| #include "config.h" |
| |
| #include <asm/unistd.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #ifdef HAVE_LIBSELINUX |
| # include <selinux/selinux.h> |
| #endif |
| |
| #include "ptrace.h" |
| #include "common.h" |
| #include "breakpoint.h" |
| #include "proc.h" |
| #include "linux-gnu/trace.h" |
| |
| /* If the system headers did not provide the constants, hard-code the normal |
| values. */ |
| #ifndef PTRACE_EVENT_FORK |
| |
| #define PTRACE_OLDSETOPTIONS 21 |
| #define PTRACE_SETOPTIONS 0x4200 |
| #define PTRACE_GETEVENTMSG 0x4201 |
| |
| /* options set using PTRACE_SETOPTIONS */ |
| #define PTRACE_O_TRACESYSGOOD 0x00000001 |
| #define PTRACE_O_TRACEFORK 0x00000002 |
| #define PTRACE_O_TRACEVFORK 0x00000004 |
| #define PTRACE_O_TRACECLONE 0x00000008 |
| #define PTRACE_O_TRACEEXEC 0x00000010 |
| #define PTRACE_O_TRACEVFORKDONE 0x00000020 |
| #define PTRACE_O_TRACEEXIT 0x00000040 |
| |
| /* Wait extended result codes for the above trace options. */ |
| #define PTRACE_EVENT_FORK 1 |
| #define PTRACE_EVENT_VFORK 2 |
| #define PTRACE_EVENT_CLONE 3 |
| #define PTRACE_EVENT_EXEC 4 |
| #define PTRACE_EVENT_VFORK_DONE 5 |
| #define PTRACE_EVENT_EXIT 6 |
| |
| #endif /* PTRACE_EVENT_FORK */ |
| |
| #ifdef ARCH_HAVE_UMOVELONG |
| extern int arch_umovelong (Process *, void *, long *, arg_type_info *); |
| int |
| umovelong (Process *proc, void *addr, long *result, arg_type_info *info) { |
| return arch_umovelong (proc, addr, result, info); |
| } |
| #else |
| /* Read a single long from the process's memory address 'addr' */ |
| int |
| umovelong (Process *proc, void *addr, long *result, arg_type_info *info) { |
| long pointed_to; |
| |
| errno = 0; |
| pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0); |
| if (pointed_to == -1 && errno) |
| return -errno; |
| |
| *result = pointed_to; |
| if (info) { |
| switch(info->type) { |
| case ARGTYPE_INT: |
| *result &= 0x00000000ffffffffUL; |
| default: |
| break; |
| }; |
| } |
| return 0; |
| } |
| #endif |
| |
| void |
| trace_fail_warning(pid_t pid) |
| { |
| /* This was adapted from GDB. */ |
| #ifdef HAVE_LIBSELINUX |
| static int checked = 0; |
| if (checked) |
| return; |
| checked = 1; |
| |
| /* -1 is returned for errors, 0 if it has no effect, 1 if |
| * PTRACE_ATTACH is forbidden. */ |
| if (security_get_boolean_active("deny_ptrace") == 1) |
| fprintf(stderr, |
| "The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n" |
| "tracing other processes. You can disable this process attach protection by\n" |
| "issuing 'setsebool deny_ptrace=0' in the superuser context.\n"); |
| #endif /* HAVE_LIBSELINUX */ |
| } |
| |
| void |
| trace_me(void) |
| { |
| debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid()); |
| if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) { |
| perror("PTRACE_TRACEME"); |
| trace_fail_warning(getpid()); |
| exit(1); |
| } |
| } |
| |
| /* There's a (hopefully) brief period of time after the child process |
| * forks when we can't trace it yet. Here we wait for kernel to |
| * prepare the process. */ |
| int |
| wait_for_proc(pid_t pid) |
| { |
| /* man ptrace: PTRACE_ATTACH attaches to the process specified |
| in pid. The child is sent a SIGSTOP, but will not |
| necessarily have stopped by the completion of this call; |
| use wait() to wait for the child to stop. */ |
| if (waitpid(pid, NULL, __WALL) != pid) { |
| perror ("trace_pid: waitpid"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int |
| trace_pid(pid_t pid) |
| { |
| debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid); |
| /* This shouldn't emit error messages, as there are legitimate |
| * reasons that the PID can't be attached: like it may have |
| * already ended. */ |
| if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0) |
| return -1; |
| |
| return wait_for_proc(pid); |
| } |
| |
| void |
| trace_set_options(struct Process *proc) |
| { |
| if (proc->tracesysgood & 0x80) |
| return; |
| |
| pid_t pid = proc->pid; |
| debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid); |
| |
| long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK | |
| PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE | |
| PTRACE_O_TRACEEXEC; |
| if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 && |
| ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) { |
| perror("PTRACE_SETOPTIONS"); |
| return; |
| } |
| proc->tracesysgood |= 0x80; |
| } |
| |
| void |
| untrace_pid(pid_t pid) { |
| debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid); |
| ptrace(PTRACE_DETACH, pid, 0, 0); |
| } |
| |
| void |
