blob: 6075d7dc03561b1c35f0f5a0b49b811cb1043276 [file] [log] [blame]
#include <gelf.h>
#include <sys/ptrace.h>
#include <errno.h>
#include <error.h>
#include <inttypes.h>
#include <assert.h>
#include "proc.h"
#include "common.h"
#include "library.h"
#define PPC_PLT_STUB_SIZE 16
static inline int
host_powerpc64()
{
#ifdef __powerpc64__
return 1;
#else
return 0;
#endif
}
GElf_Addr
arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
{
if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
assert(lte->arch.plt_stub_vma != 0);
return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
} else if (lte->ehdr.e_machine == EM_PPC) {
return rela->r_offset;
} else {
assert(lte->ehdr.e_machine == EM_PPC64);
fprintf(stderr, "PPC64\n");
abort();
return rela->r_offset;
}
}
int
arch_translate_address(struct Process *proc,
target_address_t addr, target_address_t *ret)
{
if (host_powerpc64() && proc->e_machine == EM_PPC64) {
long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
fprintf(stderr, "arch_translate_address %p->%#lx\n",
addr, l);
if (l == -1 && errno) {
error(0, errno, ".opd translation of %p", addr);
return -1;
}
*ret = (target_address_t)l;
return 0;
}
*ret = addr;
return 0;
}
/* XXX Apparently PPC64 doesn't support PLT breakpoints. */
void *
sym2addr(Process *proc, struct library_symbol *sym) {
void *addr = sym->enter_addr;
long pt_ret;
debug(3, 0);
if (sym->plt_type != LS_TOPLT_POINT) {
return addr;
}
if (proc->pid == 0) {
return 0;
}
if (options.debug >= 3) {
xinfdump(proc->pid, (void *)(((long)addr-32)&0xfffffff0),
sizeof(void*)*8);
}
// On a PowerPC-64 system, a plt is three 64-bit words: the first is the
// 64-bit address of the routine. Before the PLT has been initialized,
// this will be 0x0. In fact, the symbol table won't have the plt's
// address even. Ater the PLT has been initialized, but before it has
// been resolved, the first word will be the address of the function in
// the dynamic linker that will reslove the PLT. After the PLT is
// resolved, this will will be the address of the routine whose symbol
// is in the symbol table.
// On a PowerPC-32 system, there are two types of PLTs: secure (new) and
// non-secure (old). For the secure case, the PLT is simply a pointer
// and we can treat it much as we do for the PowerPC-64 case. For the
// non-secure case, the PLT is executable code and we can put the
// break-point right in the PLT.
pt_ret = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
#if SIZEOF_LONG == 8
if (proc->mask_32bit) {
// Assume big-endian.
addr = (void *)((pt_ret >> 32) & 0xffffffff);
} else {
addr = (void *)pt_ret;
}
#else
/* XXX Um, so where exactly are we dealing with the non-secure
PLT thing? */
addr = (void *)pt_ret;
#endif
return addr;
}
static GElf_Addr
get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
{
Elf_Scn *ppcgot_sec = NULL;
GElf_Shdr ppcgot_shdr;
if (ppcgot != 0
&& elf_get_section_covering(lte, ppcgot,
&ppcgot_sec, &ppcgot_shdr) < 0)
// xxx should be the log out
fprintf(stderr,
"DT_PPC_GOT=%#" PRIx64 ", but no such section found.\n",
ppcgot);
if (ppcgot_sec != NULL) {
Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
if (data == NULL || data->d_size < 8 ) {
fprintf(stderr, "Couldn't read GOT data.\n");
} else {
// where PPCGOT begins in .got
size_t offset = ppcgot - ppcgot_shdr.sh_addr;
assert(offset % 4 == 0);
uint32_t glink_vma;
if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
fprintf(stderr,
"Couldn't read glink VMA address"
" at %zd@GOT\n", offset);
return 0;
}
if (glink_vma != 0) {
debug(1, "PPC GOT glink_vma address: %#" PRIx32,
glink_vma);
fprintf(stderr, "PPC GOT glink_vma "
"address: %#"PRIx32"\n", glink_vma);
return (GElf_Addr)glink_vma;
}
}
}
if (plt_data != NULL) {
uint32_t glink_vma;
if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
fprintf(stderr,
"Couldn't read glink VMA address at 0@.plt\n");
return 0;
}
debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
fprintf(stderr, ".plt glink_vma address: "
"%#"PRIx32"\n", glink_vma);
return (GElf_Addr)glink_vma;
}
return 0;
}
static int
load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp)
{
Elf_Scn *scn;
GElf_Shdr shdr;
if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
|| scn == NULL) {
fail:
error(0, 0, "Couldn't get SHT_DYNAMIC: %s",
elf_errmsg(-1));
return -1;
}
Elf_Data *data = elf_loaddata(scn, &shdr);
if (data == NULL)
goto fail;
size_t j;
for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
GElf_Dyn dyn;
if (gelf_getdyn(data, j, &dyn) == NULL)
goto fail;
if(dyn.d_tag == DT_PPC_GOT) {
*ppcgotp = dyn.d_un.d_ptr;
return 0;
}
}
return -1;
}
int
arch_elf_init(struct ltelf *lte)
{
lte->arch.secure_plt = !(lte->lte_flags & LTE_PLT_EXECUTABLE);
if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
GElf_Addr ppcgot;
if (load_ppcgot(lte, &ppcgot) < 0) {
fprintf(stderr, "Couldn't find DT_PPC_GOT.\n");
return -1;
}
GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
assert (lte->relplt_size % 12 == 0);
size_t count = lte->relplt_size / 12; // size of RELA entry
lte->arch.plt_stub_vma = glink_vma
- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
}
/* Override the value that we gleaned from flags on the .plt
* section. The PLT entries are in fact executable, they are
* just not in .plt. */
lte->lte_flags |= LTE_PLT_EXECUTABLE;
return 0;
}