| /* $Id: light.c,v 1.39 2001/03/03 20:33:27 brianp Exp $ */ |
| |
| /* |
| * Mesa 3-D graphics library |
| * Version: 3.5 |
| * |
| * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
| * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| |
| #ifdef PC_HEADER |
| #include "all.h" |
| #else |
| #include "glheader.h" |
| #include "colormac.h" |
| #include "context.h" |
| #include "enums.h" |
| #include "light.h" |
| #include "macros.h" |
| #include "mem.h" |
| #include "mmath.h" |
| #include "simple_list.h" |
| #include "mtypes.h" |
| |
| #include "math/m_xform.h" |
| #include "math/m_matrix.h" |
| #endif |
| |
| |
| /* XXX this is a bit of a hack needed for compilation within XFree86 */ |
| #ifndef FLT_MIN |
| #define FLT_MIN 1e-37 |
| #endif |
| |
| |
| void |
| _mesa_ShadeModel( GLenum mode ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| ASSERT_OUTSIDE_BEGIN_END(ctx); |
| |
| if (MESA_VERBOSE & VERBOSE_API) |
| fprintf(stderr, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode)); |
| |
| if (mode != GL_FLAT && mode != GL_SMOOTH) { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glShadeModel" ); |
| return; |
| } |
| |
| if (ctx->Light.ShadeModel == mode) |
| return; |
| |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| ctx->Light.ShadeModel = mode; |
| ctx->_TriangleCaps ^= DD_FLATSHADE; |
| if (ctx->Driver.ShadeModel) |
| (*ctx->Driver.ShadeModel)( ctx, mode ); |
| } |
| |
| |
| |
| void |
| _mesa_Lightf( GLenum light, GLenum pname, GLfloat param ) |
| { |
| _mesa_Lightfv( light, pname, ¶m ); |
| } |
| |
| |
| void |
| _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLint i = (GLint) (light - GL_LIGHT0); |
| struct gl_light *l = &ctx->Light.Light[i]; |
| |
| if (i < 0 || i >= ctx->Const.MaxLights) { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glLight" ); |
| return; |
| } |
| |
| switch (pname) { |
| case GL_AMBIENT: |
| if (TEST_EQ_4V(l->Ambient, params)) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_4V( l->Ambient, params ); |
| break; |
| case GL_DIFFUSE: |
| if (TEST_EQ_4V(l->Diffuse, params)) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_4V( l->Diffuse, params ); |
| break; |
| case GL_SPECULAR: |
| if (TEST_EQ_4V(l->Specular, params)) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_4V( l->Specular, params ); |
| break; |
| case GL_POSITION: { |
| GLfloat tmp[4]; |
| /* transform position by ModelView matrix */ |
| TRANSFORM_POINT( tmp, ctx->ModelView.m, params ); |
| if (TEST_EQ_4V(l->EyePosition, tmp)) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_4V(l->EyePosition, tmp); |
| if (l->EyePosition[3] != 0.0F) |
| l->_Flags |= LIGHT_POSITIONAL; |
| else |
| l->_Flags &= ~LIGHT_POSITIONAL; |
| break; |
| } |
| case GL_SPOT_DIRECTION: { |
| GLfloat tmp[4]; |
| /* transform direction by inverse modelview */ |
| if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) { |
| _math_matrix_analyse( &ctx->ModelView ); |
| } |
| TRANSFORM_NORMAL( tmp, params, ctx->ModelView.inv ); |
| if (TEST_EQ_3V(l->EyeDirection, tmp)) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_3V(l->EyeDirection, tmp); |
| break; |
| } |
| case GL_SPOT_EXPONENT: |
| if (params[0]<0.0 || params[0]>128.0) { |
| _mesa_error( ctx, GL_INVALID_VALUE, "glLight" ); |
| return; |
| } |
| if (l->SpotExponent == params[0]) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| l->SpotExponent = params[0]; |
| _mesa_invalidate_spot_exp_table( l ); |
| break; |
| case GL_SPOT_CUTOFF: |
| if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) { |
| _mesa_error( ctx, GL_INVALID_VALUE, "glLight" ); |
| return; |
| } |
| if (l->SpotCutoff == params[0]) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| l->SpotCutoff = params[0]; |
| l->_CosCutoff = cos(params[0]*DEG2RAD); |
| if (l->_CosCutoff < 0) |
| l->_CosCutoff = 0; |
| if (l->SpotCutoff != 180.0F) |
| l->_Flags |= LIGHT_SPOT; |
| else |
| l->_Flags &= ~LIGHT_SPOT; |
| break; |
| case GL_CONSTANT_ATTENUATION: |
| if (params[0]<0.0) { |
| _mesa_error( ctx, GL_INVALID_VALUE, "glLight" ); |
| return; |
| } |
| if (l->ConstantAttenuation == params[0]) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| l->ConstantAttenuation = params[0]; |
| break; |
| case GL_LINEAR_ATTENUATION: |
| if (params[0]<0.0) { |
| _mesa_error( ctx, GL_INVALID_VALUE, "glLight" ); |
| return; |
| } |
| if (l->LinearAttenuation == params[0]) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| l->LinearAttenuation = params[0]; |
| break; |
| case GL_QUADRATIC_ATTENUATION: |
| if (params[0]<0.0) { |
| _mesa_error( ctx, GL_INVALID_VALUE, "glLight" ); |
| return; |
| } |
