen when the whole thread group
* is terminating. */
switch (process_status(task->pid)) {
case ps_invalid:
case ps_tracing_stop:
case ps_zombie:
return pcb_cont;
default:
return pcb_stop;
}
}
static struct pid_task *
get_task_info(struct pid_set * pids, pid_t pid)
{
assert(pid != 0);
size_t i;
for (i = 0; i < pids->count; ++i)
if (pids->tasks[i].pid == pid)
return &pids->tasks[i];
return NULL;
}
static struct pid_task *
add_task_info(struct pid_set * pids, pid_t pid)
{
if (pids->count == pids->alloc) {
size_t ns = (2 * pids->alloc) ?: 4;
struct pid_task * n = realloc(pids->tasks,
sizeof(*pids->tasks) * ns);
if (n == NULL)
return NULL;
pids->tasks = n;
pids->alloc = ns;
}
struct pid_task * task_info = &pids->tasks[pids->count++];
memset(task_info, 0, sizeof(*task_info));
task_info->pid = pid;
return task_info;
}
static enum pcb_status
send_sigstop(Process * task, void * data)
{
Process * leader = task->leader;
struct pid_set * pids = data;
/* Look for pre-existing task record, or add new. */
struct pid_task * task_info = get_task_info(pids, task->pid);
if (task_info == NULL)
task_info = add_task_info(pids, task->pid);
if (task_info == NULL) {
perror("send_sigstop: add_task_info");
destroy_event_handler(leader);
/* Signal failure upwards. */
return pcb_stop;
}
/* This task still has not been attached to. It should be
stopped by the kernel. */
if (task->state == STATE_BEING_CREATED)
return pcb_cont;
/* Don't bother sending SIGSTOP if we are already stopped, or
* if we sent the SIGSTOP already, which happens when we
* inherit the handler from breakpoint re-enablement. */
if (task_stopped(task, NULL) == pcb_cont)
return pcb_cont;
if (task_info->sigstopped) {
if (!task_info->delivered)
return pcb_cont;
task_info->delivered = 0;
}
if (task_kill(task->pid, SIGSTOP) >= 0) {
debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
task_info->sigstopped = 1;
} else
fprintf(stderr,
"Warning: couldn't send SIGSTOP to %d\n", task->pid);
return pcb_cont;
}
static void
process_stopping_done(struct process_stopping_handler * self, Process * leader)
{
debug(DEBUG_PROCESS, "process stopping done %d",
self->task_enabling_breakpoint->pid);
size_t i;
for (i = 0; i < self->pids.count; ++i)
if (self->pids.tasks[i].pid != 0
&& self->pids.tasks[i].delivered)
continue_process(self->pids.tasks[i].pid);
continue_process(self->task_enabling_breakpoint->pid);
destroy_event_handler(leader);
}
static void
handle_stopping_event(struct pid_task * task_info, Event ** eventp)
{
/* Mark all events, so that we know whom to SIGCONT later. */
if (task_info != NULL && task_info->sigstopped)
task_info->got_event = 1;
Event * event = *eventp;
/* In every state, sink SIGSTOP events for tasks that it was
* sent to. */
if (task_info != NULL
&& event->type == EVENT_SIGNAL
&& event->e_un.signum == SIGSTOP) {
debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
if (task_info->sigstopped
&& !task_info->delivered) {
task_info->delivered = 1;
*eventp = NULL; // sink the event
} else
fprintf(stderr, "suspicious: %d got SIGSTOP, but "
"sigstopped=%d and delivered=%d\n",
task_info->pid, task_info->sigstopped,
task_info->delivered);
}
}
/* Some SIGSTOPs may have not been delivered to their respective tasks
* yet. They are still in the queue. If we have seen an event for
* that process, continue it, so that the SIGSTOP can be delivered and
* caught by ltrace. */
static void
continue_for_sigstop_delivery(struct pid_set * pids)
{
size_t i;
for (i = 0; i < pids->count; ++i) {
if (pids->tasks[i].pid != 0
&& pids->tasks[i].sigstopped
&& !pids->tasks[i].delivered
&& pids->tasks[i].got_event) {
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
pids->tasks[i].pid);
ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
}
}
}
static int
event_exit_p(Event * event)
{
return event != NULL && (event->type == EVENT_EXIT
|| event->type == EVENT_EXIT_SIGNAL);
}
static int
event_exit_or_none_p(Event * event)
{
return event == NULL || event_exit_p(event)
|| event->type == EVENT_NONE;
}
static int
await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
Event * event)
{
/* If we still didn't get our SIGSTOP, continue the process
* and carry on. */
if (event != NULL && !event_exit_or_none_p(event)
&& task_info != NULL && task_info->sigstopped) {
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
task_info->pid);
/* We should get the signal the first thing
* after this, so it should be OK to continue
* even if we are over a breakpoint. */
ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
} else {
