blob: e16fa479e5f1533b13dfbb1244cb0ecabce67c1d [file] [log] [blame]
/*
* Copyright 2008 Ben Skeggs
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_inlines.h"
#include "pipe/p_shader_tokens.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
#include "nv50_context.h"
#define NV50_SU_MAX_TEMP 127
#define NV50_SU_MAX_ADDR 4
//#define NV50_PROGRAM_DUMP
/* $a5 and $a6 always seem to be 0, and using $a7 gives you noise */
/* ARL - gallium craps itself on progs/vp/arl.txt
*
* MSB - Like MAD, but MUL+SUB
* - Fuck it off, introduce a way to negate args for ops that
* support it.
*
* Look into inlining IMMD for ops other than MOV (make it general?)
* - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD,
* but can emit to P_TEMP first - then MOV later. NVIDIA does this
*
* In ops such as ADD it's possible to construct a bad opcode in the !is_long()
* case, if the emit_src() causes the inst to suddenly become long.
*
* Verify half-insns work where expected - and force disable them where they
* don't work - MUL has it forcibly disabled atm as it fixes POW..
*
* FUCK! watch dst==src vectors, can overwrite components that are needed.
* ie. SUB R0, R0.yzxw, R0
*
* Things to check with renouveau:
* FP attr/result assignment - how?
* attrib
* - 0x16bc maps vp output onto fp hpos
* - 0x16c0 maps vp output onto fp col0
* result
* - colr always 0-3
* - depr always 4
* 0x16bc->0x16e8 --> some binding between vp/fp regs
* 0x16b8 --> VP output count
*
* 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005
* "MOV rcol.x, fcol.y" = 0x00000004
* 0x19a8 --> as above but 0x00000100 and 0x00000000
* - 0x00100000 used when KIL used
* 0x196c --> as above but 0x00000011 and 0x00000000
*
* 0x1988 --> 0xXXNNNNNN
* - XX == FP high something
*/
struct nv50_reg {
enum {
P_TEMP,
P_ATTR,
P_RESULT,
P_CONST,
P_IMMD,
P_ADDR
} type;
int index;
int hw;
int mod;
int rhw; /* result hw for FP outputs, or interpolant index */
int acc; /* instruction where this reg is last read (first insn == 1) */
};
#define NV50_MOD_NEG 1
#define NV50_MOD_ABS 2
#define NV50_MOD_NEG_ABS (NV50_MOD_NEG | NV50_MOD_ABS)
#define NV50_MOD_SAT 4
#define NV50_MOD_I32 8
/* NV50_MOD_I32 is used to indicate integer mode for neg/abs */
/* STACK: Conditionals and loops have to use the (per warp) stack.
* Stack entries consist of an entry type (divergent path, join at),
* a mask indicating the active threads of the warp, and an address.
* MPs can store 12 stack entries internally, if we need more (and
* we probably do), we have to create a stack buffer in VRAM.
*/
/* impose low limits for now */
#define NV50_MAX_COND_NESTING 4
#define NV50_MAX_LOOP_NESTING 3
#define JOIN_ON(e) e; pc->p->exec_tail->inst[1] |= 2
struct nv50_pc {
struct nv50_program *p;
/* hw resources */
struct nv50_reg *r_temp[NV50_SU_MAX_TEMP];
struct nv50_reg r_addr[NV50_SU_MAX_ADDR];
/* tgsi resources */
struct nv50_reg *temp;
int temp_nr;
struct nv50_reg *attr;
int attr_nr;
struct nv50_reg *result;
int result_nr;
struct nv50_reg *param;
int param_nr;
struct nv50_reg *immd;
uint32_t *immd_buf;
int immd_nr;
struct nv50_reg **addr;
int addr_nr;
uint8_t addr_alloc; /* set bit indicates used for TGSI_FILE_ADDRESS */
struct nv50_reg *temp_temp[16];
struct nv50_program_exec *temp_temp_exec[16];
unsigned temp_temp_nr;
/* broadcast and destination replacement regs */
struct nv50_reg *r_brdc;
struct nv50_reg *r_dst[4];
struct nv50_reg reg_instances[16];
unsigned reg_instance_nr;
unsigned interp_mode[32];
/* perspective interpolation registers */
struct nv50_reg *iv_p;
struct nv50_reg *iv_c;
struct nv50_program_exec *if_insn[NV50_MAX_COND_NESTING];
struct nv50_program_exec *if_join[NV50_MAX_COND_NESTING];
struct nv50_program_exec *loop_brka[NV50_MAX_LOOP_NESTING];
int if_lvl, loop_lvl;
unsigned loop_pos[NV50_MAX_LOOP_NESTING];
unsigned *insn_pos; /* actual program offset of each TGSI insn */
boolean in_subroutine;
/* current instruction and total number of insns */
unsigned insn_cur;
unsigned insn_nr;
boolean allow32;
uint8_t edgeflag_out;
};
static INLINE void
ctor_reg(struct nv50_reg *reg, unsigned type, int index, int hw)
{
reg->type = type;
reg->index = index;
reg->hw = hw;
reg->mod = 0;
reg->rhw = -1;
reg->acc = 0;
}
static INLINE unsigned
popcnt4(uint32_t val)
{
static const unsigned cnt[16]
= { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
return cnt[val & 0xf];
}
static void
terminate_mbb(struct nv50_pc *pc)
{
int i;
/* remove records of temporary address register values */
for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
pc->r_addr[i].rhw = -1;
}
static void
alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg)
{
int i = 0;
if (reg->type == P_RESULT) {
if (pc->p->cfg.high_result < (reg->hw + 1))
pc->p->cfg.high_result = reg->hw + 1;
}
if (reg->type != P_TEMP)
return;
if (reg->hw >= 0) {
/*XXX: do this here too to catch FP temp-as-attr usage..