| if (l->QuadraticAttenuation == params[0]) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| l->QuadraticAttenuation = params[0]; |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glLight" ); |
| return; |
| } |
| |
| if (ctx->Driver.Lightfv) |
| ctx->Driver.Lightfv( ctx, light, pname, params ); |
| } |
| |
| |
| void |
| _mesa_Lighti( GLenum light, GLenum pname, GLint param ) |
| { |
| _mesa_Lightiv( light, pname, ¶m ); |
| } |
| |
| |
| void |
| _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params ) |
| { |
| GLfloat fparam[4]; |
| |
| switch (pname) { |
| case GL_AMBIENT: |
| case GL_DIFFUSE: |
| case GL_SPECULAR: |
| fparam[0] = INT_TO_FLOAT( params[0] ); |
| fparam[1] = INT_TO_FLOAT( params[1] ); |
| fparam[2] = INT_TO_FLOAT( params[2] ); |
| fparam[3] = INT_TO_FLOAT( params[3] ); |
| break; |
| case GL_POSITION: |
| fparam[0] = (GLfloat) params[0]; |
| fparam[1] = (GLfloat) params[1]; |
| fparam[2] = (GLfloat) params[2]; |
| fparam[3] = (GLfloat) params[3]; |
| break; |
| case GL_SPOT_DIRECTION: |
| fparam[0] = (GLfloat) params[0]; |
| fparam[1] = (GLfloat) params[1]; |
| fparam[2] = (GLfloat) params[2]; |
| break; |
| case GL_SPOT_EXPONENT: |
| case GL_SPOT_CUTOFF: |
| case GL_CONSTANT_ATTENUATION: |
| case GL_LINEAR_ATTENUATION: |
| case GL_QUADRATIC_ATTENUATION: |
| fparam[0] = (GLfloat) params[0]; |
| break; |
| default: |
| /* error will be caught later in gl_Lightfv */ |
| ; |
| } |
| |
| _mesa_Lightfv( light, pname, fparam ); |
| } |
| |
| |
| |
| void |
| _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLint l = (GLint) (light - GL_LIGHT0); |
| ASSERT_OUTSIDE_BEGIN_END(ctx); |
| |
| if (l < 0 || l >= ctx->Const.MaxLights) { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); |
| return; |
| } |
| |
| switch (pname) { |
| case GL_AMBIENT: |
| COPY_4V( params, ctx->Light.Light[l].Ambient ); |
| break; |
| case GL_DIFFUSE: |
| COPY_4V( params, ctx->Light.Light[l].Diffuse ); |
| break; |
| case GL_SPECULAR: |
| COPY_4V( params, ctx->Light.Light[l].Specular ); |
| break; |
| case GL_POSITION: |
| COPY_4V( params, ctx->Light.Light[l].EyePosition ); |
| break; |
| case GL_SPOT_DIRECTION: |
| COPY_3V( params, ctx->Light.Light[l].EyeDirection ); |
| break; |
| case GL_SPOT_EXPONENT: |
| params[0] = ctx->Light.Light[l].SpotExponent; |
| break; |
| case GL_SPOT_CUTOFF: |
| params[0] = ctx->Light.Light[l].SpotCutoff; |
| break; |
| case GL_CONSTANT_ATTENUATION: |
| params[0] = ctx->Light.Light[l].ConstantAttenuation; |
| break; |
| case GL_LINEAR_ATTENUATION: |
| params[0] = ctx->Light.Light[l].LinearAttenuation; |
| break; |
| case GL_QUADRATIC_ATTENUATION: |
| params[0] = ctx->Light.Light[l].QuadraticAttenuation; |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); |
| break; |
| } |
| } |
| |
| |
| |
| void |
| _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLint l = (GLint) (light - GL_LIGHT0); |
| ASSERT_OUTSIDE_BEGIN_END(ctx); |
| |
| if (l < 0 || l >= ctx->Const.MaxLights) { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); |
| return; |
| } |
| |
| switch (pname) { |
| case GL_AMBIENT: |
| params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]); |
| params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]); |
| params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]); |
| params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]); |
| break; |
| case GL_DIFFUSE: |
| params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]); |
| params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]); |
| params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]); |
| params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]); |
| break; |
| case GL_SPECULAR: |
| params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]); |
| params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]); |
| params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]); |
| params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]); |
| break; |
| case GL_POSITION: |
| params[0] = (GLint) ctx->Light.Light[l].EyePosition[0]; |
| params[1] = (GLint) ctx->Light.Light[l].EyePosition[1]; |
| params[2] = (GLint) ctx->Light.Light[l].EyePosition[2]; |
| params[3] = (GLint) ctx->Light.Light[l].EyePosition[3]; |
| break; |
| case GL_SPOT_DIRECTION: |
| params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0]; |
| params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1]; |
| params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2]; |
| break; |
| case GL_SPOT_EXPONENT: |
| params[0] = (GLint) ctx->Light.Light[l].SpotExponent; |
| break; |
| case GL_SPOT_CUTOFF: |
