blob: b18f17c0cd34a2ef76f1b01e360d0f58b9d612d3 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* \brief Primitive rasterization/rendering (points, lines, triangles)
*
* \author Keith Whitwell <keith@tungstengraphics.com>
* \author Brian Paul
*/
#include "lp_context.h"
#include "lp_quad.h"
#include "lp_setup.h"
#include "lp_state.h"
#include "draw/draw_context.h"
#include "draw/draw_private.h"
#include "draw/draw_vertex.h"
#include "pipe/p_shader_tokens.h"
#include "pipe/p_thread.h"
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "lp_bld_debug.h"
#include "lp_tile_cache.h"
#include "lp_tile_soa.h"
#define DEBUG_VERTS 0
#define DEBUG_FRAGS 0
/**
* Triangle edge info
*/
struct edge {
float dx; /**< X(v1) - X(v0), used only during setup */
float dy; /**< Y(v1) - Y(v0), used only during setup */
float dxdy; /**< dx/dy */
float sx, sy; /**< first sample point coord */
int lines; /**< number of lines on this edge */
};
#define MAX_QUADS 16
/**
* Triangle setup info (derived from draw_stage).
* Also used for line drawing (taking some liberties).
*/
struct setup_context {
struct llvmpipe_context *llvmpipe;
/* Vertices are just an array of floats making up each attribute in
* turn. Currently fixed at 4 floats, but should change in time.
* Codegen will help cope with this.
*/
const float (*vmax)[4];
const float (*vmid)[4];
const float (*vmin)[4];
const float (*vprovoke)[4];
struct edge ebot;
struct edge etop;
struct edge emaj;
float oneoverarea;
int facing;
float pixel_offset;
struct quad_header quad[MAX_QUADS];
struct quad_header *quad_ptrs[MAX_QUADS];
unsigned count;
struct quad_interp_coef coef;
struct {
int left[2]; /**< [0] = row0, [1] = row1 */
int right[2];
int y;
} span;
#if DEBUG_FRAGS
uint numFragsEmitted; /**< per primitive */
uint numFragsWritten; /**< per primitive */
#endif
unsigned winding; /* which winding to cull */
};
/**
* Execute fragment shader for the four fragments in the quad.
*/
ALIGN_STACK
static void
shade_quads(struct llvmpipe_context *llvmpipe,
struct quad_header *quads[],
unsigned nr)
{
struct lp_fragment_shader *fs = llvmpipe->fs;
struct quad_header *quad = quads[0];
const unsigned x = quad->input.x0;
const unsigned y = quad->input.y0;
uint8_t *tile;
uint8_t *color;
void *depth;
uint32_t ALIGN16_ATTRIB mask[4][NUM_CHANNELS];
unsigned chan_index;
unsigned q;
assert(fs->current);
if(!fs->current)
return;
/* Sanity checks */
assert(nr * QUAD_SIZE == TILE_VECTOR_HEIGHT * TILE_VECTOR_WIDTH);
assert(x % TILE_VECTOR_WIDTH == 0);
assert(y % TILE_VECTOR_HEIGHT == 0);
for (q = 0; q < nr; ++q) {
assert(quads[q]->input.x0 == x + q*2);
assert(quads[q]->input.y0 == y);
}
/* mask */
for (q = 0; q < 4; ++q)
for (chan_index = 0; chan_index < NUM_CHANNELS; ++chan_index)
mask[q][chan_index] = quads[q]->inout.mask & (1 << chan_index) ? ~0 : 0;
/* color buffer */
if(llvmpipe->framebuffer.nr_cbufs >= 1 &&
llvmpipe->framebuffer.cbufs[0]) {
tile = lp_get_cached_tile(llvmpipe->cbuf_cache[0], x, y);
color = &TILE_PIXEL(tile, x & (TILE_SIZE-1), y & (TILE_SIZE-1), 0);
}
else
color = NULL;
/* depth buffer */
if(llvmpipe->zsbuf_map) {
assert((x % 2) == 0);
assert((y % 2) == 0);
depth = llvmpipe->zsbuf_map +
y*llvmpipe->zsbuf_transfer->stride +
2*x*util_format_get_blocksize(llvmpipe->zsbuf_transfer->texture->format);
}
else
depth = NULL;
/* XXX: This will most likely fail on 32bit x86 without -mstackrealign */
assert(lp_check_alignment(mask, 16));
assert(lp_check_alignment(depth, 16));
assert(lp_check_alignment(color, 16));
assert(lp_check_alignment(llvmpipe->jit_context.blend_color, 16));
/* run shader */
fs->current->jit_function( &llvmpipe->jit_context,
x, y,
quad->coef->a0,
quad->coef->dadx,
quad->coef->dady,
&mask[0][0],
color,
depth);
}
/**
* Do triangle cull test using tri determinant (sign indicates orientation)
* \return true if triangle is to be culled.