* not clean, but works */
if (pc->p->cfg.high_temp < (reg->hw + 1))
pc->p->cfg.high_temp = reg->hw + 1;
return;
}
if (reg->rhw != -1) {
/* try to allocate temporary with index rhw first */
if (!(pc->r_temp[reg->rhw])) {
pc->r_temp[reg->rhw] = reg;
reg->hw = reg->rhw;
if (pc->p->cfg.high_temp < (reg->rhw + 1))
pc->p->cfg.high_temp = reg->rhw + 1;
return;
}
/* make sure we don't get things like $r0 needs to go
* in $r1 and $r1 in $r0
*/
i = pc->result_nr * 4;
}
for (; i < NV50_SU_MAX_TEMP; i++) {
if (!(pc->r_temp[i])) {
pc->r_temp[i] = reg;
reg->hw = i;
if (pc->p->cfg.high_temp < (i + 1))
pc->p->cfg.high_temp = i + 1;
return;
}
}
NOUVEAU_ERR("out of registers\n");
abort();
}
static INLINE struct nv50_reg *
reg_instance(struct nv50_pc *pc, struct nv50_reg *reg)
{
struct nv50_reg *ri;
assert(pc->reg_instance_nr < 16);
ri = &pc->reg_instances[pc->reg_instance_nr++];
if (reg) {
alloc_reg(pc, reg);
*ri = *reg;
reg->mod = 0;
}
return ri;
}
/* XXX: For shaders that aren't executed linearly (e.g. shaders that
* contain loops), we need to assign all hw regs to TGSI TEMPs early,
* lest we risk temp_temps overwriting regs alloc'd "later".
*/
static struct nv50_reg *
alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst)
{
struct nv50_reg *r;
int i;
if (dst && dst->type == P_TEMP && dst->hw == -1)
return dst;
for (i = 0; i < NV50_SU_MAX_TEMP; i++) {
if (!pc->r_temp[i]) {
r = MALLOC_STRUCT(nv50_reg);
ctor_reg(r, P_TEMP, -1, i);
pc->r_temp[i] = r;
return r;
}
}
NOUVEAU_ERR("out of registers\n");
abort();
return NULL;
}
/* release the hardware resource held by r */
static void
release_hw(struct nv50_pc *pc, struct nv50_reg *r)
{
assert(r->type == P_TEMP);
if (r->hw == -1)
return;
assert(pc->r_temp[r->hw] == r);
pc->r_temp[r->hw] = NULL;
r->acc = 0;
if (r->index == -1)
FREE(r);
}
static void
free_temp(struct nv50_pc *pc, struct nv50_reg *r)
{
if (r->index == -1) {
unsigned hw = r->hw;
FREE(pc->r_temp[hw]);
pc->r_temp[hw] = NULL;
}
}
static int
alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx)
{
int i;
if ((idx + 4) >= NV50_SU_MAX_TEMP)
return 1;
if (pc->r_temp[idx] || pc->r_temp[idx + 1] ||
pc->r_temp[idx + 2] || pc->r_temp[idx + 3])
return alloc_temp4(pc, dst, idx + 4);
for (i = 0; i < 4; i++) {
dst[i] = MALLOC_STRUCT(nv50_reg);
ctor_reg(dst[i], P_TEMP, -1, idx + i);
pc->r_temp[idx + i] = dst[i];
}
return 0;
}
static void
free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4])
{
int i;
for (i = 0; i < 4; i++)
free_temp(pc, reg[i]);
}
static struct nv50_reg *
temp_temp(struct nv50_pc *pc, struct nv50_program_exec *e)
{
if (pc->temp_temp_nr >= 16)
assert(0);
pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL);
pc->temp_temp_exec[pc->temp_temp_nr] = e;
return pc->temp_temp[pc->temp_temp_nr++];
}
/* This *must* be called for all nv50_program_exec that have been
* given as argument to temp_temp, or the temps will be leaked !
*/
static void
kill_temp_temp(struct nv50_pc *pc, struct nv50_program_exec *e)
{
int i;
for (i = 0; i < pc->temp_temp_nr; i++)
if (pc->temp_temp_exec[i] == e)
free_temp(pc, pc->temp_temp[i]);
if (!e)
pc->temp_temp_nr = 0;
}
static int
ctor_immd_4u32(struct nv50_pc *pc,
uint32_t x, uint32_t y, uint32_t z, uint32_t w)
{
unsigned size = pc->immd_nr * 4 * sizeof(uint32_t);
pc->immd_buf = REALLOC(pc->immd_buf, size, size + 4 * sizeof(uint32_t));
pc->immd_buf[(pc->immd_nr * 4) + 0] = x;
pc->immd_buf[(pc->immd_nr * 4) + 1] = y;
pc->immd_buf[(pc->immd_nr * 4) + 2] = z;
pc->immd_buf[(pc->immd_nr * 4) + 3] = w;
return pc->immd_nr++;
}
static INLINE int
ctor_immd_4f32(struct nv50_pc *pc, float x, float y, float z, float w)
{
return ctor_immd_4u32(pc, fui(x), fui(y), fui(z), fui(w));
}
static struct nv50_reg *
alloc_immd(struct nv50_pc *pc, float f)
{
struct nv50_reg *r = MALLOC_STRUCT(nv50_reg);
unsigned hw;
for (hw = 0; hw < pc->immd_nr * 4; hw++)
if (pc->immd_buf[hw] == fui(f))
break;
if (hw == pc->immd_nr * 4)
hw = ctor_immd_4f32(pc, f, -f, 0.5 * f, 0) * 4;
ctor_reg(r, P_IMMD, -1, hw);
return r;
}
static struct nv50_program_exec *
exec(struct nv50_pc *pc)
{
struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec);
e->param.index = -1;
return e;
}
static void
emit(struct nv50_pc *pc, struct nv50_program_exec *e)
{
struct nv50_program *p = pc->p;
if (p->exec_tail)
p->exec_tail->next = e;
if (!p->exec_head)
p->exec_head = e;
p->exec_tail = e;
p->exec_size += (e->inst[0] & 1) ? 2 : 1;
kill_temp_temp(pc, e);
}
static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *);
static boolean
is_long(struct nv50_program_exec *e)
{
if (e->inst[0] & 1)
return TRUE;
return FALSE;
}
static boolean
is_immd(struct nv50_program_exec *e)
{
if (is_long(e) && (e->inst[1] & 3) == 3)
return TRUE;
return FALSE;
}
static boolean
is_join(struct nv50_program_exec *e)
{
if (is_long(e) && (e->inst[1] & 3) == 2)
return TRUE;
return FALSE;
}
static INLINE void
set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx,
struct nv50_program_exec *e)
{
assert(!is_immd(e));
set_long(pc, e);
e->inst[1] &= ~((0x1f << 7) | (0x3 << 12));
e->inst[1] |= (pred << 7) | (idx << 12);
}
static INLINE void
set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx,
struct nv50_program_exec *e)
{