| continue_after_signal(pid_t pid, int signum) |
| { |
| debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", |
| pid, signum); |
| ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum); |
| } |
| |
| static enum ecb_status |
| event_for_pid(Event * event, void * data) |
| { |
| if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data) |
| return ecb_yield; |
| return ecb_cont; |
| } |
| |
| static int |
| have_events_for(pid_t pid) |
| { |
| return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL; |
| } |
| |
| void |
| continue_process(pid_t pid) |
| { |
| debug(DEBUG_PROCESS, "continue_process: pid=%d", pid); |
| |
| /* Only really continue the process if there are no events in |
| the queue for this process. Otherwise just wait for the |
| other events to arrive. */ |
| if (!have_events_for(pid)) |
| /* We always trace syscalls to control fork(), |
| * clone(), execve()... */ |
| ptrace(PTRACE_SYSCALL, pid, 0, 0); |
| else |
| debug(DEBUG_PROCESS, |
| "putting off the continue, events in que."); |
| } |
| |
| static struct pid_task * |
| get_task_info(struct pid_set * pids, pid_t pid) |
| { |
| assert(pid != 0); |
| size_t i; |
| for (i = 0; i < pids->count; ++i) |
| if (pids->tasks[i].pid == pid) |
| return &pids->tasks[i]; |
| |
| return NULL; |
| } |
| |
| static struct pid_task * |
| add_task_info(struct pid_set * pids, pid_t pid) |
| { |
| if (pids->count == pids->alloc) { |
| size_t ns = (2 * pids->alloc) ?: 4; |
| struct pid_task * n = realloc(pids->tasks, |
| sizeof(*pids->tasks) * ns); |
| if (n == NULL) |
| return NULL; |
| pids->tasks = n; |
| pids->alloc = ns; |
| } |
| struct pid_task * task_info = &pids->tasks[pids->count++]; |
| memset(task_info, 0, sizeof(*task_info)); |
| task_info->pid = pid; |
| return task_info; |
| } |
| |
| static enum callback_status |
| task_stopped(struct Process *task, void *data) |
| { |
| enum process_status st = process_status(task->pid); |
| if (data != NULL) |
| *(enum process_status *)data = st; |
| |
| /* If the task is already stopped, don't worry about it. |
| * Likewise if it managed to become a zombie or terminate in |
| * the meantime. This can happen when the whole thread group |
| * is terminating. */ |
| switch (st) { |
| case ps_invalid: |
| case ps_tracing_stop: |
| case ps_zombie: |
| return CBS_CONT; |
| case ps_sleeping: |
| case ps_stop: |
| case ps_other: |
| return CBS_STOP; |
| } |
| |
| abort (); |
| } |
| |
| /* Task is blocked if it's stopped, or if it's a vfork parent. */ |
| static enum callback_status |
| task_blocked(struct Process *task, void *data) |
| { |
| struct pid_set * pids = data; |
| struct pid_task * task_info = get_task_info(pids, task->pid); |
| if (task_info != NULL |
| && task_info->vforked) |
| return CBS_CONT; |
| |
| return task_stopped(task, NULL); |
| } |
| |
| static Event *process_vfork_on_event(struct event_handler *super, Event *event); |
| |
| static enum callback_status |
| task_vforked(struct Process *task, void *data) |
| { |
| if (task->event_handler != NULL |
| && task->event_handler->on_event == &process_vfork_on_event) |
| return CBS_STOP; |
| return CBS_CONT; |
| } |
| |
| static int |
| is_vfork_parent(struct Process *task) |
| { |
| return each_task(task->leader, NULL, &task_vforked, NULL) != NULL; |
| } |
| |
| static enum callback_status |
| send_sigstop(struct Process *task, void *data) |
| { |
| Process * leader = task->leader; |
| struct pid_set * pids = data; |
| |
| /* Look for pre-existing task record, or add new. */ |
| struct pid_task * task_info = get_task_info(pids, task->pid); |
| if (task_info == NULL) |
| task_info = add_task_info(pids, task->pid); |
| if (task_info == NULL) { |
| perror("send_sigstop: add_task_info"); |
| destroy_event_handler(leader); |
| /* Signal failure upwards. */ |
| return CBS_STOP; |
| } |
| |
| /* This task still has not been attached to. It should be |
| stopped by the kernel. */ |
| if (task->state == STATE_BEING_CREATED) |
| return CBS_CONT; |
| |
| /* Don't bother sending SIGSTOP if we are already stopped, or |
| * if we sent the SIGSTOP already, which happens when we are |
| * handling "onexit" and inherited the handler from breakpoint |
| * re-enablement. */ |
| enum process_status st; |
| if (task_stopped(task, &st) == CBS_CONT) |
| return CBS_CONT; |
| if (task_info->sigstopped) { |
| if (!task_info->delivered) |
| return CBS_CONT; |
| task_info->delivered = 0; |
| } |
| |
| /* Also don't attempt to stop the process if it's a parent of |
| * vforked process. We set up event handler specially to hint |
