blob: e67853664ca97f85a4c5c1fee38e6196cdcf7b1d [file] [log] [blame]
Juan Cespedes5e01f651998-03-08 22:31:44 +01001#include <stdio.h>
Juan Cespedes504a3852003-02-04 23:24:38 +01002#include <stdlib.h>
Juan Cespedes1fe93d51998-03-13 00:29:21 +01003#include <string.h>
4#include <errno.h>
Juan Cespedes8f8282f2002-03-03 18:58:40 +01005#include <unistd.h>
Juan Cespedes5e01f651998-03-08 22:31:44 +01006#include <sys/types.h>
Petr Machata89a53602007-01-25 18:05:44 +01007#include <sys/wait.h>
Juan Cespedes5c3fe062004-06-14 18:08:37 +02008#include "ptrace.h"
Juan Cespedes5e01f651998-03-08 22:31:44 +01009#include <asm/unistd.h>
Petr Machata9a5420c2011-07-09 11:21:23 +020010#include <assert.h>
Juan Cespedes5e01f651998-03-08 22:31:44 +010011
Juan Cespedesf7281232009-06-25 16:11:21 +020012#include "common.h"
Petr Machata55ed83b2007-05-17 16:24:15 +020013
14/* If the system headers did not provide the constants, hard-code the normal
15 values. */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS 21
19#define PTRACE_SETOPTIONS 0x4200
20#define PTRACE_GETEVENTMSG 0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD 0x00000001
24#define PTRACE_O_TRACEFORK 0x00000002
25#define PTRACE_O_TRACEVFORK 0x00000004
26#define PTRACE_O_TRACECLONE 0x00000008
27#define PTRACE_O_TRACEEXEC 0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT 0x00000040
30
31/* Wait extended result codes for the above trace options. */
32#define PTRACE_EVENT_FORK 1
33#define PTRACE_EVENT_VFORK 2
34#define PTRACE_EVENT_CLONE 3
35#define PTRACE_EVENT_EXEC 4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT 6
38
39#endif /* PTRACE_EVENT_FORK */
Ian Wienand9a2ad352006-02-20 22:44:45 +010040
Luis Machado55c5feb2008-03-12 15:56:01 +010041#ifdef ARCH_HAVE_UMOVELONG
Juan Cespedesa8909f72009-04-28 20:02:41 +020042extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
Juan Cespedesf1350522008-12-16 18:19:58 +010043int
Juan Cespedesa8909f72009-04-28 20:02:41 +020044umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
Luis Machado55c5feb2008-03-12 15:56:01 +010045 return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
Juan Cespedesf1350522008-12-16 18:19:58 +010049int
Juan Cespedesa8909f72009-04-28 20:02:41 +020050umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
Luis Machado55c5feb2008-03-12 15:56:01 +010051 long pointed_to;
52
53 errno = 0;
54 pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55 if (pointed_to == -1 && errno)
56 return -errno;
57
58 *result = pointed_to;
Arnaud Patardf16fcff2010-01-08 08:40:19 -050059 if (info) {
60 switch(info->type) {
61 case ARGTYPE_INT:
62 *result &= 0x00000000ffffffffUL;
63 default:
64 break;
65 };
66 }
Luis Machado55c5feb2008-03-12 15:56:01 +010067 return 0;
68}
69#endif
70
Juan Cespedesf1350522008-12-16 18:19:58 +010071void
72trace_me(void) {
Petr Machata26627682011-07-08 18:15:32 +020073 debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
Ian Wienand2d45b1a2006-02-20 22:48:07 +010074 if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
Juan Cespedes5e01f651998-03-08 22:31:44 +010075 perror("PTRACE_TRACEME");
76 exit(1);
77 }
78}
79
Juan Cespedesf1350522008-12-16 18:19:58 +010080int
81trace_pid(pid_t pid) {
Petr Machata26627682011-07-08 18:15:32 +020082 debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
Juan Cespedes1fe93d51998-03-13 00:29:21 +010083 if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
Juan Cespedes273ea6d1998-03-14 23:02:40 +010084 return -1;
Juan Cespedes1fe93d51998-03-13 00:29:21 +010085 }
Petr Machata89a53602007-01-25 18:05:44 +010086
Juan Cespedes714ee9d2009-04-07 13:28:54 +020087 /* man ptrace: PTRACE_ATTACH attaches to the process specified