set_long(pc, e);
e->inst[1] &= ~((0x3 << 4) | (1 << 6));
e->inst[1] |= (idx << 4) | (on << 6);
}
static INLINE void
set_long(struct nv50_pc *pc, struct nv50_program_exec *e)
{
if (is_long(e))
return;
e->inst[0] |= 1;
set_pred(pc, 0xf, 0, e);
set_pred_wr(pc, 0, 0, e);
}
static INLINE void
set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e)
{
if (dst->type == P_RESULT) {
set_long(pc, e);
e->inst[1] |= 0x00000008;
}
alloc_reg(pc, dst);
if (dst->hw > 63)
set_long(pc, e);
e->inst[0] |= (dst->hw << 2);
}
static INLINE void
set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e)
{
set_long(pc, e);
/* XXX: can't be predicated - bits overlap; cases where both
* are required should be avoided by using pc->allow32 */
set_pred(pc, 0, 0, e);
set_pred_wr(pc, 0, 0, e);
e->inst[1] |= 0x00000002 | 0x00000001;
e->inst[0] |= (pc->immd_buf[imm->hw] & 0x3f) << 16;
e->inst[1] |= (pc->immd_buf[imm->hw] >> 6) << 2;
}
static INLINE void
set_addr(struct nv50_program_exec *e, struct nv50_reg *a)
{
assert(!(e->inst[0] & 0x0c000000));
assert(!(e->inst[1] & 0x00000004));
e->inst[0] |= (a->hw & 3) << 26;
e->inst[1] |= (a->hw >> 2) << 2;
}
static void
emit_add_addr_imm(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, uint16_t src1_val)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xd0000000 | (src1_val << 9);
e->inst[1] = 0x20000000;
set_long(pc, e);
e->inst[0] |= dst->hw << 2;
if (src0) /* otherwise will add to $a0, which is always 0 */
set_addr(e, src0);
emit(pc, e);
}
static struct nv50_reg *
alloc_addr(struct nv50_pc *pc, struct nv50_reg *ref)
{
struct nv50_reg *a_tgsi = NULL, *a = NULL;
int i;
uint8_t avail = ~pc->addr_alloc;
if (!ref) {
/* allocate for TGSI_FILE_ADDRESS */
while (avail) {
i = ffs(avail) - 1;
if (pc->r_addr[i].rhw < 0 ||
pc->r_addr[i].acc != pc->insn_cur) {
pc->addr_alloc |= (1 << i);
pc->r_addr[i].rhw = -1;
pc->r_addr[i].index = i;
return &pc->r_addr[i];
}
avail &= ~(1 << i);
}
assert(0);
return NULL;
}
/* Allocate and set an address reg so we can access 'ref'.
*
* If and r_addr->index will be -1 or the hw index the value
* value in rhw is relative to. If rhw < 0, the reg has not
* been initialized or is in use for TGSI_FILE_ADDRESS.
*/
while (avail) { /* only consider regs that are not TGSI */
i = ffs(avail) - 1;
avail &= ~(1 << i);
if ((!a || a->rhw >= 0) && pc->r_addr[i].rhw < 0) {
/* prefer an usused reg with low hw index */
a = &pc->r_addr[i];
continue;
}
if (!a && pc->r_addr[i].acc != pc->insn_cur)
a = &pc->r_addr[i];
if (ref->hw - pc->r_addr[i].rhw >= 128)
continue;
if ((ref->acc >= 0 && pc->r_addr[i].index < 0) ||
(ref->acc < 0 && pc->r_addr[i].index == ref->index)) {
pc->r_addr[i].acc = pc->insn_cur;
return &pc->r_addr[i];
}
}
assert(a);
if (ref->acc < 0)
a_tgsi = pc->addr[ref->index];
emit_add_addr_imm(pc, a, a_tgsi, (ref->hw & ~0x7f) * 4);
a->rhw = ref->hw & ~0x7f;
a->acc = pc->insn_cur;
a->index = a_tgsi ? ref->index : -1;
return a;
}
#define INTERP_LINEAR 0
#define INTERP_FLAT 1
#define INTERP_PERSPECTIVE 2
#define INTERP_CENTROID 4
/* interpolant index has been stored in dst->rhw */
static void
emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv,
unsigned mode)
{
assert(dst->rhw != -1);
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0x80000000;
set_dst(pc, dst, e);
e->inst[0] |= (dst->rhw << 16);
if (mode & INTERP_FLAT) {
e->inst[0] |= (1 << 8);
} else {
if (mode & INTERP_PERSPECTIVE) {
e->inst[0] |= (1 << 25);
alloc_reg(pc, iv);
e->inst[0] |= (iv->hw << 9);
}
if (mode & INTERP_CENTROID)
e->inst[0] |= (1 << 24);
}
emit(pc, e);
}
static void
set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s,
struct nv50_program_exec *e)
{
set_long(pc, e);
e->param.index = src->hw & 127;
e->param.shift = s;
e->param.mask = m << (s % 32);
if (src->hw > 127)
set_addr(e, alloc_addr(pc, src));
else
if (src->acc < 0) {
assert(src->type == P_CONST);
set_addr(e, pc->addr[src->index]);
}
e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22);
}
/* Never apply nv50_reg::mod in emit_mov, or carefully check the code !!! */
static void
emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x10000000;
if (!pc->allow32)
set_long(pc, e);
set_dst(pc, dst, e);
if (!is_long(e) && src->type == P_IMMD) {
set_immd(pc, src, e);
/*XXX: 32-bit, but steals part of "half" reg space - need to
* catch and handle this case if/when we do half-regs
*/
} else
if (src->type == P_IMMD || src->type == P_CONST) {
set_long(pc, e);
set_data(pc, src, 0x7f, 9, e);
e->inst[1] |= 0x20000000; /* mov from c[] */
} else {
if (src->type == P_ATTR) {
set_long(pc, e);
e->inst[1] |= 0x00200000;
}
alloc_reg(pc, src);
if (src->hw > 63)
set_long(pc, e);
e->inst[0] |= (src->hw << 9);
}
if (is_long(e) && !is_immd(e)) {
e->inst[1] |= 0x04000000; /* 32-bit */
e->inst[1] |= 0x0000c000; /* 32-bit c[] load / lane mask 0:1 */
if (!(e->inst[1] & 0x20000000))
e->inst[1] |= 0x00030000; /* lane mask 2:3 */
} else
e->inst[0] |= 0x00008000;
emit(pc, e);
}
static INLINE void
emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f)
{
struct nv50_reg *imm = alloc_immd(pc, f);
emit_mov(pc, dst, imm);
FREE(imm);
}
/* Assign the hw of the discarded temporary register src
* to the tgsi register dst and free src.