| * us. In that case parent is in D state, which we use to |
| * weed out unnecessary looping. */ |
| if (st == ps_sleeping |
| && is_vfork_parent (task)) { |
| task_info->vforked = 1; |
| return CBS_CONT; |
| } |
| |
| if (task_kill(task->pid, SIGSTOP) >= 0) { |
| debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid); |
| task_info->sigstopped = 1; |
| } else |
| fprintf(stderr, |
| "Warning: couldn't send SIGSTOP to %d\n", task->pid); |
| |
| return CBS_CONT; |
| } |
| |
| /* On certain kernels, detaching right after a singlestep causes the |
| tracee to be killed with a SIGTRAP (that even though the singlestep |
| was properly caught by waitpid. The ugly workaround is to put a |
| breakpoint where IP points and let the process continue. After |
| this the breakpoint can be retracted and the process detached. */ |
| static void |
| ugly_workaround(Process * proc) |
| { |
| void * ip = get_instruction_pointer(proc); |
| struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip); |
| if (sbp != NULL) |
| enable_breakpoint(proc, sbp); |
| else |
| insert_breakpoint(proc, ip, NULL); |
| ptrace(PTRACE_CONT, proc->pid, 0, 0); |
| } |
| |
| static void |
| process_stopping_done(struct process_stopping_handler * self, Process * leader) |
| { |
| debug(DEBUG_PROCESS, "process stopping done %d", |
| self->task_enabling_breakpoint->pid); |
| size_t i; |
| if (!self->exiting) { |
| for (i = 0; i < self->pids.count; ++i) |
| if (self->pids.tasks[i].pid != 0 |
| && (self->pids.tasks[i].delivered |
| || self->pids.tasks[i].sysret)) |
| continue_process(self->pids.tasks[i].pid); |
| continue_process(self->task_enabling_breakpoint->pid); |
| destroy_event_handler(leader); |
| } |
| |
| if (self->exiting) { |
| ugly_workaround: |
| self->state = psh_ugly_workaround; |
| ugly_workaround(self->task_enabling_breakpoint); |
| } else { |
| switch ((self->ugly_workaround_p)(self)) { |
| case CBS_FAIL: |
| /* xxx handle me */ |
| case CBS_STOP: |
| break; |
| case CBS_CONT: |
| goto ugly_workaround; |
| } |
| } |
| } |
| |
| /* Before we detach, we need to make sure that task's IP is on the |
| * edge of an instruction. So for tasks that have a breakpoint event |
| * in the queue, we adjust the instruction pointer, just like |
| * continue_after_breakpoint does. */ |
| static enum ecb_status |
| undo_breakpoint(Event * event, void * data) |
| { |
| if (event != NULL |
| && event->proc->leader == data |
| && event->type == EVENT_BREAKPOINT) |
| set_instruction_pointer(event->proc, event->e_un.brk_addr); |
| return ecb_cont; |
| } |
| |
| static enum callback_status |
| untrace_task(struct Process *task, void *data) |
| { |
| if (task != data) |
| untrace_pid(task->pid); |
| return CBS_CONT; |
| } |
| |
| static enum callback_status |
| remove_task(struct Process *task, void *data) |
| { |
| /* Don't untrace leader just yet. */ |
| if (task != data) |
| remove_process(task); |
| return CBS_CONT; |
| } |
| |
| static enum callback_status |
| retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data) |
| { |
| breakpoint_on_retract(bp, proc); |
| return CBS_CONT; |
| } |
| |
| static void |
| detach_process(Process * leader) |
| { |
| each_qd_event(&undo_breakpoint, leader); |
| disable_all_breakpoints(leader); |
| proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL); |
| |
| /* Now untrace the process, if it was attached to by -p. */ |
| struct opt_p_t * it; |
| for (it = opt_p; it != NULL; it = it->next) { |
| Process * proc = pid2proc(it->pid); |
| if (proc == NULL) |
| continue; |
| if (proc->leader == leader) { |
| each_task(leader, NULL, &untrace_task, NULL); |
| break; |
| } |
| } |
| each_task(leader, NULL, &remove_task, leader); |
| destroy_event_handler(leader); |
| remove_task(leader, NULL); |
| } |
| |
| static void |
| handle_stopping_event(struct pid_task * task_info, Event ** eventp) |
| { |
| /* Mark all events, so that we know whom to SIGCONT later. */ |
| if (task_info != NULL) |
| task_info->got_event = 1; |
| |
| Event * event = *eventp; |
| |
| /* In every state, sink SIGSTOP events for tasks that it was |
| * sent to. */ |
| if (task_info != NULL |
| && event->type == EVENT_SIGNAL |
| && event->e_un.signum == SIGSTOP) { |
| debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid); |
| if (task_info->sigstopped |
| && !task_info->delivered) { |
| task_info->delivered = 1; |
| *eventp = NULL; // sink the event |
| } else |
| fprintf(stderr, "suspicious: %d got SIGSTOP, but " |
| "sigstopped=%d and delivered=%d\n", |
| task_info->pid, task_info->sigstopped, |
| task_info->delivered); |
| } |
| } |
| |