88 in pid. The child is sent a SIGSTOP, but will not
89 necessarily have stopped by the completion of this call;
90 use wait() to wait for the child to stop. */
Petr Machata9a5420c2011-07-09 11:21:23 +020091 if (waitpid (pid, NULL, __WALL) != pid) {
Juan Cespedes714ee9d2009-04-07 13:28:54 +020092 perror ("trace_pid: waitpid");
Petr Machata9a5420c2011-07-09 11:21:23 +020093 return -1;
Juan Cespedes714ee9d2009-04-07 13:28:54 +020094 }
95
Juan Cespedes273ea6d1998-03-14 23:02:40 +010096 return 0;
97}
98
Juan Cespedesf1350522008-12-16 18:19:58 +010099void
Juan Cespedesa8909f72009-04-28 20:02:41 +0200100trace_set_options(Process *proc, pid_t pid) {
Ian Wienand9a2ad352006-02-20 22:44:45 +0100101 if (proc->tracesysgood & 0x80)
102 return;
Petr Machata55ed83b2007-05-17 16:24:15 +0200103
Petr Machata26627682011-07-08 18:15:32 +0200104 debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
Juan Cespedescd8976d2009-05-14 13:47:58 +0200105
Juan Cespedes1e583132009-04-07 18:17:11 +0200106 long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107 PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108 PTRACE_O_TRACEEXEC;
Petr Machata55ed83b2007-05-17 16:24:15 +0200109 if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110 ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
Ian Wienand9a2ad352006-02-20 22:44:45 +0100111 perror("PTRACE_SETOPTIONS");
112 return;
113 }
114 proc->tracesysgood |= 0x80;
115}
116
Juan Cespedesf1350522008-12-16 18:19:58 +0100117void
118untrace_pid(pid_t pid) {
Petr Machata26627682011-07-08 18:15:32 +0200119 debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
Juan Cespedes273ea6d1998-03-14 23:02:40 +0100120 ptrace(PTRACE_DETACH, pid, 1, 0);
Juan Cespedes1fe93d51998-03-13 00:29:21 +0100121}
122
Juan Cespedesf1350522008-12-16 18:19:58 +0100123void
124continue_after_signal(pid_t pid, int signum) {
Juan Cespedesa8909f72009-04-28 20:02:41 +0200125 Process *proc;
Juan Cespedese74c80d2009-02-11 11:32:31 +0100126
Juan Cespedescd8976d2009-05-14 13:47:58 +0200127 debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
Juan Cespedese74c80d2009-02-11 11:32:31 +0100129 proc = pid2proc(pid);
Petr Machata98f09922011-07-09 10:55:29 +0200130 ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136 if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137 return ecb_yield;
138 return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144 return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150 debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151 //printf("continue_process %d\n", pid);
152
153 /* Only really continue the process if there are no events in
154 the queue for this process. Otherwise just for the other
155 events to arrive. */
156 if (!have_events_for(pid))
157 /* We always trace syscalls to control fork(),
158 * clone(), execve()... */
159 ptrace(PTRACE_SYSCALL, pid, 0, 0);
160 else
161 debug(DEBUG_PROCESS,
162 "putting off the continue, events in que.");
163}
164
165/**
166 * This is used for bookkeeping related to PIDs that the event
167 * handlers work with. */
168struct pid_task {
169 pid_t pid;
170 int sigstopped;
171 int got_event;
172 int delivered;
173} * pids;
174
175struct pid_set {
176 struct pid_task * tasks;
177 size_t count;
178 size_t alloc;
179};
180
181/**
182 * Breakpoint re-enablement. When we hit a breakpoint, we must
183 * disable it, single-step, and re-enable it. That single-step can be
184 * done only by one task in a task group, while others are stopped,
185 * otherwise the processes would race for who sees the breakpoint
186 * disabled and who doesn't. The following is to keep track of it
187 * all.