*/
static INLINE boolean
cull_tri(const struct setup_context *setup, float det)
{
if (det != 0) {
/* if (det < 0 then Z points toward camera and triangle is
* counter-clockwise winding.
*/
unsigned winding = (det < 0) ? PIPE_WINDING_CCW : PIPE_WINDING_CW;
if ((winding & setup->winding) == 0)
return FALSE;
}
/* Culled:
*/
return TRUE;
}
/**
* Clip setup->quad against the scissor/surface bounds.
*/
static INLINE void
quad_clip( struct setup_context *setup, struct quad_header *quad )
{
const struct pipe_scissor_state *cliprect = &setup->llvmpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
if (quad->input.x0 >= maxx ||
quad->input.y0 >= maxy ||
quad->input.x0 + 1 < minx ||
quad->input.y0 + 1 < miny) {
/* totally clipped */
quad->inout.mask = 0x0;
return;
}
if (quad->input.x0 < minx)
quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
if (quad->input.y0 < miny)
quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
if (quad->input.x0 == maxx - 1)
quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
if (quad->input.y0 == maxy - 1)
quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
/**
* Given an X or Y coordinate, return the block/quad coordinate that it
* belongs to.
*/
static INLINE int block( int x )
{
return x & ~(2-1);
}
static INLINE int block_x( int x )
{
return x & ~(TILE_VECTOR_WIDTH - 1);
}
/**
* Emit a quad (pass to next stage) with clipping.
*/
static INLINE void
clip_emit_quad( struct setup_context *setup, struct quad_header *quad )
{
quad_clip( setup, quad );
if (quad->inout.mask) {
struct llvmpipe_context *lp = setup->llvmpipe;
#if 1
/* XXX: The blender expects 4 quads. This is far from efficient, but
* until we codegenerate single-quad variants of the fragment pipeline
* we need this hack. */
const unsigned nr_quads = TILE_VECTOR_HEIGHT*TILE_VECTOR_WIDTH/QUAD_SIZE;
struct quad_header quads[4];
struct quad_header *quad_ptrs[4];
int x0 = block_x(quad->input.x0);
unsigned i;
assert(nr_quads == 4);
for(i = 0; i < nr_quads; ++i) {
int x = x0 + 2*i;
if(x == quad->input.x0)
memcpy(&quads[i], quad, sizeof quads[i]);
else {
memset(&quads[i], 0, sizeof quads[i]);
quads[i].input.x0 = x;
quads[i].input.y0 = quad->input.y0;
quads[i].coef = quad->coef;
}
quad_ptrs[i] = &quads[i];
}
shade_quads( lp, quad_ptrs, nr_quads );
#else
shade_quads( lp, &quad, 1 );
#endif
}
}
/**
* Render a horizontal span of quads
*/
static void flush_spans( struct setup_context *setup )
{
const int step = TILE_VECTOR_WIDTH;
const int xleft0 = setup->span.left[0];
const int xleft1 = setup->span.left[1];
const int xright0 = setup->span.right[0];
const int xright1 = setup->span.right[1];
int minleft = block_x(MIN2(xleft0, xleft1));
int maxright = MAX2(xright0, xright1);
int x;
for (x = minleft; x < maxright; x += step) {
unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
unsigned lx = x;
const unsigned nr_quads = TILE_VECTOR_HEIGHT*TILE_VECTOR_WIDTH/QUAD_SIZE;
unsigned q = 0;
unsigned skipmask_left0 = (1U << skip_left0) - 1U;
unsigned skipmask_left1 = (1U << skip_left1) - 1U;
/* These calculations fail when step == 32 and skip_right == 0.