| /* Some SIGSTOPs may have not been delivered to their respective tasks |
| * yet. They are still in the queue. If we have seen an event for |
| * that process, continue it, so that the SIGSTOP can be delivered and |
| * caught by ltrace. We don't mind that the process is after |
| * breakpoint (and therefore potentially doesn't have aligned IP), |
| * because the signal will be delivered without the process actually |
| * starting. */ |
| static void |
| continue_for_sigstop_delivery(struct pid_set * pids) |
| { |
| size_t i; |
| for (i = 0; i < pids->count; ++i) { |
| if (pids->tasks[i].pid != 0 |
| && pids->tasks[i].sigstopped |
| && !pids->tasks[i].delivered |
| && pids->tasks[i].got_event) { |
| debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", |
| pids->tasks[i].pid); |
| ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0); |
| } |
| } |
| } |
| |
| static int |
| event_exit_p(Event * event) |
| { |
| return event != NULL && (event->type == EVENT_EXIT |
| || event->type == EVENT_EXIT_SIGNAL); |
| } |
| |
| static int |
| event_exit_or_none_p(Event * event) |
| { |
| return event == NULL || event_exit_p(event) |
| || event->type == EVENT_NONE; |
| } |
| |
| static int |
| await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info, |
| Event * event) |
| { |
| /* If we still didn't get our SIGSTOP, continue the process |
| * and carry on. */ |
| if (event != NULL && !event_exit_or_none_p(event) |
| && task_info != NULL && task_info->sigstopped) { |
| debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", |
| task_info->pid); |
| /* We should get the signal the first thing |
| * after this, so it should be OK to continue |
| * even if we are over a breakpoint. */ |
| ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0); |
| |
| } else { |
| /* If all SIGSTOPs were delivered, uninstall the |
| * handler and continue everyone. */ |
| /* XXX I suspect that we should check tasks that are |
| * still around. Is things are now, there should be a |
| * race between waiting for everyone to stop and one |
| * of the tasks exiting. */ |
| int all_clear = 1; |
| size_t i; |
| for (i = 0; i < pids->count; ++i) |
| if (pids->tasks[i].pid != 0 |
| && pids->tasks[i].sigstopped |
| && !pids->tasks[i].delivered) { |
| all_clear = 0; |
| break; |
| } |
| return all_clear; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| all_stops_accountable(struct pid_set * pids) |
| { |
| size_t i; |
| for (i = 0; i < pids->count; ++i) |
| if (pids->tasks[i].pid != 0 |
| && !pids->tasks[i].got_event |
| && !have_events_for(pids->tasks[i].pid)) |
| return 0; |
| return 1; |
| } |
| |
| /* The protocol is: 0 for success, negative for failure, positive if |
| * default singlestep is to be used. */ |
| int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp, |
| int (*add_cb)(void *addr, void *data), |
| void *add_cb_data); |
| |
| #ifndef ARCH_HAVE_ATOMIC_SINGLESTEP |
| int |
| arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp, |
| int (*add_cb)(void *addr, void *data), |
| void *add_cb_data) |
| { |
| return 1; |
| } |
| #endif |
| |
| static Event *process_stopping_on_event(struct event_handler *super, |
| Event *event); |
| |
| static void |
| remove_atomic_breakpoints(struct Process *proc) |
| { |
| struct process_stopping_handler *self |
| = (void *)proc->leader->event_handler; |
| assert(self != NULL); |
| assert(self->super.on_event == process_stopping_on_event); |
| |
| int ct = sizeof(self->atomic_skip_bp_addrs) |
| / sizeof(*self->atomic_skip_bp_addrs); |
| int i; |
| for (i = 0; i < ct; ++i) |
| if (self->atomic_skip_bp_addrs[i] != 0) { |
| delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]); |
| self->atomic_skip_bp_addrs[i] = 0; |
| } |
| } |
| |
| static void |
| atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc) |
| { |
| remove_atomic_breakpoints(proc); |
| } |
| |
| static int |
| atomic_singlestep_add_bp(void *addr, void *data) |
| { |
| struct process_stopping_handler *self = data; |
| struct Process *proc = self->task_enabling_breakpoint; |
| |
| int ct = sizeof(self->atomic_skip_bp_addrs) |
| / sizeof(*self->atomic_skip_bp_addrs); |
| int i; |
| for (i = 0; i < ct; ++i) |
| if (self->atomic_skip_bp_addrs[i] == 0) { |
| self->atomic_skip_bp_addrs[i] = addr; |
| static struct bp_callbacks cbs = { |
| .on_hit = atomic_singlestep_bp_on_hit, |
| }; |
| struct breakpoint *bp |
| = insert_breakpoint(proc, addr, NULL); |
| breakpoint_set_callbacks(bp, &cbs); |
| return 0; |
| } |
| |
| assert(!"Too many atomic singlestep breakpoints!"); |
| abort(); |
| } |
| |