*/
static void
assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
assert(src->index == -1 && src->hw != -1);
if (pc->if_lvl || pc->loop_lvl ||
(dst->type != P_TEMP) ||
(src->hw < pc->result_nr * 4 &&
pc->p->type == PIPE_SHADER_FRAGMENT) ||
pc->p->info.opcode_count[TGSI_OPCODE_CAL] ||
pc->p->info.opcode_count[TGSI_OPCODE_BRA]) {
emit_mov(pc, dst, src);
free_temp(pc, src);
return;
}
if (dst->hw != -1)
pc->r_temp[dst->hw] = NULL;
pc->r_temp[src->hw] = dst;
dst->hw = src->hw;
FREE(src);
}
static void
emit_nop(struct nv50_pc *pc)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xf0000000;
set_long(pc, e);
e->inst[1] = 0xe0000000;
emit(pc, e);
}
static boolean
check_swap_src_0_1(struct nv50_pc *pc,
struct nv50_reg **s0, struct nv50_reg **s1)
{
struct nv50_reg *src0 = *s0, *src1 = *s1;
if (src0->type == P_CONST) {
if (src1->type != P_CONST) {
*s0 = src1;
*s1 = src0;
return TRUE;
}
} else
if (src1->type == P_ATTR) {
if (src0->type != P_ATTR) {
*s0 = src1;
*s1 = src0;
return TRUE;
}
}
return FALSE;
}
static void
set_src_0_restricted(struct nv50_pc *pc, struct nv50_reg *src,
struct nv50_program_exec *e)
{
struct nv50_reg *temp;
if (src->type != P_TEMP) {
temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
}
alloc_reg(pc, src);
if (src->hw > 63)
set_long(pc, e);
e->inst[0] |= (src->hw << 9);
}
static void
set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
{
if (src->type == P_ATTR) {
set_long(pc, e);
e->inst[1] |= 0x00200000;
} else
if (src->type == P_CONST || src->type == P_IMMD) {
struct nv50_reg *temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
}
alloc_reg(pc, src);
if (src->hw > 63)
set_long(pc, e);
e->inst[0] |= (src->hw << 9);
}
static void
set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
{
if (src->type == P_ATTR) {
struct nv50_reg *temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
} else
if (src->type == P_CONST || src->type == P_IMMD) {
assert(!(e->inst[0] & 0x00800000));
if (e->inst[0] & 0x01000000) {
struct nv50_reg *temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
} else {
set_data(pc, src, 0x7f, 16, e);
e->inst[0] |= 0x00800000;
}
}
alloc_reg(pc, src);
if (src->hw > 63)
set_long(pc, e);
e->inst[0] |= ((src->hw & 127) << 16);
}
static void
set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e)
{
set_long(pc, e);
if (src->type == P_ATTR) {
struct nv50_reg *temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
} else
if (src->type == P_CONST || src->type == P_IMMD) {
assert(!(e->inst[0] & 0x01000000));
if (e->inst[0] & 0x00800000) {
struct nv50_reg *temp = temp_temp(pc, e);
emit_mov(pc, temp, src);
src = temp;
} else {
set_data(pc, src, 0x7f, 32+14, e);
e->inst[0] |= 0x01000000;
}
}
alloc_reg(pc, src);
e->inst[1] |= ((src->hw & 127) << 14);
}
static void
set_half_src(struct nv50_pc *pc, struct nv50_reg *src, int lh,
struct nv50_program_exec *e, int pos)
{
struct nv50_reg *r = src;
alloc_reg(pc, r);
if (r->type != P_TEMP) {
r = temp_temp(pc, e);
emit_mov(pc, r, src);
}
if (r->hw > (NV50_SU_MAX_TEMP / 2)) {
NOUVEAU_ERR("out of low GPRs\n");
abort();
}
e->inst[pos / 32] |= ((src->hw * 2) + lh) << (pos % 32);
}
static void
emit_mov_from_pred(struct nv50_pc *pc, struct nv50_reg *dst, int pred)
{
struct nv50_program_exec *e = exec(pc);
assert(dst->type == P_TEMP);
e->inst[1] = 0x20000000 | (pred << 12);
set_long(pc, e);
set_dst(pc, dst, e);
emit(pc, e);
}
static void
emit_mov_to_pred(struct nv50_pc *pc, int pred, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x000001fc;
e->inst[1] = 0xa0000008;
set_long(pc, e);
set_pred_wr(pc, 1, pred, e);
set_src_0_restricted(pc, src, e);
emit(pc, e);
}
static void
emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
struct nv50_reg *src1)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0xc0000000;
if (!pc->allow32)
set_long(pc, e);
check_swap_src_0_1(pc, &src0, &src1);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
if (src1->type == P_IMMD && !is_long(e)) {
if (src0->mod ^ src1->mod)
e->inst[0] |= 0x00008000;
set_immd(pc, src1, e);
} else {
set_src_1(pc, src1, e);
if ((src0->mod ^ src1->mod) & NV50_MOD_NEG) {
if (is_long(e))
e->inst[1] |= 0x08000000;
else
e->inst[0] |= 0x00008000;
