blob: 94ecaac49f9828d6247e5974fba32415c16dbfab [file] [log] [blame]
#if HAVE_CONFIG_H
#include "config.h"
#endif
#define _GNU_SOURCE
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <assert.h>
#include <sys/time.h>
#include "ltrace.h"
#include "output.h"
#include "options.h"
#include "elf.h"
#include "debug.h"
#ifdef __powerpc__
#include <sys/ptrace.h>
#endif
static void process_signal(Event *event);
static void process_exit(Event *event);
static void process_exit_signal(Event *event);
static void process_syscall(Event *event);
static void process_arch_syscall(Event *event);
static void process_sysret(Event *event);
static void process_arch_sysret(Event *event);
static void process_clone(Event *event);
static void process_exec(Event *event);
static void process_breakpoint(Event *event);
static void process_new(Event *event);
static void remove_proc(Process *proc);
static void callstack_push_syscall(Process *proc, int sysnum);
static void callstack_push_symfunc(Process *proc,
struct library_symbol *sym);
static void callstack_pop(Process *proc);
/* TODO */
void * address_clone(void * addr) {
debug(DEBUG_FUNCTION, "address_clone(%p)", addr);
return addr;
}
void * breakpoint_clone(void * bp) {
Breakpoint * b;
debug(DEBUG_FUNCTION, "breakpoint_clone(%p)", bp);
b = malloc(sizeof(Breakpoint));
if (!b) {
perror("malloc()");
exit(1);
}
memcpy(b, bp, sizeof(Breakpoint));
return b;
}
typedef struct Pending_New Pending_New;
struct Pending_New {
pid_t pid;
Pending_New * next;
};
static Pending_New * pending_news = NULL;
static int
pending_new(pid_t pid) {
Pending_New * p;
debug(DEBUG_FUNCTION, "pending_new(%d)", pid);
p = pending_news;
while (p) {
if (p->pid == pid) {
return 1;
}
p = p->next;
}
return 0;
}
static void
pending_new_insert(pid_t pid) {
Pending_New * p;
debug(DEBUG_FUNCTION, "pending_new_insert(%d)", pid);
p = malloc(sizeof(Pending_New));
if (!p) {
perror("malloc()");
exit(1);
}
p->pid = pid;
p->next = pending_news;
pending_news = p;
}
static void
pending_new_remove(pid_t pid) {
Pending_New *p, *pred;
debug(DEBUG_FUNCTION, "pending_new_remove(%d)", pid);
p = pending_news;
if (p->pid == pid) {
pending_news = p->next;
free(p);
} else {
while (p) {
if (p->pid == pid) {
pred->next = p->next;
free(p);
}
pred = p;
p = p->next;
}
}
}
static void
process_clone(Event * event) {
Process *p;
debug(DEBUG_FUNCTION, "process_clone(pid=%d)", event->proc->pid);
p = malloc(sizeof(Process));
if (!p) {
perror("malloc()");
exit(1);
}
memcpy(p, event->proc, sizeof(Process));
p->breakpoints = dict_clone(event->proc->breakpoints, address_clone, breakpoint_clone);
p->pid = event->e_un.newpid;
if (pending_new(p->pid)) {
pending_new_remove(p->pid);
if (p->breakpoint_being_enabled) {
enable_breakpoint(p->pid, p->breakpoint_being_enabled);
p->breakpoint_being_enabled = NULL;
}
p->state = STATE_ATTACHED;
continue_process(p->pid);
p->next = list_of_processes;
list_of_processes = p;
} else {
p->state = STATE_BEING_CREATED;
}
/* look for previous process_new() */
}
static void