| static int |
| singlestep(struct process_stopping_handler *self) |
| { |
| struct Process *proc = self->task_enabling_breakpoint; |
| |
| int status = arch_atomic_singlestep(self->task_enabling_breakpoint, |
| self->breakpoint_being_enabled, |
| &atomic_singlestep_add_bp, self); |
| |
| /* Propagate failure and success. */ |
| if (status <= 0) |
| return status; |
| |
| /* Otherwise do the default action: singlestep. */ |
| debug(1, "PTRACE_SINGLESTEP"); |
| if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) { |
| perror("PTRACE_SINGLESTEP"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void |
| post_singlestep(struct process_stopping_handler *self, |
| struct Event **eventp) |
| { |
| continue_for_sigstop_delivery(&self->pids); |
| |
| if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT) |
| *eventp = NULL; // handled |
| |
| struct Process *proc = self->task_enabling_breakpoint; |
| |
| remove_atomic_breakpoints(proc); |
| self->breakpoint_being_enabled = NULL; |
| } |
| |
| static void |
| singlestep_error(struct process_stopping_handler *self) |
| { |
| struct Process *teb = self->task_enabling_breakpoint; |
| struct breakpoint *sbp = self->breakpoint_being_enabled; |
| fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n", |
| teb->pid, sbp->libsym != NULL ? sbp->libsym->name : NULL, |
| sbp->addr, get_instruction_pointer(teb)); |
| delete_breakpoint(teb->leader, sbp->addr); |
| } |
| |
| static void |
| pt_continue(struct process_stopping_handler *self) |
| { |
| struct Process *teb = self->task_enabling_breakpoint; |
| debug(1, "PTRACE_CONT"); |
| ptrace(PTRACE_CONT, teb->pid, 0, 0); |
| } |
| |
| static void |
| pt_singlestep(struct process_stopping_handler *self) |
| { |
| if (singlestep(self) < 0) |
| singlestep_error(self); |
| } |
| |
| static void |
| disable_and(struct process_stopping_handler *self, |
| void (*do_this)(struct process_stopping_handler *self)) |
| { |
| struct Process *teb = self->task_enabling_breakpoint; |
| debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid); |
| if (self->breakpoint_being_enabled->enabled) |
| disable_breakpoint(teb, self->breakpoint_being_enabled); |
| (do_this)(self); |
| self->state = psh_singlestep; |
| } |
| |
| void |
| linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self) |
| { |
| disable_and(self, &pt_singlestep); |
| } |
| |
| void |
| linux_ptrace_disable_and_continue(struct process_stopping_handler *self) |
| { |
| disable_and(self, &pt_continue); |
| } |
| |
| /* This event handler is installed when we are in the process of |
| * stopping the whole thread group to do the pointer re-enablement for |
| * one of the threads. We pump all events to the queue for later |
| * processing while we wait for all the threads to stop. When this |
| * happens, we let the re-enablement thread to PTRACE_SINGLESTEP, |
| * re-enable, and continue everyone. */ |
| static Event * |
| process_stopping_on_event(struct event_handler *super, Event *event) |
| { |
| struct process_stopping_handler * self = (void *)super; |
| Process * task = event->proc; |
| Process * leader = task->leader; |
| Process * teb = self->task_enabling_breakpoint; |
| |
| debug(DEBUG_PROCESS, |
| "process_stopping_on_event: pid %d; event type %d; state %d", |
| task->pid, event->type, self->state); |
| |
| struct pid_task * task_info = get_task_info(&self->pids, task->pid); |
| if (task_info == NULL) |
| fprintf(stderr, "new task??? %d\n", task->pid); |
| handle_stopping_event(task_info, &event); |
| |
| int state = self->state; |
| int event_to_queue = !event_exit_or_none_p(event); |
| |
| /* Deactivate the entry if the task exits. */ |
| if (event_exit_p(event) && task_info != NULL) |
| task_info->pid = 0; |
| |
| /* Always handle sysrets. Whether sysret occurred and what |
| * sys it rets from may need to be determined based on process |
| * stack, so we need to keep that in sync with reality. Note |
| * that we don't continue the process after the sysret is |
| * handled. See continue_after_syscall. */ |
| if (event != NULL && event->type == EVENT_SYSRET) { |
| debug(1, "%d LT_EV_SYSRET", event->proc->pid); |
| event_to_queue = 0; |
| task_info->sysret = 1; |
| } |
| |
| switch (state) { |
| case psh_stopping: |
| /* If everyone is stopped, singlestep. */ |
| if (each_task(leader, NULL, &task_blocked, |
| &self->pids) == NULL) { |
| (self->on_all_stopped)(self); |
| state = self->state; |
| } |
| break; |
| |
| case psh_singlestep: |
| /* In singlestep state, breakpoint signifies that we |
| * have now stepped, and can re-enable the breakpoint. */ |