188 */
189struct process_stopping_handler
190{
191 Event_Handler super;
192
193 /* The task that is doing the re-enablement. */
194 Process * task_enabling_breakpoint;
195
196 /* The pointer being re-enabled. */
197 Breakpoint * breakpoint_being_enabled;
198
199 enum {
200 /* We are waiting for everyone to land in t/T. */
201 psh_stopping = 0,
202
203 /* We are doing the PTRACE_SINGLESTEP. */
204 psh_singlestep,
205
206 /* We are waiting for all the SIGSTOPs to arrive so
207 * that we can sink them. */
208 psh_sinking,
209 } state;
210
211 struct pid_set pids;
212};
213
214static enum pcb_status
215task_stopped(Process * task, void * data)
216{
217 int status;
218
219 /* If the task is already stopped, don't worry about it.
220 * Likewise if it managed to become a zombie or terminate in
221 * the meantime. This can happen when the whole thread group
222 * is terminating. */
223 switch (status = process_status(task->pid))
224 case -1:
225 case 't':
226 case 'Z':
227 return pcb_cont;
228
229 return pcb_stop;
230}
231
232static struct pid_task *
233get_task_info(struct pid_set * pids, pid_t pid)
234{
235 size_t i;
236 for (i = 0; i < pids->count; ++i)
237 if (pids->tasks[i].pid == pid)
238 return &pids->tasks[i];
239
240 return NULL;
241}
242
243static struct pid_task *
244add_task_info(struct pid_set * pids, pid_t pid)
245{
246 if (pids->count == pids->alloc) {
247 size_t ns = (2 * pids->alloc) ?: 4;
248 struct pid_task * n = realloc(pids->tasks,
249 sizeof(*pids->tasks) * ns);
250 if (n == NULL)
251 return NULL;
252 pids->tasks = n;
253 pids->alloc = ns;
254 }
255 struct pid_task * task_info = &pids->tasks[pids->count++];
256 memset(task_info, 0, sizeof(*task_info));
257 task_info->pid = pid;
258 return task_info;
259}
260
261static enum pcb_status
262send_sigstop(Process * task, void * data)
263{
264 Process * leader = task->leader;
265 struct pid_set * pids = data;
266
267 /* Look for pre-existing task record, or add new. */
268 struct pid_task * task_info = get_task_info(pids, task->pid);
269 if (task_info == NULL)
270 task_info = add_task_info(pids, task->pid);
271 if (task_info == NULL) {
272 perror("send_sigstop: add_task_info");
273 destroy_event_handler(leader);
274 /* Signal failure upwards. */
275 return pcb_stop;
276 }
277
278 /* This task still has not been attached to. It should be
279 stopped by the kernel. */
280 if (task->state == STATE_BEING_CREATED)
281 return pcb_cont;
282
283 /* Don't bother sending SIGSTOP if we are already stopped, or
284 * if we sent the SIGSTOP already, which happens when we
285 * inherit the handler from breakpoint re-enablement. */
286 if (task_stopped(task, NULL) == pcb_cont)
287 return pcb_cont;
288 if (task_info->sigstopped) {
289 if (!task_info->delivered)
290 return pcb_cont;
291 task_info->delivered = 0;
292 }
293
294 if (task_kill(task->pid, SIGSTOP) >= 0) {
295 debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
296 task_info->sigstopped = 1;
297 } else
298 fprintf(stderr,
299 "Warning: couldn't send SIGSTOP to %d\n", task->pid);
300
301 return pcb_cont;
302}
303
304static void
305process_stopping_done(struct process_stopping_handler * self, Process * leader)
306{
307 debug(DEBUG_PROCESS, "process stopping done %d",
308 self->task_enabling_breakpoint->pid);
309 size_t i;
310 for (i = 0; i < self->pids.count; ++i)
311 if (self->pids.tasks[i].delivered)
312 continue_process(self->pids.tasks[i].pid);
313 continue_process(self->task_enabling_breakpoint->pid);
314 destroy_event_handler(leader);
315}
316
317static void
318handle_stopping_event(struct pid_task * task_info, Event ** eventp)
319{
320 /* Mark all events, so that we know whom to SIGCONT later. */
321 if (task_info != NULL && task_info->sigstopped)
322 task_info->got_event = 1;
323
324 Event * event = *eventp;
325
326 /* In every state, sink SIGSTOP events for tasks that it was
327 * sent to. */
328 if (task_info != NULL
329 && event->type == EVENT_SIGNAL