| params[0] = (GLint) ctx->Light.Light[l].SpotCutoff; |
| break; |
| case GL_CONSTANT_ATTENUATION: |
| params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation; |
| break; |
| case GL_LINEAR_ATTENUATION: |
| params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation; |
| break; |
| case GL_QUADRATIC_ATTENUATION: |
| params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation; |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); |
| break; |
| } |
| } |
| |
| |
| |
| /**********************************************************************/ |
| /*** Light Model ***/ |
| /**********************************************************************/ |
| |
| |
| void |
| _mesa_LightModelfv( GLenum pname, const GLfloat *params ) |
| { |
| GLenum newenum; |
| GLboolean newbool; |
| GET_CURRENT_CONTEXT(ctx); |
| ASSERT_OUTSIDE_BEGIN_END(ctx); |
| |
| switch (pname) { |
| case GL_LIGHT_MODEL_AMBIENT: |
| if (TEST_EQ_4V( ctx->Light.Model.Ambient, params )) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| COPY_4V( ctx->Light.Model.Ambient, params ); |
| break; |
| case GL_LIGHT_MODEL_LOCAL_VIEWER: |
| newbool = (params[0]!=0.0); |
| if (ctx->Light.Model.LocalViewer == newbool) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| ctx->Light.Model.LocalViewer = newbool; |
| break; |
| case GL_LIGHT_MODEL_TWO_SIDE: |
| newbool = (params[0]!=0.0); |
| if (ctx->Light.Model.TwoSide == newbool) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| ctx->Light.Model.TwoSide = newbool; |
| break; |
| case GL_LIGHT_MODEL_COLOR_CONTROL: |
| if (params[0] == (GLfloat) GL_SINGLE_COLOR) |
| newenum = GL_SINGLE_COLOR; |
| else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) |
| newenum = GL_SEPARATE_SPECULAR_COLOR; |
| else { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" ); |
| return; |
| } |
| if (ctx->Light.Model.ColorControl == newenum) |
| return; |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| ctx->Light.Model.ColorControl = newenum; |
| |
| if ((ctx->Light.Enabled && |
| ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) |
| || ctx->Fog.ColorSumEnabled) |
| ctx->_TriangleCaps |= DD_SEPERATE_SPECULAR; |
| else |
| ctx->_TriangleCaps &= ~DD_SEPERATE_SPECULAR; |
| |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel" ); |
| break; |
| } |
| |
| if (ctx->Driver.LightModelfv) |
| ctx->Driver.LightModelfv( ctx, pname, params ); |
| } |
| |
| |
| void |
| _mesa_LightModeliv( GLenum pname, const GLint *params ) |
| { |
| GLfloat fparam[4]; |
| |
| switch (pname) { |
| case GL_LIGHT_MODEL_AMBIENT: |
| fparam[0] = INT_TO_FLOAT( params[0] ); |
| fparam[1] = INT_TO_FLOAT( params[1] ); |
| fparam[2] = INT_TO_FLOAT( params[2] ); |
| fparam[3] = INT_TO_FLOAT( params[3] ); |
| break; |
| case GL_LIGHT_MODEL_LOCAL_VIEWER: |
| case GL_LIGHT_MODEL_TWO_SIDE: |
| case GL_LIGHT_MODEL_COLOR_CONTROL: |
| fparam[0] = (GLfloat) params[0]; |
| break; |
| default: |
| /* Error will be caught later in gl_LightModelfv */ |
| ; |
| } |
| _mesa_LightModelfv( pname, fparam ); |
| } |
| |
| |
| void |
| _mesa_LightModeli( GLenum pname, GLint param ) |
| { |
| _mesa_LightModeliv( pname, ¶m ); |
| } |
| |
| |
| void |
| _mesa_LightModelf( GLenum pname, GLfloat param ) |
| { |
| _mesa_LightModelfv( pname, ¶m ); |
| } |
| |
| |
| |
| /********** MATERIAL **********/ |
| |
| |
| /* |
| * Given a face and pname value (ala glColorMaterial), compute a bitmask |
| * of the targeted material values. |
| */ |
| GLuint |
| _mesa_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname, |
| GLuint legal, const char *where ) |
| { |
| GLuint bitmask = 0; |
| |
| /* Make a bitmask indicating what material attribute(s) we're updating */ |
| switch (pname) { |
| case GL_EMISSION: |
| bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT; |
| break; |
| case GL_AMBIENT: |
| bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; |
| break; |
| case GL_DIFFUSE: |
| bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; |
| break; |
| case GL_SPECULAR: |
| bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT; |
| break; |
| case GL_SHININESS: |
| bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT; |
| break; |
| case GL_AMBIENT_AND_DIFFUSE: |
| bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; |
| bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; |
| break; |
| case GL_COLOR_INDEXES: |
| bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT; |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, where ); |
| return 0; |
| } |
| |
| if (face==GL_FRONT) { |
| bitmask &= FRONT_MATERIAL_BITS; |
| } |
| else if (face==GL_BACK) { |