| if (event != NULL && task == teb) { |
| |
| /* If this was caused by a real breakpoint, as |
| * opposed to a singlestep, assume that it's |
| * an artificial breakpoint installed for some |
| * reason for the re-enablement. In that case |
| * handle it. */ |
| if (event->type == EVENT_BREAKPOINT) { |
| target_address_t ip |
| = get_instruction_pointer(task); |
| struct breakpoint *other |
| = address2bpstruct(leader, ip); |
| if (other != NULL) |
| breakpoint_on_hit(other, task); |
| } |
| |
| /* If we got SIGNAL instead of BREAKPOINT, |
| * then this is not singlestep at all. */ |
| if (event->type == EVENT_SIGNAL) { |
| do_singlestep: |
| if (singlestep(self) < 0) { |
| singlestep_error(self); |
| post_singlestep(self, &event); |
| goto psh_sinking; |
| } |
| break; |
| } else { |
| switch ((self->keep_stepping_p)(self)) { |
| case CBS_FAIL: |
| /* XXX handle me */ |
| case CBS_STOP: |
| break; |
| case CBS_CONT: |
| /* Sink singlestep event. */ |
| if (event->type == EVENT_BREAKPOINT) |
| event = NULL; |
| goto do_singlestep; |
| } |
| } |
| |
| /* Re-enable the breakpoint that we are |
| * stepping over. */ |
| struct breakpoint *sbp = self->breakpoint_being_enabled; |
| if (sbp->enabled) |
| enable_breakpoint(teb, sbp); |
| |
| post_singlestep(self, &event); |
| goto psh_sinking; |
| } |
| break; |
| |
| psh_sinking: |
| state = self->state = psh_sinking; |
| case psh_sinking: |
| if (await_sigstop_delivery(&self->pids, task_info, event)) |
| process_stopping_done(self, leader); |
| break; |
| |
| case psh_ugly_workaround: |
| if (event == NULL) |
| break; |
| if (event->type == EVENT_BREAKPOINT) { |
| undo_breakpoint(event, leader); |
| if (task == teb) |
| self->task_enabling_breakpoint = NULL; |
| } |
| if (self->task_enabling_breakpoint == NULL |
| && all_stops_accountable(&self->pids)) { |
| undo_breakpoint(event, leader); |
| detach_process(leader); |
| event = NULL; // handled |
| } |
| } |
| |
| if (event != NULL && event_to_queue) { |
| enque_event(event); |
| event = NULL; // sink the event |
| } |
| |
| return event; |
| } |
| |
| static void |
| process_stopping_destroy(struct event_handler *super) |
| { |
| struct process_stopping_handler * self = (void *)super; |
| free(self->pids.tasks); |
| } |
| |
| static enum callback_status |
| no(struct process_stopping_handler *self) |
| { |
| return CBS_STOP; |
| } |
| |
| int |
| process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp, |
| void (*as)(struct process_stopping_handler *), |
| enum callback_status (*ks) |
| (struct process_stopping_handler *), |
| enum callback_status (*uw) |
| (struct process_stopping_handler *)) |
| { |
| debug(DEBUG_FUNCTION, |
| "process_install_stopping_handler: pid=%d", proc->pid); |
| |
| struct process_stopping_handler *handler = calloc(sizeof(*handler), 1); |
| if (handler == NULL) |
| return -1; |
| |
| if (as == NULL) |
| as = &linux_ptrace_disable_and_singlestep; |
| if (ks == NULL) |
| ks = &no; |
| if (uw == NULL) |
| uw = &no; |
| |
| handler->super.on_event = process_stopping_on_event; |
| handler->super.destroy = process_stopping_destroy; |
| handler->task_enabling_breakpoint = proc; |
| handler->breakpoint_being_enabled = sbp; |
| handler->on_all_stopped = as; |
| handler->keep_stepping_p = ks; |
| handler->ugly_workaround_p = uw; |
| |
| install_event_handler(proc->leader, &handler->super); |
| |
| if (each_task(proc->leader, NULL, &send_sigstop, |
| &handler->pids) != NULL) { |
| destroy_event_handler(proc); |
| return -1; |
| } |
| |
| /* And deliver the first fake event, in case all the |
| * conditions are already fulfilled. */ |
| Event ev = { |
| .type = EVENT_NONE, |
| .proc = proc, |
| }; |
| process_stopping_on_event(&handler->super, &ev); |
| |
| return 0; |
| } |
| |
| void |
| continue_after_breakpoint(Process *proc, struct breakpoint *sbp) |
| { |
| debug(DEBUG_PROCESS, |
| "continue_after_breakpoint: pid=%d, addr=%p", |
| proc->pid, sbp->addr); |
| |
| set_instruction_pointer(proc, sbp->addr); |
| |
| if (sbp->enabled == 0) { |
| continue_process(proc->pid); |
| } else { |
| #if defined __sparc__ || defined __ia64___ || defined __mips__ |
| /* we don't want to singlestep here */ |
| continue_process(proc->pid); |
| #else |
| if (process_install_stopping_handler |
| (proc, sbp, NULL, NULL, NULL) < 0) { |
| perror("process_stopping_handler_create"); |
| /* Carry on not bothering to re-enable. */ |
| continue_process(proc->pid); |
| } |
| #endif |
| } |
| } |
| |
| /** |
| * Ltrace exit. When we are about to exit, we have to go through all |