}
}
emit(pc, e);
}
static void
emit_add(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, struct nv50_reg *src1)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xb0000000;
alloc_reg(pc, src1);
check_swap_src_0_1(pc, &src0, &src1);
if (!pc->allow32 || (src0->mod | src1->mod) || src1->hw > 63) {
set_long(pc, e);
e->inst[1] |= ((src0->mod & NV50_MOD_NEG) << 26) |
((src1->mod & NV50_MOD_NEG) << 27);
}
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e))
set_src_2(pc, src1, e);
else
if (src1->type == P_IMMD)
set_immd(pc, src1, e);
else
set_src_1(pc, src1, e);
emit(pc, e);
}
static void
emit_arl(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
uint8_t s)
{
struct nv50_program_exec *e = exec(pc);
set_long(pc, e);
e->inst[1] |= 0xc0000000;
e->inst[0] |= dst->hw << 2;
e->inst[0] |= s << 16; /* shift left */
set_src_0_restricted(pc, src, e);
emit(pc, e);
}
#define NV50_MAX_F32 0x880
#define NV50_MAX_S32 0x08c
#define NV50_MAX_U32 0x084
#define NV50_MIN_F32 0x8a0
#define NV50_MIN_S32 0x0ac
#define NV50_MIN_U32 0x0a4
static void
emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst,
struct nv50_reg *src0, struct nv50_reg *src1)
{
struct nv50_program_exec *e = exec(pc);
set_long(pc, e);
e->inst[0] |= 0x30000000 | ((sub & 0x800) << 20);
e->inst[1] |= (sub << 24);
check_swap_src_0_1(pc, &src0, &src1);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
set_src_1(pc, src1, e);
if (src0->mod & NV50_MOD_ABS)
e->inst[1] |= 0x00100000;
if (src1->mod & NV50_MOD_ABS)
e->inst[1] |= 0x00080000;
emit(pc, e);
}
static INLINE void
emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
struct nv50_reg *src1)
{
src1->mod ^= NV50_MOD_NEG;
emit_add(pc, dst, src0, src1);
src1->mod ^= NV50_MOD_NEG;
}
static void
emit_bitop2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
struct nv50_reg *src1, unsigned op)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xd0000000;
set_long(pc, e);
check_swap_src_0_1(pc, &src0, &src1);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
if (op != TGSI_OPCODE_AND && op != TGSI_OPCODE_OR &&
op != TGSI_OPCODE_XOR)
assert(!"invalid bit op");
assert(!(src0->mod | src1->mod));
if (src1->type == P_IMMD && src0->type == P_TEMP && pc->allow32) {
set_immd(pc, src1, e);
if (op == TGSI_OPCODE_OR)
e->inst[0] |= 0x0100;
else
if (op == TGSI_OPCODE_XOR)
e->inst[0] |= 0x8000;
} else {
set_src_1(pc, src1, e);
e->inst[1] |= 0x04000000; /* 32 bit */
if (op == TGSI_OPCODE_OR)
e->inst[1] |= 0x4000;
else
if (op == TGSI_OPCODE_XOR)
e->inst[1] |= 0x8000;
}
emit(pc, e);
}
static void
emit_not(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xd0000000;
e->inst[1] = 0x0402c000;
set_long(pc, e);
set_dst(pc, dst, e);
set_src_1(pc, src, e);
emit(pc, e);
}
static void
emit_shift(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, struct nv50_reg *src1, unsigned dir)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x30000000;
e->inst[1] = 0xc4000000;
set_long(pc, e);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
if (src1->type == P_IMMD) {
e->inst[1] |= (1 << 20);
e->inst[0] |= (pc->immd_buf[src1->hw] & 0x7f) << 16;
} else
set_src_1(pc, src1, e);
if (dir != TGSI_OPCODE_SHL)
e->inst[1] |= (1 << 29);
if (dir == TGSI_OPCODE_ISHR)
e->inst[1] |= (1 << 27);
emit(pc, e);
}
static void
emit_shl_imm(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src, int s)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x30000000;
e->inst[1] = 0xc4100000;
if (s < 0) {
e->inst[1] |= 1 << 29;
s = -s;
}
e->inst[1] |= ((s & 0x7f) << 16);
set_long(pc, e);
set_dst(pc, dst, e);
set_src_0(pc, src, e);
emit(pc, e);
}
static void
emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
struct nv50_reg *src1, struct nv50_reg *src2)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0xe0000000;
check_swap_src_0_1(pc, &src0, &src1);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
set_src_1(pc, src1, e);
set_src_2(pc, src2, e);
if ((src0->mod ^ src1->mod) & NV50_MOD_NEG)
e->inst[1] |= 0x04000000;
if (src2->mod & NV50_MOD_NEG)
e->inst[1] |= 0x08000000;
emit(pc, e);
}
static INLINE void
emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0,
struct nv50_reg *src1, struct nv50_reg *src2)