330 && event->e_un.signum == SIGSTOP) {
331 debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
332 if (task_info->sigstopped
333 && !task_info->delivered) {
334 task_info->delivered = 1;
335 *eventp = NULL; // sink the event
336 } else
337 fprintf(stderr, "suspicious: %d got SIGSTOP, but "
338 "sigstopped=%d and delivered=%d\n",
339 task_info->pid, task_info->sigstopped,
340 task_info->delivered);
Juan Cespedese74c80d2009-02-11 11:32:31 +0100341 }
Juan Cespedes5e01f651998-03-08 22:31:44 +0100342}
343
Petr Machata98f09922011-07-09 10:55:29 +0200344/* Some SIGSTOPs may have not been delivered to their respective tasks
345 * yet. They are still in the queue. If we have seen an event for
346 * that process, continue it, so that the SIGSTOP can be delivered and
347 * caught by ltrace. */
348static void
349continue_for_sigstop_delivery(struct pid_set * pids)
350{
351 size_t i;
352 for (i = 0; i < pids->count; ++i) {
353 if (pids->tasks[i].sigstopped
354 && !pids->tasks[i].delivered
355 && pids->tasks[i].got_event) {
356 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
357 pids->tasks[i].pid);
358 ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
359 }
360 }
Juan Cespedes5e01f651998-03-08 22:31:44 +0100361}
362
Petr Machata98f09922011-07-09 10:55:29 +0200363static int
364event_exit_or_none_p(Event * event)
Petr Machataf789c9c2011-07-09 10:54:27 +0200365{
Petr Machata98f09922011-07-09 10:55:29 +0200366 return event == NULL
367 || event->type == EVENT_EXIT
368 || event->type == EVENT_EXIT_SIGNAL
369 || event->type == EVENT_NONE;
370}
371
372static int
373await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
374 Event * event)
375{
376 /* If we still didn't get our SIGSTOP, continue the process
377 * and carry on. */
378 if (event != NULL && !event_exit_or_none_p(event)
379 && task_info != NULL && task_info->sigstopped) {
380 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
381 task_info->pid);
382 /* We should get the signal the first thing
383 * after this, so it should be OK to continue
384 * even if we are over a breakpoint. */
385 ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
386
387 } else {
388 /* If all SIGSTOPs were delivered, uninstall the
389 * handler and continue everyone. */
390 /* XXX I suspect that we should check tasks that are
391 * still around. Is things are now, there should be a
392 * race between waiting for everyone to stop and one
393 * of the tasks exiting. */
394 int all_clear = 1;
395 size_t i;
396 for (i = 0; i < pids->count; ++i)
397 if (pids->tasks[i].sigstopped
398 && !pids->tasks[i].delivered) {
399 all_clear = 0;
400 break;
401 }
402 return all_clear;
403 }
404
405 return 0;
406}
407
408/* This event handler is installed when we are in the process of
409 * stopping the whole thread group to do the pointer re-enablement for
410 * one of the threads. We pump all events to the queue for later
411 * processing while we wait for all the threads to stop. When this
412 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
413 * re-enable, and continue everyone. */
414static Event *
415process_stopping_on_event(Event_Handler * super, Event * event)
416{
417 struct process_stopping_handler * self = (void *)super;
418 Process * task = event->proc;
419 Process * leader = task->leader;
420
421 debug(DEBUG_PROCESS,
422 "pid %d; event type %d; state %d",
423 task->pid, event->type, self->state);
424
425 struct pid_task * task_info = get_task_info(&self->pids, task->pid);
426 if (task_info == NULL)
427 fprintf(stderr, "new task??? %d\n", task->pid);
428 handle_stopping_event(task_info, &event);
429
430 int state = self->state;
431 int event_to_queue = !event_exit_or_none_p(event);
432
433 switch (state) {
434 case psh_stopping:
435 /* If everyone is stopped, singlestep. */
436 if (each_task(leader, &task_stopped, NULL) == NULL) {
437 debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
438 self->task_enabling_breakpoint->pid);