| bitmask &= BACK_MATERIAL_BITS; |
| } |
| else if (face != GL_FRONT_AND_BACK) { |
| _mesa_error( ctx, GL_INVALID_ENUM, where ); |
| return 0; |
| } |
| |
| if (bitmask & ~legal) { |
| _mesa_error( ctx, GL_INVALID_ENUM, where ); |
| return 0; |
| } |
| |
| return bitmask; |
| } |
| |
| |
| /* Perform a straight copy between pairs of materials. |
| */ |
| void _mesa_copy_material_pairs( struct gl_material dst[2], |
| const struct gl_material src[2], |
| GLuint bitmask ) |
| { |
| if (bitmask & FRONT_EMISSION_BIT) { |
| COPY_4FV( dst[0].Emission, src[0].Emission ); |
| } |
| if (bitmask & BACK_EMISSION_BIT) { |
| COPY_4FV( dst[1].Emission, src[1].Emission ); |
| } |
| if (bitmask & FRONT_AMBIENT_BIT) { |
| COPY_4FV( dst[0].Ambient, src[0].Ambient ); |
| } |
| if (bitmask & BACK_AMBIENT_BIT) { |
| COPY_4FV( dst[1].Ambient, src[1].Ambient ); |
| } |
| if (bitmask & FRONT_DIFFUSE_BIT) { |
| COPY_4FV( dst[0].Diffuse, src[0].Diffuse ); |
| } |
| if (bitmask & BACK_DIFFUSE_BIT) { |
| COPY_4FV( dst[1].Diffuse, src[1].Diffuse ); |
| } |
| if (bitmask & FRONT_SPECULAR_BIT) { |
| COPY_4FV( dst[0].Specular, src[0].Specular ); |
| } |
| if (bitmask & BACK_SPECULAR_BIT) { |
| COPY_4FV( dst[1].Specular, src[1].Specular ); |
| } |
| if (bitmask & FRONT_SHININESS_BIT) { |
| dst[0].Shininess = src[0].Shininess; |
| } |
| if (bitmask & BACK_SHININESS_BIT) { |
| dst[1].Shininess = src[1].Shininess; |
| } |
| if (bitmask & FRONT_INDEXES_BIT) { |
| dst[0].AmbientIndex = src[0].AmbientIndex; |
| dst[0].DiffuseIndex = src[0].DiffuseIndex; |
| dst[0].SpecularIndex = src[0].SpecularIndex; |
| } |
| if (bitmask & BACK_INDEXES_BIT) { |
| dst[1].AmbientIndex = src[1].AmbientIndex; |
| dst[1].DiffuseIndex = src[1].DiffuseIndex; |
| dst[1].SpecularIndex = src[1].SpecularIndex; |
| } |
| } |
| |
| |
| /* |
| * Check if the global material has to be updated with info that was |
| * associated with a vertex via glMaterial. |
| * This function is used when any material values get changed between |
| * glBegin/glEnd either by calling glMaterial() or by calling glColor() |
| * when GL_COLOR_MATERIAL is enabled. |
| * |
| * src[0] is front material, src[1] is back material |
| * |
| * Additionally keeps the precomputed lighting state uptodate. |
| */ |
| void _mesa_update_material( GLcontext *ctx, |
| const struct gl_material src[2], |
| GLuint bitmask ) |
| { |
| struct gl_light *light, *list = &ctx->Light.EnabledList; |
| |
| if (ctx->Light.ColorMaterialEnabled) |
| bitmask &= ~ctx->Light.ColorMaterialBitmask; |
| |
| if (MESA_VERBOSE&VERBOSE_IMMEDIATE) |
| fprintf(stderr, "_mesa_update_material, mask 0x%x\n", bitmask); |
| |
| if (!bitmask) |
| return; |
| |
| /* update material emission */ |
| if (bitmask & FRONT_EMISSION_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Emission, src[0].Emission ); |
| } |
| if (bitmask & BACK_EMISSION_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Emission, src[1].Emission ); |
| } |
| |
| /* update material ambience */ |
| if (bitmask & FRONT_AMBIENT_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Ambient, src[0].Ambient ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatAmbient[0], light->Ambient, src[0].Ambient); |
| } |
| } |
| if (bitmask & BACK_AMBIENT_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Ambient, src[1].Ambient ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatAmbient[1], light->Ambient, src[1].Ambient); |
| } |
| } |
| |
| /* update BaseColor = emission + scene's ambience * material's ambience */ |
| if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_3V( ctx->Light._BaseColor[0], mat->Emission ); |
| ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient, |
| ctx->Light.Model.Ambient ); |
| } |
| if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_3V( ctx->Light._BaseColor[1], mat->Emission ); |
| ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient, |
| ctx->Light.Model.Ambient ); |
| } |
| |
| /* update material diffuse values */ |
| if (bitmask & FRONT_DIFFUSE_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Diffuse, src[0].Diffuse ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse ); |
| } |
| UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[0], mat->Diffuse[3]); |
| } |
| if (bitmask & BACK_DIFFUSE_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Diffuse, src[1].Diffuse ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse ); |
| } |
| UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[1], mat->Diffuse[3]); |
| } |
| |
| /* update material specular values */ |
| if (bitmask & FRONT_SPECULAR_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Specular, src[0].Specular ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular); |