{
src2->mod ^= NV50_MOD_NEG;
emit_mad(pc, dst, src0, src1, src2);
src2->mod ^= NV50_MOD_NEG;
}
#define NV50_FLOP_RCP 0
#define NV50_FLOP_RSQ 2
#define NV50_FLOP_LG2 3
#define NV50_FLOP_SIN 4
#define NV50_FLOP_COS 5
#define NV50_FLOP_EX2 6
/* rcp, rsqrt, lg2 support neg and abs */
static void
emit_flop(struct nv50_pc *pc, unsigned sub,
struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0x90000000;
if (sub || src->mod) {
set_long(pc, e);
e->inst[1] |= (sub << 29);
}
set_dst(pc, dst, e);
set_src_0_restricted(pc, src, e);
assert(!src->mod || sub < 4);
if (src->mod & NV50_MOD_NEG)
e->inst[1] |= 0x04000000;
if (src->mod & NV50_MOD_ABS)
e->inst[1] |= 0x00100000;
emit(pc, e);
}
static void
emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0xb0000000;
set_dst(pc, dst, e);
set_src_0(pc, src, e);
set_long(pc, e);
e->inst[1] |= (6 << 29) | 0x00004000;
if (src->mod & NV50_MOD_NEG)
e->inst[1] |= 0x04000000;
if (src->mod & NV50_MOD_ABS)
e->inst[1] |= 0x00100000;
emit(pc, e);
}
static void
emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] |= 0xb0000000;
set_dst(pc, dst, e);
set_src_0(pc, src, e);
set_long(pc, e);
e->inst[1] |= (6 << 29);
if (src->mod & NV50_MOD_NEG)
e->inst[1] |= 0x04000000;
if (src->mod & NV50_MOD_ABS)
e->inst[1] |= 0x00100000;
emit(pc, e);
}
#define CVT_RN (0x00 << 16)
#define CVT_FLOOR (0x02 << 16)
#define CVT_CEIL (0x04 << 16)
#define CVT_TRUNC (0x06 << 16)
#define CVT_SAT (0x08 << 16)
#define CVT_ABS (0x10 << 16)
#define CVT_X32_X32 0x04004000
#define CVT_X32_S32 0x04014000
#define CVT_F32_F32 ((0xc0 << 24) | CVT_X32_X32)
#define CVT_S32_F32 ((0x88 << 24) | CVT_X32_X32)
#define CVT_U32_F32 ((0x80 << 24) | CVT_X32_X32)
#define CVT_F32_S32 ((0x40 << 24) | CVT_X32_S32)
#define CVT_F32_U32 ((0x40 << 24) | CVT_X32_X32)
#define CVT_S32_S32 ((0x08 << 24) | CVT_X32_S32)
#define CVT_S32_U32 ((0x08 << 24) | CVT_X32_X32)
#define CVT_U32_S32 ((0x00 << 24) | CVT_X32_S32)
#define CVT_NEG 0x20000000
#define CVT_RI 0x08000000
static void
emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src,
int wp, uint32_t cvn)
{
struct nv50_program_exec *e;
e = exec(pc);
if (src->mod & NV50_MOD_NEG) cvn |= CVT_NEG;
if (src->mod & NV50_MOD_ABS) cvn |= CVT_ABS;
e->inst[0] = 0xa0000000;
e->inst[1] = cvn;
set_long(pc, e);
set_src_0(pc, src, e);
if (wp >= 0)
set_pred_wr(pc, 1, wp, e);
if (dst)
set_dst(pc, dst, e);
else {
e->inst[0] |= 0x000001fc;
e->inst[1] |= 0x00000008;
}
emit(pc, e);
}
/* nv50 Condition codes:
* 0x1 = LT
* 0x2 = EQ
* 0x3 = LE
* 0x4 = GT
* 0x5 = NE
* 0x6 = GE
* 0x7 = set condition code ? (used before bra.lt/le/gt/ge)
* 0x8 = unordered bit (allows NaN)
*
* mode = 0x04 (u32), 0x0c (s32), 0x80 (f32)
*/
static void
emit_set(struct nv50_pc *pc, unsigned ccode, struct nv50_reg *dst, int wp,
struct nv50_reg *src0, struct nv50_reg *src1, uint8_t mode)
{
static const unsigned cc_swapped[8] = { 0, 4, 2, 6, 1, 5, 3, 7 };
struct nv50_program_exec *e = exec(pc);
struct nv50_reg *rdst;
assert(ccode < 16);
if (check_swap_src_0_1(pc, &src0, &src1))
ccode = cc_swapped[ccode & 7] | (ccode & 8);
rdst = dst;
if (dst && dst->type != P_TEMP)
dst = alloc_temp(pc, NULL);
set_long(pc, e);
e->inst[0] |= 0x30000000 | (mode << 24);
e->inst[1] |= 0x60000000 | (ccode << 14);
if (wp >= 0)
set_pred_wr(pc, 1, wp, e);
if (dst)
set_dst(pc, dst, e);
else {
e->inst[0] |= 0x000001fc;
e->inst[1] |= 0x00000008;
}
set_src_0(pc, src0, e);
set_src_1(pc, src1, e);
emit(pc, e);
if (rdst && mode == 0x80) /* convert to float ? */
emit_cvt(pc, rdst, dst, -1, CVT_ABS | CVT_F32_S32);
if (rdst && rdst != dst)
free_temp(pc, dst);
}
static INLINE void
map_tgsi_setop_hw(unsigned op, uint8_t *cc, uint8_t *ty)
{
switch (op) {
case TGSI_OPCODE_SLT: *cc = 0x1; *ty = 0x80; break;
case TGSI_OPCODE_SGE: *cc = 0x6; *ty = 0x80; break;
case TGSI_OPCODE_SEQ: *cc = 0x2; *ty = 0x80; break;
case TGSI_OPCODE_SGT: *cc = 0x4; *ty = 0x80; break;
case TGSI_OPCODE_SLE: *cc = 0x3; *ty = 0x80; break;
case TGSI_OPCODE_SNE: *cc = 0xd; *ty = 0x80; break;
case TGSI_OPCODE_ISLT: *cc = 0x1; *ty = 0x0c; break;
case TGSI_OPCODE_ISGE: *cc = 0x6; *ty = 0x0c; break;
case TGSI_OPCODE_USEQ: *cc = 0x2; *ty = 0x04; break;