*/
unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
if (mask0 | mask1) {
for(q = 0; q < nr_quads; ++q) {
unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
setup->quad[q].input.x0 = lx;
setup->quad[q].input.y0 = setup->span.y;
setup->quad[q].inout.mask = quadmask;
setup->quad_ptrs[q] = &setup->quad[q];
mask0 >>= 2;
mask1 >>= 2;
lx += 2;
}
assert(!(mask0 | mask1));
shade_quads(setup->llvmpipe, setup->quad_ptrs, nr_quads );
}
}
setup->span.y = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
setup->span.left[0] = 1000000; /* greater than right[0] */
setup->span.left[1] = 1000000; /* greater than right[1] */
}
#if DEBUG_VERTS
static void print_vertex(const struct setup_context *setup,
const float (*v)[4])
{
int i;
debug_printf(" Vertex: (%p)\n", v);
for (i = 0; i < setup->quad[0].nr_attrs; i++) {
debug_printf(" %d: %f %f %f %f\n", i,
v[i][0], v[i][1], v[i][2], v[i][3]);
if (util_is_inf_or_nan(v[i][0])) {
debug_printf(" NaN!\n");
}
}
}
#endif
/**
* Sort the vertices from top to bottom order, setting up the triangle
* edge fields (ebot, emaj, etop).
* \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
*/
static boolean setup_sort_vertices( struct setup_context *setup,
float det,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
setup->vprovoke = v2;
/* determine bottom to top order of vertices */
{
float y0 = v0[0][1];
float y1 = v1[0][1];
float y2 = v2[0][1];
if (y0 <= y1) {
if (y1 <= y2) {
/* y0<=y1<=y2 */
setup->vmin = v0;
setup->vmid = v1;
setup->vmax = v2;
}
else if (y2 <= y0) {
/* y2<=y0<=y1 */
setup->vmin = v2;
setup->vmid = v0;
setup->vmax = v1;
}
else {
/* y0<=y2<=y1 */
setup->vmin = v0;
setup->vmid = v2;
setup->vmax = v1;
}
}
else {
if (y0 <= y2) {
/* y1<=y0<=y2 */
setup->vmin = v1;
setup->vmid = v0;
setup->vmax = v2;
}
else if (y2 <= y1) {
/* y2<=y1<=y0 */
setup->vmin = v2;
setup->vmid = v1;
setup->vmax = v0;
}
else {
/* y1<=y2<=y0 */
setup->vmin = v1;
setup->vmid = v2;
setup->vmax = v0;
}
}
}
setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
/*
* Compute triangle's area. Use 1/area to compute partial
* derivatives of attributes later.
*
* The area will be the same as prim->det, but the sign may be
* different depending on how the vertices get sorted above.
*
* To determine whether the primitive is front or back facing we
* use the prim->det value because its sign is correct.
*/
{
const float area = (setup->emaj.dx * setup->ebot.dy -
setup->ebot.dx * setup->emaj.dy);
setup->oneoverarea = 1.0f / area;
/*
debug_printf("%s one-over-area %f area %f det %f\n",
__FUNCTION__, setup->oneoverarea, area, det );
*/
if (util_is_inf_or_nan(setup->oneoverarea))
return FALSE;
}
/* We need to know if this is a front or back-facing triangle for:
* - the GLSL gl_FrontFacing fragment attribute (bool)
* - two-sided stencil test
*/
setup->facing =
((det > 0.0) ^
(setup->llvmpipe->rasterizer->front_winding == PIPE_WINDING_CW));
/* Prepare pixel offset for rasterisation:
* - pixel center (0.5, 0.5) for GL, or
* - assume (0.0, 0.0) for other APIs.
*/
if (setup->llvmpipe->rasterizer->gl_rasterization_rules) {
setup->pixel_offset = 0.5f;
} else {
setup->pixel_offset = 0.0f;
}
return TRUE;
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void tri_pos_coeff( struct setup_context *setup,
uint vertSlot, unsigned i)
{
float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i];
float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
float dadx = a * setup->oneoverarea;
float dady = b * setup->oneoverarea;
assert(i <= 3);
setup->coef.dadx[0][i] = dadx;
setup->coef.dady[0][i] = dady;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (pixel_offset, pixel_offset).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
setup->coef.a0[0][i] = (setup->vmin[vertSlot][i] -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
/*
debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
slot, "xyzw"[i],
setup->coef[slot].a0[i],
setup->coef[slot].dadx[i],
setup->coef[slot].dady[i]);
*/
}
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
* The value value comes from vertex[slot][i].
* The result will be put into setup->coef[slot].a0[i].
* \param slot which attribute slot
* \param i which component of the slot (0..3)
*/
static void const_pos_coeff( struct setup_context *setup,
uint vertSlot, unsigned i)
{
setup->coef.dadx[0][i] = 0;
setup->coef.dady[0][i] = 0;
/* need provoking vertex info!