| } |
| } |
| if (bitmask & BACK_SPECULAR_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Specular, src[1].Specular ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular); |
| } |
| } |
| |
| if (bitmask & FRONT_SHININESS_BIT) { |
| ctx->Light.Material[0].Shininess = src[0].Shininess; |
| _mesa_invalidate_shine_table( ctx, 0 ); |
| } |
| if (bitmask & BACK_SHININESS_BIT) { |
| ctx->Light.Material[1].Shininess = src[1].Shininess; |
| _mesa_invalidate_shine_table( ctx, 1 ); |
| } |
| |
| if (bitmask & FRONT_INDEXES_BIT) { |
| ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex; |
| ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex; |
| ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex; |
| } |
| if (bitmask & BACK_INDEXES_BIT) { |
| ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex; |
| ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex; |
| ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex; |
| } |
| |
| if (0) |
| { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| fprintf(stderr, "update_mat emission : %f %f %f\n", |
| mat->Emission[0], |
| mat->Emission[1], |
| mat->Emission[2]); |
| fprintf(stderr, "update_mat specular : %f %f %f\n", |
| mat->Specular[0], |
| mat->Specular[1], |
| mat->Specular[2]); |
| fprintf(stderr, "update_mat diffuse : %f %f %f\n", |
| mat->Diffuse[0], |
| mat->Diffuse[1], |
| mat->Diffuse[2]); |
| fprintf(stderr, "update_mat ambient : %f %f %f\n", |
| mat->Ambient[0], |
| mat->Ambient[1], |
| mat->Ambient[2]); |
| } |
| } |
| |
| |
| |
| |
| |
| |
| |
| /* |
| * Update the current materials from the given rgba color |
| * according to the bitmask in ColorMaterialBitmask, which is |
| * set by glColorMaterial(). |
| */ |
| void _mesa_update_color_material( GLcontext *ctx, |
| const GLchan rgba[4] ) |
| { |
| struct gl_light *light, *list = &ctx->Light.EnabledList; |
| GLuint bitmask = ctx->Light.ColorMaterialBitmask; |
| GLfloat color[4]; |
| |
| color[0] = CHAN_TO_FLOAT(rgba[0]); |
| color[1] = CHAN_TO_FLOAT(rgba[1]); |
| color[2] = CHAN_TO_FLOAT(rgba[2]); |
| color[3] = CHAN_TO_FLOAT(rgba[3]); |
| |
| if (MESA_VERBOSE&VERBOSE_IMMEDIATE) |
| fprintf(stderr, "_mesa_update_color_material, mask 0x%x\n", bitmask); |
| |
| /* update emissive colors */ |
| if (bitmask & FRONT_EMISSION_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Emission, color ); |
| } |
| |
| if (bitmask & BACK_EMISSION_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Emission, color ); |
| } |
| |
| /* update light->_MatAmbient = light's ambient * material's ambient */ |
| if (bitmask & FRONT_AMBIENT_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| foreach (light, list) { |
| SCALE_3V( light->_MatAmbient[0], light->Ambient, color); |
| } |
| COPY_4FV( mat->Ambient, color ); |
| } |
| |
| if (bitmask & BACK_AMBIENT_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| foreach (light, list) { |
| SCALE_3V( light->_MatAmbient[1], light->Ambient, color); |
| } |
| COPY_4FV( mat->Ambient, color ); |
| } |
| |
| /* update BaseColor = emission + scene's ambience * material's ambience */ |
| if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_3V( ctx->Light._BaseColor[0], mat->Emission ); |
| ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient ); |
| } |
| |
| if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_3V( ctx->Light._BaseColor[1], mat->Emission ); |
| ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient ); |
| } |
| |
| /* update light->_MatDiffuse = light's diffuse * material's diffuse */ |
| if (bitmask & FRONT_DIFFUSE_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Diffuse, color ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse ); |
| } |
| UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[0], mat->Diffuse[3]); |
| } |
| |
| if (bitmask & BACK_DIFFUSE_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Diffuse, color ); |
| foreach (light, list) { |
| SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse ); |
| } |
| UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[1], mat->Diffuse[3]); |
| } |
| |
| /* update light->_MatSpecular = light's specular * material's specular */ |
| if (bitmask & FRONT_SPECULAR_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| COPY_4FV( mat->Specular, color ); |
| foreach (light, list) { |
| ACC_SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular); |
| } |
| } |
| |
| if (bitmask & BACK_SPECULAR_BIT) { |
| struct gl_material *mat = &ctx->Light.Material[1]; |
| COPY_4FV( mat->Specular, color ); |
| foreach (light, list) { |