process_new(Event * event) {
Process * proc;
debug(DEBUG_FUNCTION, "process_new(pid=%d)", event->e_un.newpid);
proc = pid2proc(event->e_un.newpid);
if (!proc) {
pending_new_insert(event->e_un.newpid);
} else {
assert(proc->state == STATE_BEING_CREATED);
if (proc->breakpoint_being_enabled) {
enable_breakpoint(proc->pid, proc->breakpoint_being_enabled);
proc->breakpoint_being_enabled = NULL;
}
proc->state = STATE_ATTACHED;
continue_process(proc->pid);
}
}
static char *
shortsignal(Process *proc, int signum) {
static char *signalent0[] = {
#include "signalent.h"
};
static char *signalent1[] = {
#include "signalent1.h"
};
static char **signalents[] = { signalent0, signalent1 };
int nsignals[] = { sizeof signalent0 / sizeof signalent0[0],
sizeof signalent1 / sizeof signalent1[0]
};
debug(DEBUG_FUNCTION, "shortsignal(pid=%d, signum=%d)", proc->pid, signum);
if (proc->personality > sizeof signalents / sizeof signalents[0])
abort();
if (signum < 0 || signum >= nsignals[proc->personality]) {
return "UNKNOWN_SIGNAL";
} else {
return signalents[proc->personality][signum];
}
}
static char *
sysname(Process *proc, int sysnum) {
static char result[128];
static char *syscalent0[] = {
#include "syscallent.h"
};
static char *syscalent1[] = {
#include "syscallent1.h"
};
static char **syscalents[] = { syscalent0, syscalent1 };
int nsyscals[] = { sizeof syscalent0 / sizeof syscalent0[0],
sizeof syscalent1 / sizeof syscalent1[0]
};
debug(DEBUG_FUNCTION, "sysname(pid=%d, sysnum=%d)", proc->pid, sysnum);
if (proc->personality > sizeof syscalents / sizeof syscalents[0])
abort();
if (sysnum < 0 || sysnum >= nsyscals[proc->personality]) {
sprintf(result, "SYS_%d", sysnum);
return result;
} else {
sprintf(result, "SYS_%s",
syscalents[proc->personality][sysnum]);
return result;
}
}
static char *
arch_sysname(Process *proc, int sysnum) {
static char result[128];
static char *arch_syscalent[] = {
#include "arch_syscallent.h"
};
int nsyscals = sizeof arch_syscalent / sizeof arch_syscalent[0];
debug(DEBUG_FUNCTION, "arch_sysname(pid=%d, sysnum=%d)", proc->pid, sysnum);
if (sysnum < 0 || sysnum >= nsyscals) {
sprintf(result, "ARCH_%d", sysnum);
return result;
} else {
sprintf(result, "ARCH_%s",
arch_syscalent[sysnum]);
return result;
}
}
void
process_event(Event *event) {
debug(DEBUG_FUNCTION, "process_event(pid=%d, type=%d)", event->proc ? event->proc->pid : -1, event->type);
switch (event->type) {
case EVENT_NONE:
debug(1, "event: none");
return;
case EVENT_SIGNAL:
debug(1, "event: signal (%s [%d])",
shortsignal(event->proc, event->e_un.signum),
event->e_un.signum);
process_signal(event);
return;
case EVENT_EXIT:
debug(1, "event: exit (%d)", event->e_un.ret_val);
process_exit(event);
return;
case EVENT_EXIT_SIGNAL:
debug(1, "event: exit signal (%s [%d])",
shortsignal(event->proc, event->e_un.signum),
event->e_un.signum);
process_exit_signal(event);
return;
case EVENT_SYSCALL:
debug(1, "event: syscall (%s [%d])",
sysname(event->proc, event->e_un.sysnum),
event->e_un.sysnum);
process_syscall(event);
return;