439 ptrace(PTRACE_SINGLESTEP,
440 self->task_enabling_breakpoint->pid, 0, 0);
441 self->state = state = psh_singlestep;
442 }
443 break;
444
445 case psh_singlestep: {
446 /* In singlestep state, breakpoint signifies that we
447 * have now stepped, and can re-enable the breakpoint. */
448 if (event != NULL
449 && task == self->task_enabling_breakpoint) {
450 /* Essentially we don't care what event caused
451 * the thread to stop. We can do the
452 * re-enablement now. */
453 enable_breakpoint(self->task_enabling_breakpoint,
454 self->breakpoint_being_enabled);
455
456 continue_for_sigstop_delivery(&self->pids);
457
458 self->breakpoint_being_enabled = NULL;
459 self->state = state = psh_sinking;
460
461 if (event->type == EVENT_BREAKPOINT)
462 event = NULL; // handled
463 } else
464 break;
465 }
466
467 /* fall-through */
468
469 case psh_sinking:
470 if (await_sigstop_delivery(&self->pids, task_info, event))
471 process_stopping_done(self, leader);
472 }
473
474 if (event != NULL && event_to_queue) {
475 enque_event(event);
476 event = NULL; // sink the event
477 }
478
479 return event;
480}
481
482static void
483process_stopping_destroy(Event_Handler * super)
484{
485 struct process_stopping_handler * self = (void *)super;
486 if (self->breakpoint_being_enabled != NULL)
487 enable_breakpoint(self->task_enabling_breakpoint,
488 self->breakpoint_being_enabled);
489 free(self->pids.tasks);
Juan Cespedes5e01f651998-03-08 22:31:44 +0100490}
Juan Cespedes8cc1b9d2002-03-01 19:54:23 +0100491
Juan Cespedesf1350522008-12-16 18:19:58 +0100492void
Petr Machata26627682011-07-08 18:15:32 +0200493continue_after_breakpoint(Process *proc, Breakpoint *sbp)
494{
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100495 if (sbp->enabled)
Petr Machataf789c9c2011-07-09 10:54:27 +0200496 disable_breakpoint(proc, sbp);
497
Juan Cespedes5c3fe062004-06-14 18:08:37 +0200498 set_instruction_pointer(proc, sbp->addr);
Juan Cespedes8f8282f2002-03-03 18:58:40 +0100499 if (sbp->enabled == 0) {
500 continue_process(proc->pid);
501 } else {
Petr Machata26627682011-07-08 18:15:32 +0200502 debug(DEBUG_PROCESS,
503 "continue_after_breakpoint: pid=%d, addr=%p",
504 proc->pid, sbp->addr);
Arnaud Patardf3d1c532010-01-08 08:40:04 -0500505#if defined __sparc__ || defined __ia64___ || defined __mips__
Ian Wienand9a2ad352006-02-20 22:44:45 +0100506 /* we don't want to singlestep here */
Juan Cespedes5c3fe062004-06-14 18:08:37 +0200507 continue_process(proc->pid);
508#else
Petr Machata98f09922011-07-09 10:55:29 +0200509 struct process_stopping_handler * handler
510 = calloc(sizeof(*handler), 1);
511 if (handler == NULL) {
512 perror("malloc breakpoint disable handler");
513 fatal:
514 /* Carry on not bothering to re-enable. */
515 continue_process(proc->pid);
516 return;
517 }
518
519 handler->super.on_event = process_stopping_on_event;
520 handler->super.destroy = process_stopping_destroy;
521 handler->task_enabling_breakpoint = proc;
522 handler->breakpoint_being_enabled = sbp;
523 install_event_handler(proc->leader, &handler->super);
524
525 if (each_task(proc->leader, &send_sigstop,
526 &handler->pids) != NULL)
527 goto fatal;
528
529 /* And deliver the first fake event, in case all the
530 * conditions are already fulfilled. */
531 Event ev;
532 ev.type = EVENT_NONE;
533 ev.proc = proc;
534 process_stopping_on_event(&handler->super, &ev);
Juan Cespedes5c3fe062004-06-14 18:08:37 +0200535#endif
Juan Cespedes8f8282f2002-03-03 18:58:40 +0100536 }
537}
538
Petr Machata602330f2011-07-09 11:15:34 +0200539/**
540 * Ltrace exit. When we are about to exit, we have to go through all
541 * the processes, stop them all, remove all the breakpoints, and then
542 * detach the processes that we attached to using -p. If we left the
543 * other tasks running, they might hit stray return breakpoints and
544 * produce artifacts, so we better stop everyone, even if it's a bit
545 * of extra work.