| ACC_SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular); |
| } |
| } |
| |
| if (0) |
| { |
| struct gl_material *mat = &ctx->Light.Material[0]; |
| fprintf(stderr, "update_color_mat emission : %f %f %f\n", |
| mat->Emission[0], |
| mat->Emission[1], |
| mat->Emission[2]); |
| fprintf(stderr, "update_color_mat specular : %f %f %f\n", |
| mat->Specular[0], |
| mat->Specular[1], |
| mat->Specular[2]); |
| fprintf(stderr, "update_color_mat diffuse : %f %f %f\n", |
| mat->Diffuse[0], |
| mat->Diffuse[1], |
| mat->Diffuse[2]); |
| fprintf(stderr, "update_color_mat ambient : %f %f %f\n", |
| mat->Ambient[0], |
| mat->Ambient[1], |
| mat->Ambient[2]); |
| } |
| } |
| |
| |
| |
| |
| void |
| _mesa_ColorMaterial( GLenum face, GLenum mode ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLuint bitmask; |
| GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT | |
| FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT | |
| FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT | |
| FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT); |
| ASSERT_OUTSIDE_BEGIN_END(ctx); |
| |
| if (MESA_VERBOSE&VERBOSE_API) |
| fprintf(stderr, "glColorMaterial %s %s\n", |
| _mesa_lookup_enum_by_nr(face), |
| _mesa_lookup_enum_by_nr(mode)); |
| |
| bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial"); |
| |
| if (ctx->Light.ColorMaterialBitmask == bitmask && |
| ctx->Light.ColorMaterialFace == face && |
| ctx->Light.ColorMaterialMode == mode) |
| return; |
| |
| FLUSH_VERTICES(ctx, _NEW_LIGHT); |
| ctx->Light.ColorMaterialBitmask = bitmask; |
| ctx->Light.ColorMaterialFace = face; |
| ctx->Light.ColorMaterialMode = mode; |
| |
| if (ctx->Light.ColorMaterialEnabled) { |
| FLUSH_CURRENT( ctx, 0 ); |
| _mesa_update_color_material( ctx, ctx->Current.Color ); |
| } |
| } |
| |
| |
| |
| |
| |
| void |
| _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLuint f; |
| ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ |
| |
| if (face==GL_FRONT) { |
| f = 0; |
| } |
| else if (face==GL_BACK) { |
| f = 1; |
| } |
| else { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); |
| return; |
| } |
| switch (pname) { |
| case GL_AMBIENT: |
| COPY_4FV( params, ctx->Light.Material[f].Ambient ); |
| break; |
| case GL_DIFFUSE: |
| COPY_4FV( params, ctx->Light.Material[f].Diffuse ); |
| break; |
| case GL_SPECULAR: |
| COPY_4FV( params, ctx->Light.Material[f].Specular ); |
| break; |
| case GL_EMISSION: |
| COPY_4FV( params, ctx->Light.Material[f].Emission ); |
| break; |
| case GL_SHININESS: |
| *params = ctx->Light.Material[f].Shininess; |
| break; |
| case GL_COLOR_INDEXES: |
| params[0] = ctx->Light.Material[f].AmbientIndex; |
| params[1] = ctx->Light.Material[f].DiffuseIndex; |
| params[2] = ctx->Light.Material[f].SpecularIndex; |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); |
| } |
| } |
| |
| |
| |
| void |
| _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params ) |
| { |
| GET_CURRENT_CONTEXT(ctx); |
| GLuint f; |
| ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ |
| |
| if (face==GL_FRONT) { |
| f = 0; |
| } |
| else if (face==GL_BACK) { |
| f = 1; |
| } |
| else { |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); |
| return; |
| } |
| switch (pname) { |
| case GL_AMBIENT: |
| params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] ); |
| params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] ); |
| params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] ); |
| params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] ); |
| break; |
| case GL_DIFFUSE: |
| params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] ); |
| params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] ); |
| params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] ); |
| params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] ); |
| break; |
| case GL_SPECULAR: |
| params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] ); |
| params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] ); |
| params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] ); |
| params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] ); |
| break; |
| case GL_EMISSION: |
| params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] ); |
| params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] ); |
| params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] ); |
| params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] ); |
| break; |
| case GL_SHININESS: |
| *params = ROUNDF( ctx->Light.Material[f].Shininess ); |
| break; |
| case GL_COLOR_INDEXES: |