case EVENT_SYSRET:
debug(1, "event: sysret (%s [%d])",
sysname(event->proc, event->e_un.sysnum),
event->e_un.sysnum);
process_sysret(event);
return;
case EVENT_ARCH_SYSCALL:
debug(1, "event: arch_syscall (%s [%d])",
arch_sysname(event->proc, event->e_un.sysnum),
event->e_un.sysnum);
process_arch_syscall(event);
return;
case EVENT_ARCH_SYSRET:
debug(1, "event: arch_sysret (%s [%d])",
arch_sysname(event->proc, event->e_un.sysnum),
event->e_un.sysnum);
process_arch_sysret(event);
return;
case EVENT_CLONE:
debug(1, "event: clone (%u)", event->e_un.newpid);
process_clone(event);
return;
case EVENT_EXEC:
debug(1, "event: exec()");
process_exec(event);
return;
case EVENT_BREAKPOINT:
debug(1, "event: breakpoint");
process_breakpoint(event);
return;
case EVENT_NEW:
debug(1, "event: new process");
process_new(event);
return;
default:
fprintf(stderr, "Error! unknown event?\n");
exit(1);
}
}
static void
process_signal(Event *event) {
debug(DEBUG_FUNCTION, "process_signal(pid=%d, signum=%d)", event->proc->pid, event->e_un.signum);
if (exiting && event->e_un.signum == SIGSTOP) {
pid_t pid = event->proc->pid;
disable_all_breakpoints(event->proc);
untrace_pid(pid);
remove_proc(event->proc);
return;
}
output_line(event->proc, "--- %s (%s) ---",
shortsignal(event->proc, event->e_un.signum),
strsignal(event->e_un.signum));
continue_after_signal(event->proc->pid, event->e_un.signum);
}
static void
process_exit(Event *event) {
debug(DEBUG_FUNCTION, "process_exit(pid=%d, status=%d)", event->proc->pid, event->e_un.ret_val);
output_line(event->proc, "+++ exited (status %d) +++",
event->e_un.ret_val);
remove_proc(event->proc);
}
static void
process_exit_signal(Event *event) {
debug(DEBUG_FUNCTION, "process_exit_signal(pid=%d, signum=%d)", event->proc->pid, event->e_un.signum);
output_line(event->proc, "+++ killed by %s +++",
shortsignal(event->proc, event->e_un.signum));
remove_proc(event->proc);
}
static void
remove_proc(Process *proc) {
Process *tmp, *tmp2;
debug(DEBUG_FUNCTION, "remove_proc(pid=%d)", proc->pid);
if (list_of_processes == proc) {
tmp = list_of_processes;
list_of_processes = list_of_processes->next;
free(tmp);
return;
}
tmp = list_of_processes;
while (tmp->next) {
if (tmp->next == proc) {
tmp2 = tmp->next;
tmp->next = tmp->next->next;
free(tmp2);
continue;
}
tmp = tmp->next;
}
}
static void
process_syscall(Event *event) {
debug(DEBUG_FUNCTION, "process_syscall(pid=%d, sysnum=%d)", event->proc->pid, event->e_un.sysnum);
if (options.syscalls) {
output_left(LT_TOF_SYSCALL, event->proc,
sysname(event->proc, event->e_un.sysnum));
}
if (event->proc->breakpoints_enabled == 0) {
enable_all_breakpoints(event->proc);
}
callstack_push_syscall(event->proc, event->e_un.sysnum);
continue_process(event->proc->pid);
}
static void
process_exec(Event * event) {
debug(DEBUG_FUNCTION, "process_exec(pid=%d)", event->proc->pid);
output_line(event->proc, "--- exec() ---");
abort();
}
static void
process_arch_syscall(Event *event) {
debug(DEBUG_FUNCTION, "process_arch_syscall(pid=%d, sysnum=%d)", event->proc->pid, event->e_un.sysnum);