546 */
547struct ltrace_exiting_handler
548{
549 Event_Handler super;
550 struct pid_set pids;
551};
552
553static enum pcb_status
554remove_task(Process * task, void * data)
555{
556 /* Don't untrace leader just yet. */
557 if (task != data)
558 remove_process(task);
559 return pcb_cont;
560}
561
562static enum pcb_status
563untrace_task(Process * task, void * data)
564{
565 untrace_pid(task->pid);
566 return pcb_cont;
567}
568
569static Event *
570ltrace_exiting_on_event(Event_Handler * super, Event * event)
571{
572 struct ltrace_exiting_handler * self = (void *)super;
573 Process * task = event->proc;
574 Process * leader = task->leader;
575
576 debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
577
578 struct pid_task * task_info = get_task_info(&self->pids, task->pid);
579 handle_stopping_event(task_info, &event);
580
581 if (await_sigstop_delivery(&self->pids, task_info, event)) {
582 debug(DEBUG_PROCESS, "all SIGSTOPs delivered %d", leader->pid);
583 disable_all_breakpoints(leader);
584
585 /* Now untrace the process, if it was attached to by -p. */
586 struct opt_p_t * it;
587 for (it = opt_p; it != NULL; it = it->next) {
588 Process * proc = pid2proc(it->pid);
589 if (proc == NULL)
590 continue;
591 if (proc->leader == leader) {
592 each_task(leader, &untrace_task, NULL);
593 break;
594 }
595 }
596
597 each_task(leader, &remove_task, leader);
598 destroy_event_handler(leader);
599 remove_task(leader, NULL);
600 return NULL;
601 }
602
603 /* Sink all non-exit events. We are about to exit, so we
604 * don't bother with queuing them. */
605 if (event_exit_or_none_p(event))
606 return event;
607 else
608 return NULL;
609}
610
611static void
612ltrace_exiting_destroy(Event_Handler * super)
613{
614 struct ltrace_exiting_handler * self = (void *)super;
615 free(self->pids.tasks);
616}
617
618static int
619ltrace_exiting_install_handler(Process * proc)
620{
621 /* Only install to leader. */
622 if (proc->leader != proc)
623 return 0;
624
625 /* Perhaps we are already installed, if the user passed
626 * several -p options that are tasks of one process. */
627 if (proc->event_handler != NULL
628 && proc->event_handler->on_event == &ltrace_exiting_on_event)
629 return 0;
630
631 struct ltrace_exiting_handler * handler
632 = calloc(sizeof(*handler), 1);
633 if (handler == NULL) {
634 perror("malloc exiting handler");
635 fatal:
636 /* XXXXXXXXXXXXXXXXXXX fixme */
637 return -1;
638 }
639
640 /* If we are in the middle of breakpoint, extract the
641 * pid-state information from that handler so that we can take
642 * over the SIGSTOP handling. */
643 if (proc->event_handler != NULL) {
644 debug(DEBUG_PROCESS, "taking over breakpoint handling");
645 assert(proc->event_handler->on_event
646 == &process_stopping_on_event);
647 struct process_stopping_handler * other
648 = (void *)proc->event_handler;
649 size_t i;
650 for (i = 0; i < other->pids.count; ++i) {
651 struct pid_task * oti = &other->pids.tasks[i];
652 struct pid_task * task_info
653 = add_task_info(&handler->pids, oti->pid);
654 if (task_info == NULL) {
655 perror("ltrace_exiting_install_handler"
656 ":add_task_info");
657 goto fatal;
658 }
659 /* Copy over the state. */
660 *task_info = *oti;
661 }
662
663 /* And destroy the original handler. */
664 destroy_event_handler(proc);
665 }
666
667 handler->super.on_event = ltrace_exiting_on_event;
668 handler->super.destroy = ltrace_exiting_destroy;
669 install_event_handler(proc->leader, &handler->super);
670
671 if (each_task(proc->leader, &send_sigstop,
672 &handler->pids) != NULL)
673 goto fatal;
674
675 return 0;
676}
677
678/* If ltrace gets SIGINT, the processes directly or indirectly run by
679 * ltrace get it too. We just have to wait long enough for the signal
680 * to be delivered and the process terminated, which we notice and
681 * exit ltrace, too. So there's not much we need to do there. We
682 * want to keep tracing those processes as usual, in case they just
683 * SIG_IGN the SIGINT to do their shutdown etc.