| params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex ); |
| params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex ); |
| params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex ); |
| break; |
| default: |
| _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); |
| } |
| } |
| |
| |
| |
| |
| /**********************************************************************/ |
| /***** Lighting computation *****/ |
| /**********************************************************************/ |
| |
| |
| /* |
| * Notes: |
| * When two-sided lighting is enabled we compute the color (or index) |
| * for both the front and back side of the primitive. Then, when the |
| * orientation of the facet is later learned, we can determine which |
| * color (or index) to use for rendering. |
| * |
| * KW: We now know orientation in advance and only shade for |
| * the side or sides which are actually required. |
| * |
| * Variables: |
| * n = normal vector |
| * V = vertex position |
| * P = light source position |
| * Pe = (0,0,0,1) |
| * |
| * Precomputed: |
| * IF P[3]==0 THEN |
| * // light at infinity |
| * IF local_viewer THEN |
| * _VP_inf_norm = unit vector from V to P // Precompute |
| * ELSE |
| * // eye at infinity |
| * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute |
| * ENDIF |
| * ENDIF |
| * |
| * Functions: |
| * Normalize( v ) = normalized vector v |
| * Magnitude( v ) = length of vector v |
| */ |
| |
| |
| |
| /* |
| * Whenever the spotlight exponent for a light changes we must call |
| * this function to recompute the exponent lookup table. |
| */ |
| void |
| _mesa_invalidate_spot_exp_table( struct gl_light *l ) |
| { |
| l->_SpotExpTable[0][0] = -1; |
| } |
| |
| static void validate_spot_exp_table( struct gl_light *l ) |
| { |
| GLint i; |
| GLdouble exponent = l->SpotExponent; |
| GLdouble tmp = 0; |
| GLint clamp = 0; |
| |
| l->_SpotExpTable[0][0] = 0.0; |
| |
| for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) { |
| if (clamp == 0) { |
| tmp = pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent); |
| if (tmp < FLT_MIN * 100.0) { |
| tmp = 0.0; |
| clamp = 1; |
| } |
| } |
| l->_SpotExpTable[i][0] = tmp; |
| } |
| for (i = 0; i < EXP_TABLE_SIZE - 1; i++) { |
| l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] - |
| l->_SpotExpTable[i][0]); |
| } |
| l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; |
| } |
| |
| |
| |
| |
| /* Calculate a new shine table. Doing this here saves a branch in |
| * lighting, and the cost of doing it early may be partially offset |
| * by keeping a MRU cache of shine tables for various shine values. |
| */ |
| void |
| _mesa_invalidate_shine_table( GLcontext *ctx, GLuint i ) |
| { |
| if (ctx->_ShineTable[i]) |
| ctx->_ShineTable[i]->refcount--; |
| ctx->_ShineTable[i] = 0; |
| } |
| |
| static void validate_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess ) |
| { |
| struct gl_shine_tab *list = ctx->_ShineTabList; |
| struct gl_shine_tab *s; |
| |
| foreach(s, list) |
| if ( s->shininess == shininess ) |
| break; |
| |
| if (s == list) { |
| GLint j; |
| GLfloat *m; |
| |
| foreach(s, list) |
| if (s->refcount == 0) |
| break; |
| |
| m = s->tab; |
| m[0] = 0.0; |
| if (shininess == 0.0) { |
| for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++) |
| m[j] = 1.0; |
| } |
| else { |
| for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) { |
| GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1); |
| if (x < 0.005) /* underflow check */ |
| x = 0.005; |
| t = pow(x, shininess); |
| if (t > 1e-20) |
| m[j] = t; |
| else |
| m[j] = 0.0; |
| } |
| m[SHINE_TABLE_SIZE] = 1.0; |
| } |
| |
| s->shininess = shininess; |
| } |
| |
| if (ctx->_ShineTable[i]) |
| ctx->_ShineTable[i]->refcount--; |
| |
| ctx->_ShineTable[i] = s; |
| move_to_tail( list, s ); |
| s->refcount++; |
| } |
| |
| void |
| _mesa_validate_all_lighting_tables( GLcontext *ctx ) |
| { |
| GLint i; |
| GLfloat shininess; |
| |
| shininess = ctx->Light.Material[0].Shininess; |
| if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess) |
| validate_shine_table( ctx, 0, shininess ); |
| |
| shininess = ctx->Light.Material[1].Shininess; |
| if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess) |
| validate_shine_table( ctx, 1, shininess ); |
| |
| for (i = 0 ; i < MAX_LIGHTS ; i++) |
| if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1) |
| validate_spot_exp_table( &ctx->Light.Light[i] ); |
| } |
| |
| |
| |
| |
| /* |
| * Examine current lighting parameters to determine if the optimized lighting |
| * function can be used. |
| * Also, precompute some lighting values such as the products of light |