*/
setup->coef.a0[0][i] = setup->vprovoke[vertSlot][i];
}
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
* The value value comes from vertex[slot][i].
* The result will be put into setup->coef[slot].a0[i].
* \param slot which attribute slot
* \param i which component of the slot (0..3)
*/
static void const_coeff( struct setup_context *setup,
unsigned attrib,
uint vertSlot)
{
unsigned i;
for (i = 0; i < NUM_CHANNELS; ++i) {
setup->coef.dadx[1 + attrib][i] = 0;
setup->coef.dady[1 + attrib][i] = 0;
/* need provoking vertex info!
*/
setup->coef.a0[1 + attrib][i] = setup->vprovoke[vertSlot][i];
}
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void tri_linear_coeff( struct setup_context *setup,
unsigned attrib,
uint vertSlot)
{
unsigned i;
for (i = 0; i < NUM_CHANNELS; ++i) {
float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i];
float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
float dadx = a * setup->oneoverarea;
float dady = b * setup->oneoverarea;
assert(i <= 3);
setup->coef.dadx[1 + attrib][i] = dadx;
setup->coef.dady[1 + attrib][i] = dady;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (0.5, 0.5).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
/*
debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
slot, "xyzw"[i],
setup->coef[slot].a0[i],
setup->coef[slot].dadx[i],
setup->coef[slot].dady[i]);
*/
}
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void tri_persp_coeff( struct setup_context *setup,
unsigned attrib,
uint vertSlot)
{
unsigned i;
for (i = 0; i < NUM_CHANNELS; ++i) {
/* premultiply by 1/w (v[0][3] is always W):
*/
float mina = setup->vmin[vertSlot][i] * setup->vmin[0][3];
float mida = setup->vmid[vertSlot][i] * setup->vmid[0][3];
float maxa = setup->vmax[vertSlot][i] * setup->vmax[0][3];
float botda = mida - mina;
float majda = maxa - mina;
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
float dadx = a * setup->oneoverarea;
float dady = b * setup->oneoverarea;
/*
debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
setup->vmin[vertSlot][i],
setup->vmid[vertSlot][i],
setup->vmax[vertSlot][i]
);
*/
assert(i <= 3);
setup->coef.dadx[1 + attrib][i] = dadx;
setup->coef.dady[1 + attrib][i] = dady;
setup->coef.a0[1 + attrib][i] = (mina -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
}
}
/**
* Special coefficient setup for gl_FragCoord.
* X and Y are trivial, though Y has to be inverted for OpenGL.
* Z and W are copied from posCoef which should have already been computed.
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
setup_fragcoord_coeff(struct setup_context *setup, uint slot)
{
/*X*/
setup->coef.a0[1 + slot][0] = 0;
setup->coef.dadx[1 + slot][0] = 1.0;
setup->coef.dady[1 + slot][0] = 0.0;
/*Y*/
setup->coef.a0[1 + slot][1] = 0.0;
setup->coef.dadx[1 + slot][1] = 0.0;
setup->coef.dady[1 + slot][1] = 1.0;
/*Z*/
setup->coef.a0[1 + slot][2] = setup->coef.a0[0][2];
setup->coef.dadx[1 + slot][2] = setup->coef.dadx[0][2];
setup->coef.dady[1 + slot][2] = setup->coef.dady[0][2];
/*W*/
setup->coef.a0[1 + slot][3] = setup->coef.a0[0][3];
setup->coef.dadx[1 + slot][3] = setup->coef.dadx[0][3];
setup->coef.dady[1 + slot][3] = setup->coef.dady[0][3];
}
/**
* Compute the setup->coef[] array dadx, dady, a0 values.
* Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
*/
static void setup_tri_coefficients( struct setup_context *setup )
{
struct llvmpipe_context *llvmpipe = setup->llvmpipe;
const struct lp_fragment_shader *lpfs = llvmpipe->fs;
const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe);
uint fragSlot;
/* z and w are done by linear interpolation:
*/
tri_pos_coeff(setup, 0, 2);
tri_pos_coeff(setup, 0, 3);
/* setup interpolation for all the remaining attributes:
*/
for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) {
const uint vertSlot = vinfo->attrib[fragSlot].src_index;
switch (vinfo->attrib[fragSlot].interp_mode) {
case INTERP_CONSTANT:
const_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_LINEAR:
tri_linear_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_PERSPECTIVE:
tri_persp_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_POS:
setup_fragcoord_coeff(setup, fragSlot);
break;
default:
assert(0);
}
if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing;
setup->coef.dadx[1 + fragSlot][0] = 0.0;
setup->coef.dady[1 + fragSlot][0] = 0.0;
}
}
}
static void setup_tri_edges( struct setup_context *setup )
{
float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
setup->emaj.sy = ceilf(vmin_y);
setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
setup->etop.sy = ceilf(vmid_y);
setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
setup->ebot.sy = ceilf(vmin_y);
setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
}
/**
* Render the upper or lower half of a triangle.