/* If all SIGSTOPs were delivered, uninstall the
* handler and continue everyone. */
/* XXX I suspect that we should check tasks that are
* still around. Is things are now, there should be a
* race between waiting for everyone to stop and one
* of the tasks exiting. */
int all_clear = 1;
size_t i;
for (i = 0; i < pids->count; ++i)
if (pids->tasks[i].pid != 0
&& pids->tasks[i].sigstopped
&& !pids->tasks[i].delivered) {
all_clear = 0;
break;
}
return all_clear;
}
return 0;
}
/* This event handler is installed when we are in the process of
* stopping the whole thread group to do the pointer re-enablement for
* one of the threads. We pump all events to the queue for later
* processing while we wait for all the threads to stop. When this
* happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
* re-enable, and continue everyone. */
static Event *
process_stopping_on_event(Event_Handler * super, Event * event)
{
struct process_stopping_handler * self = (void *)super;
Process * task = event->proc;
Process * leader = task->leader;
Breakpoint * sbp = self->breakpoint_being_enabled;
Process * teb = self->task_enabling_breakpoint;
debug(DEBUG_PROCESS,
"pid %d; event type %d; state %d",
task->pid, event->type, self->state);
struct pid_task * task_info = get_task_info(&self->pids, task->pid);
if (task_info == NULL)
fprintf(stderr, "new task??? %d\n", task->pid);
handle_stopping_event(task_info, &event);
int state = self->state;
int event_to_queue = !event_exit_or_none_p(event);
/* Deactivate the entry if the task exits. */
if (event_exit_p(event) && task_info != NULL)
task_info->pid = 0;
switch (state) {
case psh_stopping:
/* If everyone is stopped, singlestep. */
if (each_task(leader, &task_stopped, NULL) == NULL) {
debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
teb->pid);
if (sbp->enabled)
disable_breakpoint(teb, sbp);
if (ptrace(PTRACE_SINGLESTEP, teb->pid, 0, 0))
perror("PTRACE_SINGLESTEP");
self->state = state = psh_singlestep;
}
break;
case psh_singlestep: {
/* In singlestep state, breakpoint signifies that we
* have now stepped, and can re-enable the breakpoint. */
if (event != NULL && task == teb) {
/* Essentially we don't care what event caused
* the thread to stop. We can do the
* re-enablement now. */
enable_breakpoint(teb, sbp);
continue_for_sigstop_delivery(&self->pids);
self->breakpoint_being_enabled = NULL;
self->state = state = psh_sinking;
if (event->type == EVENT_BREAKPOINT)
event = NULL; // handled
} else
break;
}
/* fall-through */
case psh_sinking:
if (await_sigstop_delivery(&self->pids, task_info, event))
process_stopping_done(self, leader);
}
if (event != NULL && event_to_queue) {
enque_event(event);
event = NULL; // sink the event
}
return event;
}
static void
process_stopping_destroy(Event_Handler * super)
{
struct process_stopping_handler * self = (void *)super;
if (self->breakpoint_being_enabled != NULL)
enable_breakpoint(self->task_enabling_breakpoint,
self->breakpoint_being_enabled);
free(self->pids.tasks);
}
void
continue_after_breakpoint(Process *proc, Breakpoint *sbp)
{
set_instruction_pointer(proc, sbp->addr);
if (sbp->enabled == 0) {
if (sbp->enabled)
disable_breakpoint(proc, sbp);
continue_process(proc->pid);
} else {
debug(DEBUG_PROCESS,
"continue_after_breakpoint: pid=%d, addr=%p",
proc->pid, sbp->addr);
#if defined __sparc__ || defined __ia64___ || defined __mips__
/* we don't want to singlestep here */
continue_process(proc->pid);
#else
struct process_stopping_handler * handler
= calloc(sizeof(*handler), 1);
if (handler == NULL) {
perror("malloc breakpoint disable handler");
fatal:
/* Carry on not bothering to re-enable. */
continue_process(proc->pid);
return;
}
handler->super.on_event = process_stopping_on_event;
handler->super.destroy = process_stopping_destroy;
handler->task_enabling_breakpoint = proc;
handler->breakpoint_being_enabled = sbp;
install_event_handler(proc->leader, &handler->super);
if (each_task(proc->leader, &send_sigstop,
&handler->pids) != NULL)
goto fatal;
/* And deliver the first fake event, in case all the
* conditions are already fulfilled. */
Event ev;
ev.type = EVENT_NONE;
ev.proc = proc;
process_stopping_on_event(&handler->super, &ev);
#endif
}
}
/**
* Ltrace exit. When we are about to exit, we have to go through all
* the processes, stop them all, remove all the breakpoints, and then
* detach the processes that we attached to using -p. If we left the
* other tasks running, they might hit stray return breakpoints and
* produce artifacts, so we better stop everyone, even if it's a bit
* of extra work.