| * source and material ambient, diffuse and specular coefficients. |
| */ |
| void |
| _mesa_update_lighting( GLcontext *ctx ) |
| { |
| struct gl_light *light; |
| ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE; |
| ctx->_NeedEyeCoords &= ~NEED_EYE_LIGHT; |
| ctx->_NeedNormals &= ~NEED_NORMALS_LIGHT; |
| ctx->Light._Flags = 0; |
| |
| if (!ctx->Light.Enabled) |
| return; |
| |
| ctx->_NeedNormals |= NEED_NORMALS_LIGHT; |
| |
| if (ctx->Light.Model.TwoSide) |
| ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE; |
| |
| foreach(light, &ctx->Light.EnabledList) { |
| ctx->Light._Flags |= light->_Flags; |
| } |
| |
| ctx->Light._NeedVertices = |
| ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) || |
| ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR || |
| ctx->Light.Model.LocalViewer); |
| |
| if ((ctx->Light._Flags & LIGHT_POSITIONAL) || |
| ctx->Light.Model.LocalViewer) |
| ctx->_NeedEyeCoords |= NEED_EYE_LIGHT; |
| |
| |
| /* XXX: This test is overkill & needs to be fixed both for software and |
| * hardware t&l drivers. The above should be sufficient & should |
| * be tested to verify this. |
| */ |
| if (ctx->Light._NeedVertices) |
| ctx->_NeedEyeCoords |= NEED_EYE_LIGHT; |
| |
| |
| /* Precompute some shading values. Although we reference |
| * Light.Material here, we can get away without flushing |
| * FLUSH_UPDATE_CURRENT, as when any outstanding material changes |
| * are flushed, they will update the derived state at that time. |
| */ |
| if (ctx->Visual.rgbMode) { |
| GLuint sides = ctx->Light.Model.TwoSide ? 2 : 1; |
| GLuint side; |
| for (side=0; side < sides; side++) { |
| struct gl_material *mat = &ctx->Light.Material[side]; |
| |
| COPY_3V(ctx->Light._BaseColor[side], mat->Emission); |
| ACC_SCALE_3V(ctx->Light._BaseColor[side], |
| ctx->Light.Model.Ambient, |
| mat->Ambient); |
| |
| UNCLAMPED_FLOAT_TO_CHAN(ctx->Light._BaseAlpha[side], |
| ctx->Light.Material[side].Diffuse[3] ); |
| } |
| |
| foreach (light, &ctx->Light.EnabledList) { |
| for (side=0; side< sides; side++) { |
| const struct gl_material *mat = &ctx->Light.Material[side]; |
| SCALE_3V( light->_MatDiffuse[side], light->Diffuse, mat->Diffuse ); |
| SCALE_3V( light->_MatAmbient[side], light->Ambient, mat->Ambient ); |
| SCALE_3V( light->_MatSpecular[side], light->Specular, |
| mat->Specular); |
| } |
| } |
| } |
| else { |
| static const GLfloat ci[3] = { .30, .59, .11 }; |
| foreach(light, &ctx->Light.EnabledList) { |
| light->_dli = DOT3(ci, light->Diffuse); |
| light->_sli = DOT3(ci, light->Specular); |
| } |
| } |
| } |
| |
| |
| /* _NEW_MODELVIEW |
| * _NEW_LIGHT |
| * _TNL_NEW_NEED_EYE_COORDS |
| * |
| * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled. |
| * Also update on lighting space changes. |
| */ |
| void |
| _mesa_compute_light_positions( GLcontext *ctx ) |
| { |
| struct gl_light *light; |
| static const GLfloat eye_z[3] = { 0, 0, 1 }; |
| |
| if (!ctx->Light.Enabled) |
| return; |
| |
| if (ctx->_NeedEyeCoords) { |
| COPY_3V( ctx->_EyeZDir, eye_z ); |
| } |
| else { |
| TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelView.m ); |
| } |
| |
| foreach (light, &ctx->Light.EnabledList) { |
| |
| if (ctx->_NeedEyeCoords) { |
| COPY_4FV( light->_Position, light->EyePosition ); |
| } |
| else { |
| TRANSFORM_POINT( light->_Position, ctx->ModelView.inv, |
| light->EyePosition ); |
| } |
| |
| if (!(light->_Flags & LIGHT_POSITIONAL)) { |
| /* VP (VP) = Normalize( Position ) */ |
| COPY_3V( light->_VP_inf_norm, light->_Position ); |
| NORMALIZE_3FV( light->_VP_inf_norm ); |
| |
| if (!ctx->Light.Model.LocalViewer) { |
| /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ |
| ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir); |
| NORMALIZE_3FV( light->_h_inf_norm ); |
| } |
| light->_VP_inf_spot_attenuation = 1.0; |
| } |
| |
| if (light->_Flags & LIGHT_SPOT) { |
| if (ctx->_NeedEyeCoords) { |
| COPY_3V( light->_NormDirection, light->EyeDirection ); |
| } |
| else { |
| TRANSFORM_NORMAL( light->_NormDirection, |
| light->EyeDirection, |
| ctx->ModelView.m); |
| } |
| |
| NORMALIZE_3FV( light->_NormDirection ); |
| |
| if (!(light->_Flags & LIGHT_POSITIONAL)) { |
| GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm, |
| light->_NormDirection); |
| |
| if (PV_dot_dir > light->_CosCutoff) { |
| double x = PV_dot_dir * (EXP_TABLE_SIZE-1); |
| int k = (int) x; |
| light->_VP_inf_spot_attenuation = |
| (light->_SpotExpTable[k][0] + |
| (x-k)*light->_SpotExpTable[k][1]); |
| } |
| else { |
| light->_VP_inf_spot_attenuation = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| |