* Scissoring/cliprect is applied here too.
*/
static void subtriangle( struct setup_context *setup,
struct edge *eleft,
struct edge *eright,
unsigned lines )
{
const struct pipe_scissor_state *cliprect = &setup->llvmpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
int y, start_y, finish_y;
int sy = (int)eleft->sy;
assert((int)eleft->sy == (int) eright->sy);
/* clip top/bottom */
start_y = sy;
if (start_y < miny)
start_y = miny;
finish_y = sy + lines;
if (finish_y > maxy)
finish_y = maxy;
start_y -= sy;
finish_y -= sy;
/*
debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
*/
for (y = start_y; y < finish_y; y++) {
/* avoid accumulating adds as floats don't have the precision to
* accurately iterate large triangle edges that way. luckily we
* can just multiply these days.
*
* this is all drowned out by the attribute interpolation anyway.
*/
int left = (int)(eleft->sx + y * eleft->dxdy);
int right = (int)(eright->sx + y * eright->dxdy);
/* clip left/right */
if (left < minx)
left = minx;
if (right > maxx)
right = maxx;
if (left < right) {
int _y = sy + y;
if (block(_y) != setup->span.y) {
flush_spans(setup);
setup->span.y = block(_y);
}
setup->span.left[_y&1] = left;
setup->span.right[_y&1] = right;
}
}
/* save the values so that emaj can be restarted:
*/
eleft->sx += lines * eleft->dxdy;
eright->sx += lines * eright->dxdy;
eleft->sy += lines;
eright->sy += lines;
}
/**
* Recalculate prim's determinant. This is needed as we don't have
* get this information through the vbuf_render interface & we must
* calculate it here.
*/
static float
calc_det( const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
/* edge vectors e = v0 - v2, f = v1 - v2 */
const float ex = v0[0][0] - v2[0][0];
const float ey = v0[0][1] - v2[0][1];
const float fx = v1[0][0] - v2[0][0];
const float fy = v1[0][1] - v2[0][1];
/* det = cross(e,f).z */
return ex * fy - ey * fx;
}
/**
* Do setup for triangle rasterization, then render the triangle.
*/
void llvmpipe_setup_tri( struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4] )
{
float det;
#if DEBUG_VERTS
debug_printf("Setup triangle:\n");
print_vertex(setup, v0);
print_vertex(setup, v1);
print_vertex(setup, v2);
#endif
if (setup->llvmpipe->no_rast)
return;
det = calc_det(v0, v1, v2);
/*
debug_printf("%s\n", __FUNCTION__ );
*/
#if DEBUG_FRAGS
setup->numFragsEmitted = 0;
setup->numFragsWritten = 0;
#endif
if (cull_tri( setup, det ))
return;
if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
return;
setup_tri_coefficients( setup );
setup_tri_edges( setup );
assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
setup->span.y = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
/* setup->span.z_mode = tri_z_mode( setup->ctx ); */
/* init_constant_attribs( setup ); */
if (setup->oneoverarea < 0.0) {
/* emaj on left:
*/
subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
}
else {
/* emaj on right:
*/
subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
}
flush_spans( setup );
#if DEBUG_FRAGS
printf("Tri: %u frags emitted, %u written\n",
setup->numFragsEmitted,
setup->numFragsWritten);
#endif
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a line.
*/
static void
linear_pos_coeff(struct setup_context *setup,
uint vertSlot, uint i)
{
const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
const float dady = da * setup->emaj.dy * setup->oneoverarea;
setup->coef.dadx[0][i] = dadx;
setup->coef.dady[0][i] = dady;
setup->coef.a0[0][i] = (setup->vmin[vertSlot][i] -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a line.