684 *
685 * For processes ran on the background, we want to install an exit
686 * handler that stops all the threads, removes all breakpoints, and
687 * detaches.
688 */
689void
690ltrace_exiting(void)
691{
692 struct opt_p_t * it;
693 for (it = opt_p; it != NULL; it = it->next) {
694 Process * proc = pid2proc(it->pid);
695 if (proc == NULL || proc->leader == NULL)
696 continue;
697 if (ltrace_exiting_install_handler(proc->leader) < 0)
698 fprintf(stderr,
699 "Couldn't install exiting handler for %d.\n",
700 proc->pid);
701 }
702}
703
Joe Damatodfa3fa32010-11-08 15:47:35 -0800704size_t
705umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
706
707 union {
708 long a;
709 char c[sizeof(long)];
710 } a;
Zachary T Welchba6aca22010-12-08 18:55:09 -0800711 int started = 0;
712 size_t offset = 0, bytes_read = 0;
Joe Damatodfa3fa32010-11-08 15:47:35 -0800713
714 while (offset < len) {
715 a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
716 if (a.a == -1 && errno) {
717 if (started && errno == EIO)
718 return bytes_read;
719 else
720 return -1;
721 }
722 started = 1;
723
724 if (len - offset >= sizeof(long)) {
725 memcpy(laddr + offset, &a.c[0], sizeof(long));
726 bytes_read += sizeof(long);
727 }
728 else {
729 memcpy(laddr + offset, &a.c[0], len - offset);
730 bytes_read += (len - offset);
731 }
732 offset += sizeof(long);
733 }
734
735 return bytes_read;
736}
737
Steve Fink7bafff02006-08-07 04:50:42 +0200738/* Read a series of bytes starting at the process's memory address
739 'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
740 have been read.
741*/
Juan Cespedesf1350522008-12-16 18:19:58 +0100742int
Juan Cespedesa8909f72009-04-28 20:02:41 +0200743umovestr(Process *proc, void *addr, int len, void *laddr) {
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100744 union {
745 long a;
746 char c[sizeof(long)];
747 } a;
Zachary T Welchba6aca22010-12-08 18:55:09 -0800748 unsigned i;
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100749 int offset = 0;
Juan Cespedes8cc1b9d2002-03-01 19:54:23 +0100750
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100751 while (offset < len) {
752 a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
753 for (i = 0; i < sizeof(long); i++) {
Paul Gilliam3f1219f2006-04-24 18:25:38 +0200754 if (a.c[i] && offset + (signed)i < len) {
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100755 *(char *)(laddr + offset + i) = a.c[i];
Juan Cespedes8cc1b9d2002-03-01 19:54:23 +0100756 } else {
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100757 *(char *)(laddr + offset + i) = '\0';
Juan Cespedes8cc1b9d2002-03-01 19:54:23 +0100758 return 0;
759 }
760 }
761 offset += sizeof(long);
762 }
Ian Wienand2d45b1a2006-02-20 22:48:07 +0100763 *(char *)(laddr + offset) = '\0';
Juan Cespedes8cc1b9d2002-03-01 19:54:23 +0100764 return 0;
765}