case TGSI_OPCODE_USGE: *cc = 0x6; *ty = 0x04; break;
case TGSI_OPCODE_USLT: *cc = 0x1; *ty = 0x04; break;
case TGSI_OPCODE_USNE: *cc = 0x5; *ty = 0x04; break;
default:
assert(0);
return;
}
}
static void
emit_add_b32(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, struct nv50_reg *rsrc1)
{
struct nv50_program_exec *e = exec(pc);
struct nv50_reg *src1;
e->inst[0] = 0x20000000;
alloc_reg(pc, rsrc1);
check_swap_src_0_1(pc, &src0, &rsrc1);
src1 = rsrc1;
if (src0->mod & rsrc1->mod & NV50_MOD_NEG) {
src1 = temp_temp(pc, e);
emit_cvt(pc, src1, rsrc1, -1, CVT_S32_S32);
}
if (!pc->allow32 || src1->hw > 63 ||
(src1->type != P_TEMP && src1->type != P_IMMD))
set_long(pc, e);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
if (is_long(e)) {
e->inst[1] |= 1 << 26;
set_src_2(pc, src1, e);
} else {
e->inst[0] |= 0x8000;
if (src1->type == P_IMMD)
set_immd(pc, src1, e);
else
set_src_1(pc, src1, e);
}
if (src0->mod & NV50_MOD_NEG)
e->inst[0] |= 1 << 28;
else
if (src1->mod & NV50_MOD_NEG)
e->inst[0] |= 1 << 22;
emit(pc, e);
}
static void
emit_mad_u16(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, int lh_0, struct nv50_reg *src1, int lh_1,
struct nv50_reg *src2)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x60000000;
if (!pc->allow32)
set_long(pc, e);
set_dst(pc, dst, e);
set_half_src(pc, src0, lh_0, e, 9);
set_half_src(pc, src1, lh_1, e, 16);
alloc_reg(pc, src2);
if (is_long(e) || (src2->type != P_TEMP) || (src2->hw != dst->hw))
set_src_2(pc, src2, e);
emit(pc, e);
}
static void
emit_mul_u16(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, int lh_0, struct nv50_reg *src1, int lh_1)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x40000000;
set_long(pc, e);
set_dst(pc, dst, e);
set_half_src(pc, src0, lh_0, e, 9);
set_half_src(pc, src1, lh_1, e, 16);
emit(pc, e);
}
static void
emit_sad(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0x50000000;
if (!pc->allow32)
set_long(pc, e);
check_swap_src_0_1(pc, &src0, &src1);
set_dst(pc, dst, e);
set_src_0(pc, src0, e);
set_src_1(pc, src1, e);
alloc_reg(pc, src2);
if (is_long(e) || (src2->type != dst->type) || (src2->hw != dst->hw))
set_src_2(pc, src2, e);
if (is_long(e))
e->inst[1] |= 0x0c << 24;
else
e->inst[0] |= 0x81 << 8;
emit(pc, e);
}
static INLINE void
emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
emit_cvt(pc, dst, src, -1, CVT_FLOOR | CVT_F32_F32 | CVT_RI);
}
static void
emit_pow(struct nv50_pc *pc, struct nv50_reg *dst,
struct nv50_reg *v, struct nv50_reg *e)
{
struct nv50_reg *temp = alloc_temp(pc, NULL);
emit_flop(pc, NV50_FLOP_LG2, temp, v);
emit_mul(pc, temp, temp, e);
emit_preex2(pc, temp, temp);
emit_flop(pc, NV50_FLOP_EX2, dst, temp);
free_temp(pc, temp);
}
static INLINE void
emit_sat(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
emit_cvt(pc, dst, src, -1, CVT_SAT | CVT_F32_F32);
}
static void
emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
struct nv50_reg **src)
{
struct nv50_reg *one = alloc_immd(pc, 1.0);
struct nv50_reg *zero = alloc_immd(pc, 0.0);
struct nv50_reg *neg128 = alloc_immd(pc, -127.999999);
struct nv50_reg *pos128 = alloc_immd(pc, 127.999999);
struct nv50_reg *tmp[4];
boolean allow32 = pc->allow32;
pc->allow32 = FALSE;
if (mask & (3 << 1)) {
tmp[0] = alloc_temp(pc, NULL);
emit_minmax(pc, NV50_MAX_F32, tmp[0], src[0], zero);
}
if (mask & (1 << 2)) {
set_pred_wr(pc, 1, 0, pc->p->exec_tail);
tmp[1] = temp_temp(pc, NULL);
emit_minmax(pc, NV50_MAX_F32, tmp[1], src[1], zero);
tmp[3] = temp_temp(pc, NULL);
emit_minmax(pc, NV50_MAX_F32, tmp[3], src[3], neg128);
emit_minmax(pc, NV50_MIN_F32, tmp[3], tmp[3], pos128);
emit_pow(pc, dst[2], tmp[1], tmp[3]);
emit_mov(pc, dst[2], zero);
set_pred(pc, 3, 0, pc->p->exec_tail);
}
if (mask & (1 << 1))
assimilate_temp(pc, dst[1], tmp[0]);
else
if (mask & (1 << 2))
free_temp(pc, tmp[0]);
pc->allow32 = allow32;
/* do this last, in case src[i,j] == dst[0,3] */
if (mask & (1 << 0))
emit_mov(pc, dst[0], one);
if (mask & (1 << 3))
emit_mov(pc, dst[3], one);
FREE(pos128);
FREE(neg128);
FREE(zero);
FREE(one);
}
static void
emit_kil(struct nv50_pc *pc, struct nv50_reg *src)
{
struct nv50_program_exec *e;
const int r_pred = 1;
e = exec(pc);