*/
static void
line_linear_coeff(struct setup_context *setup,
unsigned attrib,
uint vertSlot)
{
unsigned i;
for (i = 0; i < NUM_CHANNELS; ++i) {
const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
const float dady = da * setup->emaj.dy * setup->oneoverarea;
setup->coef.dadx[1 + attrib][i] = dadx;
setup->coef.dady[1 + attrib][i] = dady;
setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
}
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a line.
*/
static void
line_persp_coeff(struct setup_context *setup,
unsigned attrib,
uint vertSlot)
{
unsigned i;
for (i = 0; i < NUM_CHANNELS; ++i) {
/* XXX double-check/verify this arithmetic */
const float a0 = setup->vmin[vertSlot][i] * setup->vmin[0][3];
const float a1 = setup->vmax[vertSlot][i] * setup->vmax[0][3];
const float da = a1 - a0;
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
const float dady = da * setup->emaj.dy * setup->oneoverarea;
setup->coef.dadx[1 + attrib][i] = dadx;
setup->coef.dady[1 + attrib][i] = dady;
setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] -
(dadx * (setup->vmin[0][0] - setup->pixel_offset) +
dady * (setup->vmin[0][1] - setup->pixel_offset)));
}
}
/**
* Compute the setup->coef[] array dadx, dady, a0 values.
* Must be called after setup->vmin,vmax are initialized.
*/
static INLINE boolean
setup_line_coefficients(struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4])
{
struct llvmpipe_context *llvmpipe = setup->llvmpipe;
const struct lp_fragment_shader *lpfs = llvmpipe->fs;
const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe);
uint fragSlot;
float area;
/* use setup->vmin, vmax to point to vertices */
if (llvmpipe->rasterizer->flatshade_first)
setup->vprovoke = v0;
else
setup->vprovoke = v1;
setup->vmin = v0;
setup->vmax = v1;
setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
/* NOTE: this is not really area but something proportional to it */
area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
if (area == 0.0f || util_is_inf_or_nan(area))
return FALSE;
setup->oneoverarea = 1.0f / area;
/* z and w are done by linear interpolation:
*/
linear_pos_coeff(setup, 0, 2);
linear_pos_coeff(setup, 0, 3);
/* setup interpolation for all the remaining attributes:
*/
for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) {
const uint vertSlot = vinfo->attrib[fragSlot].src_index;
switch (vinfo->attrib[fragSlot].interp_mode) {
case INTERP_CONSTANT:
const_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_LINEAR:
line_linear_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_PERSPECTIVE:
line_persp_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_POS:
setup_fragcoord_coeff(setup, fragSlot);
break;
default:
assert(0);
}
if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing;
setup->coef.dadx[1 + fragSlot][0] = 0.0;
setup->coef.dady[1 + fragSlot][0] = 0.0;
}
}
return TRUE;
}
/**
* Plot a pixel in a line segment.
*/
static INLINE void
plot(struct setup_context *setup, int x, int y)
{
const int iy = y & 1;
const int ix = x & 1;
const int quadX = x - ix;
const int quadY = y - iy;
const int mask = (1 << ix) << (2 * iy);
if (quadX != setup->quad[0].input.x0 ||
quadY != setup->quad[0].input.y0)
{
/* flush prev quad, start new quad */
if (setup->quad[0].input.x0 != -1)
clip_emit_quad( setup, &setup->quad[0] );
setup->quad[0].input.x0 = quadX;
setup->quad[0].input.y0 = quadY;
setup->quad[0].inout.mask = 0x0;
}
setup->quad[0].inout.mask |= mask;
}
/**
* Do setup for line rasterization, then render the line.
* Single-pixel width, no stipple, etc. We rely on the 'draw' module
* to handle stippling and wide lines.
*/
void
llvmpipe_setup_line(struct setup_context *setup,
const float (*v0)[4],
const float (*v1)[4])
{
int x0 = (int) v0[0][0];
int x1 = (int) v1[0][0];
int y0 = (int) v0[0][1];
int y1 = (int) v1[0][1];
int dx = x1 - x0;
int dy = y1 - y0;
int xstep, ystep;
#if DEBUG_VERTS
debug_printf("Setup line:\n");
print_vertex(setup, v0);
print_vertex(setup, v1);
#endif
if (setup->llvmpipe->no_rast)
return;
if (dx == 0 && dy == 0)
return;
if (!setup_line_coefficients(setup, v0, v1))
return;
assert(v0[0][0] < 1.0e9);
assert(v0[0][1] < 1.0e9);
assert(v1[0][0] < 1.0e9);
assert(v1[0][1] < 1.0e9);
if (dx < 0) {
dx = -dx; /* make positive */
xstep = -1;
}
else {
xstep = 1;
}
if (dy < 0) {
dy = -dy; /* make positive */
ystep = -1;
}
else {
ystep = 1;
}
assert(dx >= 0);
assert(dy >= 0);
assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_LINES);
setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
setup->quad[0].inout.mask = 0x0;
/* XXX temporary: set coverage to 1.0 so the line appears
* if AA mode happens to be enabled.