if (options.syscalls) {
output_left(LT_TOF_SYSCALL, event->proc,
arch_sysname(event->proc, event->e_un.sysnum));
}
if (event->proc->breakpoints_enabled == 0) {
enable_all_breakpoints(event->proc);
}
callstack_push_syscall(event->proc, 0xf0000 + event->e_un.sysnum);
continue_process(event->proc->pid);
}
struct timeval current_time_spent;
static void
calc_time_spent(Process *proc) {
struct timeval tv;
struct timezone tz;
struct timeval diff;
struct callstack_element *elem;
debug(DEBUG_FUNCTION, "calc_time_spent(pid=%d)", proc->pid);
elem = &proc->callstack[proc->callstack_depth - 1];
gettimeofday(&tv, &tz);
diff.tv_sec = tv.tv_sec - elem->time_spent.tv_sec;
if (tv.tv_usec >= elem->time_spent.tv_usec) {
diff.tv_usec = tv.tv_usec - elem->time_spent.tv_usec;
} else {
diff.tv_sec++;
diff.tv_usec = 1000000 + tv.tv_usec - elem->time_spent.tv_usec;
}
current_time_spent = diff;
}
static void
process_sysret(Event *event) {
debug(DEBUG_FUNCTION, "process_sysret(pid=%d, sysnum=%d)", event->proc->pid, event->e_un.sysnum);
if (opt_T || options.summary) {
calc_time_spent(event->proc);
}
callstack_pop(event->proc);
if (options.syscalls) {
output_right(LT_TOF_SYSCALLR, event->proc,
sysname(event->proc, event->e_un.sysnum));
}
continue_process(event->proc->pid);
}
static void
process_arch_sysret(Event *event) {
debug(DEBUG_FUNCTION, "process_arch_sysret(pid=%d, sysnum=%d)", event->proc->pid, event->e_un.sysnum);
if (opt_T || options.summary) {
calc_time_spent(event->proc);
}
callstack_pop(event->proc);
if (options.syscalls) {
output_right(LT_TOF_SYSCALLR, event->proc,
arch_sysname(event->proc, event->e_un.sysnum));
}
continue_process(event->proc->pid);
}
static void
process_breakpoint(Event *event) {
int i, j;
Breakpoint *sbp;
debug(DEBUG_FUNCTION, "process_breakpoint(pid=%d, addr=%p)", event->proc->pid, event->e_un.brk_addr);
debug(2, "event: breakpoint (%p)", event->e_un.brk_addr);
#ifdef __powerpc__
/* Need to skip following NOP's to prevent a fake function from being stacked. */
long stub_addr = (long) get_count_register(event->proc);
Breakpoint *stub_bp = NULL;
char nop_instruction[] = PPC_NOP;
stub_bp = address2bpstruct (event->proc, event->e_un.brk_addr);
if (stub_bp) {
unsigned char *bp_instruction = stub_bp->orig_value;
if (memcmp(bp_instruction, nop_instruction,
PPC_NOP_LENGTH) == 0) {
if (stub_addr != (long) event->e_un.brk_addr) {
set_instruction_pointer (event->proc, event->e_un.brk_addr + 4);
continue_process(event->proc->pid);
return;
}
}
}
#endif
if ((sbp = event->proc->breakpoint_being_enabled) != 0) {
/* Reinsert breakpoint */
continue_enabling_breakpoint(event->proc->pid,
event->proc->
breakpoint_being_enabled);
event->proc->breakpoint_being_enabled = NULL;
return;
}
for (i = event->proc->callstack_depth - 1; i >= 0; i--) {
if (event->e_un.brk_addr ==
event->proc->callstack[i].return_addr) {
#ifdef __powerpc__
/*
* PPC HACK! (XXX FIXME TODO)
* The PLT gets modified during the first call,
* so be sure to re-enable the breakpoint.