*/
struct ltrace_exiting_handler
{
Event_Handler super;
struct pid_set pids;
};
static enum pcb_status
remove_task(Process * task, void * data)
{
/* Don't untrace leader just yet. */
if (task != data)
remove_process(task);
return pcb_cont;
}
static enum pcb_status
untrace_task(Process * task, void * data)
{
untrace_pid(task->pid);
return pcb_cont;
}
static Event *
ltrace_exiting_on_event(Event_Handler * super, Event * event)
{
struct ltrace_exiting_handler * self = (void *)super;
Process * task = event->proc;
Process * leader = task->leader;
debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
struct pid_task * task_info = get_task_info(&self->pids, task->pid);
handle_stopping_event(task_info, &event);
if (await_sigstop_delivery(&self->pids, task_info, event)) {
debug(DEBUG_PROCESS, "all SIGSTOPs delivered %d", leader->pid);
disable_all_breakpoints(leader);
/* Now untrace the process, if it was attached to by -p. */
struct opt_p_t * it;
for (it = opt_p; it != NULL; it = it->next) {
Process * proc = pid2proc(it->pid);
if (proc == NULL)
continue;
if (proc->leader == leader) {
each_task(leader, &untrace_task, NULL);
break;
}
}
each_task(leader, &remove_task, leader);
destroy_event_handler(leader);
remove_task(leader, NULL);
return NULL;
}
/* Sink all non-exit events. We are about to exit, so we
* don't bother with queuing them. */
if (event_exit_or_none_p(event))
return event;
else
return NULL;
}
static void
ltrace_exiting_destroy(Event_Handler * super)
{
struct ltrace_exiting_handler * self = (void *)super;
free(self->pids.tasks);
}
static int
ltrace_exiting_install_handler(Process * proc)
{
/* Only install to leader. */
if (proc->leader != proc)
return 0;
/* Perhaps we are already installed, if the user passed
* several -p options that are tasks of one process. */
if (proc->event_handler != NULL
&& proc->event_handler->on_event == &ltrace_exiting_on_event)
return 0;
struct ltrace_exiting_handler * handler
= calloc(sizeof(*handler), 1);
if (handler == NULL) {
perror("malloc exiting handler");
fatal:
/* XXXXXXXXXXXXXXXXXXX fixme */
return -1;
}
/* If we are in the middle of breakpoint, extract the
* pid-state information from that handler so that we can take
* over the SIGSTOP handling. */
if (proc->event_handler != NULL) {
debug(DEBUG_PROCESS, "taking over breakpoint handling");
assert(proc->event_handler->on_event
== &process_stopping_on_event);
struct process_stopping_handler * other
= (void *)proc->event_handler;
size_t i;
for (i = 0; i < other->pids.count; ++i) {
struct pid_task * oti = &other->pids.tasks[i];
if (oti->pid == 0)
continue;
struct pid_task * task_info
= add_task_info(&handler->pids, oti->pid);
if (task_info == NULL) {
perror("ltrace_exiting_install_handler"
":add_task_info");
goto fatal;
}
/* Copy over the state. */
*task_info = *oti;
}
/* And destroy the original handler. */
destroy_event_handler(proc);
}
handler->super.on_event = ltrace_exiting_on_event;
handler->super.destroy = ltrace_exiting_destroy;
install_event_handler(proc->leader, &handler->super);
if (each_task(proc->leader, &send_sigstop,
&handler->pids) != NULL)
goto fatal;
return 0;
}
/* If ltrace gets SIGINT, the processes directly or indirectly run by
* ltrace get it too. We just have to wait long enough for the signal
* to be delivered and the process terminated, which we notice and
* exit ltrace, too. So there's not much we need to do there. We
* want to keep tracing those processes as usual, in case they just
* SIG_IGN the SIGINT to do their shutdown etc.
*
* For processes ran on the background, we want to install an exit
* handler that stops all the threads, removes all breakpoints, and
* detaches.
*/
void
ltrace_exiting(void)
{
struct opt_p_t * it;
for (it = opt_p; it != NULL; it = it->next) {
Process * proc = pid2proc(it->pid);
if (proc == NULL || proc->leader == NULL)
continue;
if (ltrace_exiting_install_handler(proc->leader) < 0)
fprintf(stderr,
"Couldn't install exiting handler for %d.\n",
proc->pid);
}
}
size_t
umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
union {
long a;
char c[sizeof(long)];
} a;
int started = 0;
size_t offset = 0, bytes_read = 0;
while (offset < len) {
a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
if (a.a == -1 && errno) {
if (started && errno == EIO)
return bytes_read;
else
return -1;
}
started = 1;
if (len - offset >= sizeof(long)) {
memcpy(laddr + offset, &a.c[0], sizeof(long));
bytes_read += sizeof(long);
}
else {
memcpy(laddr + offset, &a.c[0], len - offset);
bytes_read += (len - offset);
}
offset += sizeof(long);
}
return bytes_read;
}
/* Read a series of bytes starting at the process's memory address
'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
have been read.
*/
int
umovestr(Process *proc, void *addr, int len, void *laddr) {
union {
long a;
char c[sizeof(long)];
} a;
unsigned i;
int offset = 0;
while (offset < len) {
a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
for (i = 0; i < sizeof(long); i++) {
if (a.c[i] && offset + (signed)i < len) {
*(char *)(laddr + offset + i) = a.c[i];
} else {
*(char *)(laddr + offset + i) = '\0';
return 0;
}
}
offset += sizeof(long);
}
*(char *)(laddr + offset) = '\0';
return 0;
}