| * the processes, stop them all, remove all the breakpoints, and then |
| * detach the processes that we attached to using -p. If we left the |
| * other tasks running, they might hit stray return breakpoints and |
| * produce artifacts, so we better stop everyone, even if it's a bit |
| * of extra work. |
| */ |
| struct ltrace_exiting_handler |
| { |
| struct event_handler super; |
| struct pid_set pids; |
| }; |
| |
| static Event * |
| ltrace_exiting_on_event(struct event_handler *super, Event *event) |
| { |
| struct ltrace_exiting_handler * self = (void *)super; |
| Process * task = event->proc; |
| Process * leader = task->leader; |
| |
| debug(DEBUG_PROCESS, |
| "ltrace_exiting_on_event: pid %d; event type %d", |
| task->pid, event->type); |
| |
| struct pid_task * task_info = get_task_info(&self->pids, task->pid); |
| handle_stopping_event(task_info, &event); |
| |
| if (event != NULL && event->type == EVENT_BREAKPOINT) |
| undo_breakpoint(event, leader); |
| |
| if (await_sigstop_delivery(&self->pids, task_info, event) |
| && all_stops_accountable(&self->pids)) |
| detach_process(leader); |
| |
| /* Sink all non-exit events. We are about to exit, so we |
| * don't bother with queuing them. */ |
| if (event_exit_or_none_p(event)) |
| return event; |
| |
| return NULL; |
| } |
| |
| static void |
| ltrace_exiting_destroy(struct event_handler *super) |
| { |
| struct ltrace_exiting_handler * self = (void *)super; |
| free(self->pids.tasks); |
| } |
| |
| static int |
| ltrace_exiting_install_handler(Process * proc) |
| { |
| /* Only install to leader. */ |
| if (proc->leader != proc) |
| return 0; |
| |
| /* Perhaps we are already installed, if the user passed |
| * several -p options that are tasks of one process. */ |
| if (proc->event_handler != NULL |
| && proc->event_handler->on_event == <race_exiting_on_event) |
| return 0; |
| |
| /* If stopping handler is already present, let it do the |
| * work. */ |
| if (proc->event_handler != NULL) { |
| assert(proc->event_handler->on_event |
| == &process_stopping_on_event); |
| struct process_stopping_handler * other |
| = (void *)proc->event_handler; |
| other->exiting = 1; |
| return 0; |
| } |
| |
| struct ltrace_exiting_handler * handler |
| = calloc(sizeof(*handler), 1); |
| if (handler == NULL) { |
| perror("malloc exiting handler"); |
| fatal: |
| /* XXXXXXXXXXXXXXXXXXX fixme */ |
| return -1; |
| } |
| |
| handler->super.on_event = ltrace_exiting_on_event; |
| handler->super.destroy = ltrace_exiting_destroy; |
| install_event_handler(proc->leader, &handler->super); |
| |
| if (each_task(proc->leader, NULL, &send_sigstop, |
| &handler->pids) != NULL) |
| goto fatal; |
| |
| return 0; |
| } |
| |
| /* |
| * When the traced process vforks, it's suspended until the child |
| * process calls _exit or exec*. In the meantime, the two share the |
| * address space. |
| * |
| * The child process should only ever call _exit or exec*, but we |
| * can't count on that (it's not the role of ltrace to policy, but to |
| * observe). In any case, we will _at least_ have to deal with |
| * removal of vfork return breakpoint (which we have to smuggle back |
| * in, so that the parent can see it, too), and introduction of exec* |
| * return breakpoint. Since we already have both breakpoint actions |
| * to deal with, we might as well support it all. |
| * |
| * The gist is that we pretend that the child is in a thread group |
| * with its parent, and handle it as a multi-threaded case, with the |
| * exception that we know that the parent is blocked, and don't |
| * attempt to stop it. When the child execs, we undo the setup. |
| */ |
| |
| struct process_vfork_handler |
| { |
| struct event_handler super; |
| void * bp_addr; |
| }; |
| |
| static Event * |
| process_vfork_on_event(struct event_handler *super, Event *event) |
| { |
| debug(DEBUG_PROCESS, |
| "process_vfork_on_event: pid %d; event type %d", |
| event->proc->pid, event->type); |
| |
| struct process_vfork_handler * self = (void *)super; |
| struct breakpoint *sbp; |
| assert(self != NULL); |
| |
| switch (event->type) { |
| case EVENT_BREAKPOINT: |
| /* Remember the vfork return breakpoint. */ |
| if (self->bp_addr == 0) |
| self->bp_addr = event->e_un.brk_addr; |
| break; |
| |
| case EVENT_EXIT: |
| case EVENT_EXIT_SIGNAL: |
| case EVENT_EXEC: |
| /* Smuggle back in the vfork return breakpoint, so |
| * that our parent can trip over it once again. */ |
| if (self->bp_addr != 0) { |
| sbp = dict_find_entry(event->proc->leader->breakpoints, |
| self->bp_addr); |
| if (sbp != NULL) |
| assert(sbp->libsym == NULL); |