*/
unsigned long a;
struct library_symbol *libsym =
event->proc->callstack[i].c_un.libfunc;
void *addr = sym2addr(event->proc, libsym);
if (libsym->plt_type != LS_TOPLT_POINT) {
unsigned char break_insn[] = BREAKPOINT_VALUE;
sbp = address2bpstruct(event->proc, addr);
assert(sbp);
a = ptrace(PTRACE_PEEKTEXT, event->proc->pid,
addr);
if (memcmp(&a, break_insn, BREAKPOINT_LENGTH)) {
sbp->enabled--;
insert_breakpoint(event->proc, addr,
libsym);
}
} else {
sbp = dict_find_entry(event->proc->breakpoints, sym2addr(event->proc, libsym));
assert(sbp);
if (addr != sbp->addr) {
insert_breakpoint(event->proc, addr,
libsym);
}
}
#elif defined(__mips__)
void *addr;
void *old_addr;
struct library_symbol *sym= event->proc->callstack[i].c_un.libfunc;
assert(sym);
old_addr = dict_find_entry(event->proc->breakpoints, sym2addr(event->proc, sym))->addr;
addr=sym2addr(event->proc,sym);
assert(old_addr !=0 && addr !=0);
if(addr != old_addr){
struct library_symbol *new_sym;
new_sym=malloc(sizeof(*new_sym));
memcpy(new_sym,sym,sizeof(*new_sym));
new_sym->next=event->proc->list_of_symbols;
event->proc->list_of_symbols=new_sym;
insert_breakpoint(event->proc, addr, new_sym);
}
#endif
for (j = event->proc->callstack_depth - 1; j > i; j--) {
callstack_pop(event->proc);
}
if (opt_T || options.summary) {
calc_time_spent(event->proc);
}
callstack_pop(event->proc);
event->proc->return_addr = event->e_un.brk_addr;
output_right(LT_TOF_FUNCTIONR, event->proc,
event->proc->callstack[i].c_un.libfunc->
name);
continue_after_breakpoint(event->proc,
address2bpstruct(event->proc,
event->e_un.
brk_addr));
return;
}
}
if ((sbp = address2bpstruct(event->proc, event->e_un.brk_addr))) {
event->proc->stack_pointer = get_stack_pointer(event->proc);
event->proc->return_addr =
get_return_addr(event->proc, event->proc->stack_pointer);
output_left(LT_TOF_FUNCTION, event->proc, sbp->libsym->name);
callstack_push_symfunc(event->proc, sbp->libsym);
#ifdef PLT_REINITALISATION_BP
if (event->proc->need_to_reinitialize_breakpoints
&& (strcmp(sbp->libsym->name, PLTs_initialized_by_here) ==
0))
reinitialize_breakpoints(event->proc);
#endif
continue_after_breakpoint(event->proc, sbp);
return;
}
output_line(event->proc, "unexpected breakpoint at %p",
(void *)event->e_un.brk_addr);
continue_process(event->proc->pid);
}
static void
callstack_push_syscall(Process *proc, int sysnum) {
struct callstack_element *elem;
debug(DEBUG_FUNCTION, "callstack_push_syscall(pid=%d, sysnum=%d)", proc->pid, sysnum);
/* FIXME: not good -- should use dynamic allocation. 19990703 mortene. */
if (proc->callstack_depth == MAX_CALLDEPTH - 1) {
fprintf(stderr, "Error: call nesting too deep!\n");
return;
}
elem = &proc->callstack[proc->callstack_depth];
elem->is_syscall = 1;
elem->c_un.syscall = sysnum;
elem->return_addr = NULL;
proc->callstack_depth++;
if (opt_T || options.summary) {
struct timezone tz;
gettimeofday(&elem->time_spent, &tz);
}
}
static void
callstack_push_symfunc(Process *proc, struct library_symbol *sym) {
struct callstack_element *elem;
debug(DEBUG_FUNCTION, "callstack_push_symfunc(pid=%d, symbol=%s)", proc->pid, sym->name);
/* FIXME: not good -- should use dynamic allocation. 19990703 mortene. */
if (proc->callstack_depth == MAX_CALLDEPTH - 1) {
fprintf(stderr, "Error: call nesting too deep!\n");
return;
}
elem = &proc->callstack[proc->callstack_depth];
elem->is_syscall = 0;
elem->c_un.libfunc = sym;
elem->return_addr = proc->return_addr;
if (elem->return_addr) {
insert_breakpoint(proc, elem->return_addr, 0);
}
proc->callstack_depth++;
if (opt_T || options.summary) {
struct timezone tz;
gettimeofday(&elem->time_spent, &tz);
}
}
static void
callstack_pop(Process *proc) {
struct callstack_element *elem;
assert(proc->callstack_depth > 0);
debug(DEBUG_FUNCTION, "callstack_pop(pid=%d)", proc->pid);
elem = &proc->callstack[proc->callstack_depth - 1];
if (!elem->is_syscall && elem->return_addr) {
delete_breakpoint(proc, elem->return_addr);
}
proc->callstack_depth--;
}