*/
setup->quad[0].input.coverage[0] =
setup->quad[0].input.coverage[1] =
setup->quad[0].input.coverage[2] =
setup->quad[0].input.coverage[3] = 1.0;
if (dx > dy) {
/*** X-major line ***/
int i;
const int errorInc = dy + dy;
int error = errorInc - dx;
const int errorDec = error - dx;
for (i = 0; i < dx; i++) {
plot(setup, x0, y0);
x0 += xstep;
if (error < 0) {
error += errorInc;
}
else {
error += errorDec;
y0 += ystep;
}
}
}
else {
/*** Y-major line ***/
int i;
const int errorInc = dx + dx;
int error = errorInc - dy;
const int errorDec = error - dy;
for (i = 0; i < dy; i++) {
plot(setup, x0, y0);
y0 += ystep;
if (error < 0) {
error += errorInc;
}
else {
error += errorDec;
x0 += xstep;
}
}
}
/* draw final quad */
if (setup->quad[0].inout.mask) {
clip_emit_quad( setup, &setup->quad[0] );
}
}
static void
point_persp_coeff(struct setup_context *setup,
const float (*vert)[4],
unsigned attrib,
uint vertSlot)
{
unsigned i;
for(i = 0; i < NUM_CHANNELS; ++i) {
setup->coef.dadx[1 + attrib][i] = 0.0F;
setup->coef.dady[1 + attrib][i] = 0.0F;
setup->coef.a0[1 + attrib][i] = vert[vertSlot][i] * vert[0][3];
}
}
/**
* Do setup for point rasterization, then render the point.
* Round or square points...
* XXX could optimize a lot for 1-pixel points.
*/
void
llvmpipe_setup_point( struct setup_context *setup,
const float (*v0)[4] )
{
struct llvmpipe_context *llvmpipe = setup->llvmpipe;
const struct lp_fragment_shader *lpfs = llvmpipe->fs;
const int sizeAttr = setup->llvmpipe->psize_slot;
const float size
= sizeAttr > 0 ? v0[sizeAttr][0]
: setup->llvmpipe->rasterizer->point_size;
const float halfSize = 0.5F * size;
const boolean round = (boolean) setup->llvmpipe->rasterizer->point_smooth;
const float x = v0[0][0]; /* Note: data[0] is always position */
const float y = v0[0][1];
const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe);
uint fragSlot;
#if DEBUG_VERTS
debug_printf("Setup point:\n");
print_vertex(setup, v0);
#endif
if (llvmpipe->no_rast)
return;
assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_POINTS);
/* For points, all interpolants are constant-valued.
* However, for point sprites, we'll need to setup texcoords appropriately.
* XXX: which coefficients are the texcoords???
* We may do point sprites as textured quads...
*
* KW: We don't know which coefficients are texcoords - ultimately
* the choice of what interpolation mode to use for each attribute
* should be determined by the fragment program, using
* per-attribute declaration statements that include interpolation
* mode as a parameter. So either the fragment program will have
* to be adjusted for pointsprite vs normal point behaviour, or
* otherwise a special interpolation mode will have to be defined
* which matches the required behaviour for point sprites. But -
* the latter is not a feature of normal hardware, and as such
* probably should be ruled out on that basis.