| /* We don't mind failing that, it's not a big |
| * deal to not display one extra vfork return. */ |
| insert_breakpoint(event->proc->parent, |
| self->bp_addr, NULL); |
| } |
| |
| continue_process(event->proc->parent->pid); |
| |
| /* Remove the leader that we artificially set up |
| * earlier. */ |
| change_process_leader(event->proc, event->proc); |
| destroy_event_handler(event->proc); |
| |
| default: |
| ; |
| } |
| |
| return event; |
| } |
| |
| void |
| continue_after_vfork(Process * proc) |
| { |
| debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid); |
| struct process_vfork_handler * handler = calloc(sizeof(*handler), 1); |
| if (handler == NULL) { |
| perror("malloc vfork handler"); |
| /* Carry on not bothering to treat the process as |
| * necessary. */ |
| continue_process(proc->parent->pid); |
| return; |
| } |
| |
| /* We must set up custom event handler, so that we see |
| * exec/exit events for the task itself. */ |
| handler->super.on_event = process_vfork_on_event; |
| install_event_handler(proc, &handler->super); |
| |
| /* Make sure that the child is sole thread. */ |
| assert(proc->leader == proc); |
| assert(proc->next == NULL || proc->next->leader != proc); |
| |
| /* Make sure that the child's parent is properly set up. */ |
| assert(proc->parent != NULL); |
| assert(proc->parent->leader != NULL); |
| |
| change_process_leader(proc, proc->parent->leader); |
| } |
| |
| static int |
| is_mid_stopping(Process *proc) |
| { |
| return proc != NULL |
| && proc->event_handler != NULL |
| && proc->event_handler->on_event == &process_stopping_on_event; |
| } |
| |
| void |
| continue_after_syscall(Process * proc, int sysnum, int ret_p) |
| { |
| /* Don't continue if we are mid-stopping. */ |
| if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) { |
| debug(DEBUG_PROCESS, |
| "continue_after_syscall: don't continue %d", |
| proc->pid); |
| return; |
| } |
| continue_process(proc->pid); |
| } |
| |
| /* If ltrace gets SIGINT, the processes directly or indirectly run by |
| * ltrace get it too. We just have to wait long enough for the signal |
| * to be delivered and the process terminated, which we notice and |
| * exit ltrace, too. So there's not much we need to do there. We |
| * want to keep tracing those processes as usual, in case they just |
| * SIG_IGN the SIGINT to do their shutdown etc. |
| * |
| * For processes ran on the background, we want to install an exit |
| * handler that stops all the threads, removes all breakpoints, and |
| * detaches. |
| */ |
| void |
| os_ltrace_exiting(void) |
| { |
| struct opt_p_t * it; |
| for (it = opt_p; it != NULL; it = it->next) { |
| Process * proc = pid2proc(it->pid); |
| if (proc == NULL || proc->leader == NULL) |
| continue; |
| if (ltrace_exiting_install_handler(proc->leader) < 0) |
| fprintf(stderr, |
| "Couldn't install exiting handler for %d.\n", |
| proc->pid); |
| } |
| } |
| |
| int |
| os_ltrace_exiting_sighandler(void) |
| { |
| extern int linux_in_waitpid; |
| if (linux_in_waitpid) { |
| os_ltrace_exiting(); |
| return 1; |
| } |
| return 0; |
| } |
| |
| size_t |
| umovebytes(Process *proc, void *addr, void *laddr, size_t len) { |
| |
| union { |
| long a; |
| char c[sizeof(long)]; |
| } a; |
| int started = 0; |
| size_t offset = 0, bytes_read = 0; |
| |
| while (offset < len) { |
| a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0); |
| if (a.a == -1 && errno) { |
| if (started && errno == EIO) |
| return bytes_read; |
| else |
| return -1; |
| } |
| started = 1; |
| |
| if (len - offset >= sizeof(long)) { |
| memcpy(laddr + offset, &a.c[0], sizeof(long)); |
| bytes_read += sizeof(long); |
| } |
| else { |
| memcpy(laddr + offset, &a.c[0], len - offset); |
| bytes_read += (len - offset); |
| } |
| offset += sizeof(long); |
| } |
| |
| return bytes_read; |
| } |
| |
| /* Read a series of bytes starting at the process's memory address |
| 'addr' and continuing until a NUL ('\0') is seen or 'len' bytes |
| have been read. |
| */ |
| int |
| umovestr(Process *proc, void *addr, int len, void *laddr) { |
| union { |
| long a; |
| char c[sizeof(long)]; |
| } a; |
| unsigned i; |
| int offset = 0; |
| |
| while (offset < len) { |
| a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0); |
| for (i = 0; i < sizeof(long); i++) { |
| if (a.c[i] && offset + (signed)i < len) { |
| *(char *)(laddr + offset + i) = a.c[i]; |
| } else { |
| *(char *)(laddr + offset + i) = '\0'; |
| return 0; |
| } |
| } |
| offset += sizeof(long); |
| } |
| *(char *)(laddr + offset) = '\0'; |
| return 0; |
| } |