*/
setup->vprovoke = v0;
/* setup Z, W */
const_pos_coeff(setup, 0, 2);
const_pos_coeff(setup, 0, 3);
for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) {
const uint vertSlot = vinfo->attrib[fragSlot].src_index;
switch (vinfo->attrib[fragSlot].interp_mode) {
case INTERP_CONSTANT:
/* fall-through */
case INTERP_LINEAR:
const_coeff(setup, fragSlot, vertSlot);
break;
case INTERP_PERSPECTIVE:
point_persp_coeff(setup, setup->vprovoke, fragSlot, vertSlot);
break;
case INTERP_POS:
setup_fragcoord_coeff(setup, fragSlot);
break;
default:
assert(0);
}
if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing;
setup->coef.dadx[1 + fragSlot][0] = 0.0;
setup->coef.dady[1 + fragSlot][0] = 0.0;
}
}
if (halfSize <= 0.5 && !round) {
/* special case for 1-pixel points */
const int ix = ((int) x) & 1;
const int iy = ((int) y) & 1;
setup->quad[0].input.x0 = (int) x - ix;
setup->quad[0].input.y0 = (int) y - iy;
setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
clip_emit_quad( setup, &setup->quad[0] );
}
else {
if (round) {
/* rounded points */
const int ixmin = block((int) (x - halfSize));
const int ixmax = block((int) (x + halfSize));
const int iymin = block((int) (y - halfSize));
const int iymax = block((int) (y + halfSize));
const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
const float rmax = halfSize + 0.7071F;
const float rmin2 = MAX2(0.0F, rmin * rmin);
const float rmax2 = rmax * rmax;
const float cscale = 1.0F / (rmax2 - rmin2);
int ix, iy;
for (iy = iymin; iy <= iymax; iy += 2) {
for (ix = ixmin; ix <= ixmax; ix += 2) {
float dx, dy, dist2, cover;
setup->quad[0].inout.mask = 0x0;
dx = (ix + 0.5f) - x;
dy = (iy + 0.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
setup->quad[0].inout.mask |= MASK_TOP_LEFT;
}
dx = (ix + 1.5f) - x;
dy = (iy + 0.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
}
dx = (ix + 0.5f) - x;
dy = (iy + 1.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
}
dx = (ix + 1.5f) - x;
dy = (iy + 1.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
}
if (setup->quad[0].inout.mask) {
setup->quad[0].input.x0 = ix;
setup->quad[0].input.y0 = iy;
clip_emit_quad( setup, &setup->quad[0] );
}
}
}
}
else {
/* square points */
const int xmin = (int) (x + 0.75 - halfSize);
const int ymin = (int) (y + 0.25 - halfSize);
const int xmax = xmin + (int) size;
const int ymax = ymin + (int) size;
/* XXX could apply scissor to xmin,ymin,xmax,ymax now */
const int ixmin = block(xmin);
const int ixmax = block(xmax - 1);
const int iymin = block(ymin);
const int iymax = block(ymax - 1);
int ix, iy;
/*
debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
*/
for (iy = iymin; iy <= iymax; iy += 2) {
uint rowMask = 0xf;
if (iy < ymin) {
/* above the top edge */
rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
}
if (iy + 1 >= ymax) {
/* below the bottom edge */
rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
for (ix = ixmin; ix <= ixmax; ix += 2) {
uint mask = rowMask;
if (ix < xmin) {
/* fragment is past left edge of point, turn off left bits */
mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
}
if (ix + 1 >= xmax) {
/* past the right edge */
mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
}
setup->quad[0].inout.mask = mask;
setup->quad[0].input.x0 = ix;
setup->quad[0].input.y0 = iy;
clip_emit_quad( setup, &setup->quad[0] );
}
}
}
}
}
void llvmpipe_setup_prepare( struct setup_context *setup )
{
struct llvmpipe_context *lp = setup->llvmpipe;
if (lp->dirty) {
llvmpipe_update_derived(lp);
}
if (lp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
lp->rasterizer->fill_cw == PIPE_POLYGON_MODE_FILL &&
lp->rasterizer->fill_ccw == PIPE_POLYGON_MODE_FILL) {
/* we'll do culling */
setup->winding = lp->rasterizer->cull_mode;
}
else {
/* 'draw' will do culling */
setup->winding = PIPE_WINDING_NONE;
}
}
void llvmpipe_setup_destroy_context( struct setup_context *setup )
{
align_free( setup );
}
/**
* Create a new primitive setup/render stage.
*/
struct setup_context *llvmpipe_setup_create_context( struct llvmpipe_context *llvmpipe )
{
struct setup_context *setup;
unsigned i;
setup = align_malloc(sizeof(struct setup_context), 16);
if (!setup)
return NULL;
memset(setup, 0, sizeof *setup);
setup->llvmpipe = llvmpipe;
for (i = 0; i < MAX_QUADS; i++) {
setup->quad[i].coef = &setup->coef;
}
setup->span.left[0] = 1000000; /* greater than right[0] */
setup->span.left[1] = 1000000; /* greater than right[1] */
return setup;
}