e->inst[0] = 0x00000002; /* discard */
set_long(pc, e); /* sets cond code to ALWAYS */
if (src) {
set_pred(pc, 0x1 /* cc = LT */, r_pred, e);
/* write to predicate reg */
emit_cvt(pc, NULL, src, r_pred, CVT_F32_F32);
}
emit(pc, e);
}
static struct nv50_program_exec *
emit_control_flow(struct nv50_pc *pc, unsigned op, int pred, unsigned cc)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = (op << 28) | 2;
set_long(pc, e);
if (pred >= 0)
set_pred(pc, cc, pred, e);
emit(pc, e);
return e;
}
static INLINE struct nv50_program_exec *
emit_breakaddr(struct nv50_pc *pc)
{
return emit_control_flow(pc, 0x4, -1, 0);
}
static INLINE void
emit_break(struct nv50_pc *pc, int pred, unsigned cc)
{
emit_control_flow(pc, 0x5, pred, cc);
}
static INLINE struct nv50_program_exec *
emit_joinat(struct nv50_pc *pc)
{
return emit_control_flow(pc, 0xa, -1, 0);
}
static INLINE struct nv50_program_exec *
emit_branch(struct nv50_pc *pc, int pred, unsigned cc)
{
return emit_control_flow(pc, 0x1, pred, cc);
}
static INLINE struct nv50_program_exec *
emit_call(struct nv50_pc *pc, int pred, unsigned cc)
{
return emit_control_flow(pc, 0x2, pred, cc);
}
static INLINE void
emit_ret(struct nv50_pc *pc, int pred, unsigned cc)
{
emit_control_flow(pc, 0x3, pred, cc);
}
#define QOP_ADD 0
#define QOP_SUBR 1
#define QOP_SUB 2
#define QOP_MOV_SRC1 3
/* For a quad of threads / top left, top right, bottom left, bottom right
* pixels, do a different operation, and take src0 from a specific thread.
*/
static void
emit_quadop(struct nv50_pc *pc, struct nv50_reg *dst, int wp, int lane_src0,
struct nv50_reg *src0, struct nv50_reg *src1, ubyte qop)
{
struct nv50_program_exec *e = exec(pc);
e->inst[0] = 0xc0000000;
e->inst[1] = 0x80000000;
set_long(pc, e);
e->inst[0] |= lane_src0 << 16;
set_src_0(pc, src0, e);
set_src_2(pc, src1, e);
if (wp >= 0)
set_pred_wr(pc, 1, wp, e);
if (dst)
set_dst(pc, dst, e);
else {
e->inst[0] |= 0x000001fc;
e->inst[1] |= 0x00000008;
}
e->inst[0] |= (qop & 3) << 20;
e->inst[1] |= (qop >> 2) << 22;
emit(pc, e);
}
static void
load_cube_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
struct nv50_reg **src, unsigned arg, boolean proj)
{
int mod[3] = { src[0]->mod, src[1]->mod, src[2]->mod };
src[0]->mod |= NV50_MOD_ABS;
src[1]->mod |= NV50_MOD_ABS;
src[2]->mod |= NV50_MOD_ABS;
emit_minmax(pc, NV50_MAX_F32, t[2], src[0], src[1]);
emit_minmax(pc, NV50_MAX_F32, t[2], src[2], t[2]);
src[0]->mod = mod[0];
src[1]->mod = mod[1];
src[2]->mod = mod[2];
if (proj && 0 /* looks more correct without this */)
emit_mul(pc, t[2], t[2], src[3]);
else
if (arg == 4) /* there is no textureProj(samplerCubeShadow) */
emit_mov(pc, t[3], src[3]);
emit_flop(pc, NV50_FLOP_RCP, t[2], t[2]);
emit_mul(pc, t[0], src[0], t[2]);
emit_mul(pc, t[1], src[1], t[2]);
emit_mul(pc, t[2], src[2], t[2]);
}
static void
load_proj_tex_coords(struct nv50_pc *pc, struct nv50_reg *t[4],
struct nv50_reg **src, unsigned dim, unsigned arg)
{
unsigned c, mode;
if (src[0]->type == P_TEMP && src[0]->rhw != -1) {
mode = pc->interp_mode[src[0]->index] | INTERP_PERSPECTIVE;
t[3]->rhw = src[3]->rhw;
emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID));
emit_flop(pc, NV50_FLOP_RCP, t[3], t[3]);
for (c = 0; c < dim; ++c) {
t[c]->rhw = src[c]->rhw;
emit_interp(pc, t[c], t[3], mode);
}
if (arg != dim) { /* depth reference value */
t[dim]->rhw = src[2]->rhw;
emit_interp(pc, t[dim], t[3], mode);
}
} else {
/* XXX: for some reason the blob sometimes uses MAD
* (mad f32 $rX $rY $rZ neg $r63)
*/
emit_flop(pc, NV50_FLOP_RCP, t[3], src[3]);
for (c = 0; c < dim; ++c)
emit_mul(pc, t[c], src[c], t[3]);
if (arg != dim) /* depth reference value */
emit_mul(pc, t[dim], src[2], t[3]);
}
}
static INLINE void
get_tex_dim(unsigned type, unsigned *dim, unsigned *arg)
{
switch (type) {
case TGSI_TEXTURE_1D:
*arg = *dim = 1;
break;
case TGSI_TEXTURE_SHADOW1D:
*dim = 1;
*arg = 2;
break;
case TGSI_TEXTURE_UNKNOWN:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
*arg = *dim = 2;
break;
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_SHADOWRECT:
*dim = 2;
*arg = 3;
break;
case TGSI_TEXTURE_3D:
case TGSI_TEXTURE_CUBE:
*dim = *arg = 3;
break;
default:
assert(0);
break;
}
}
/* We shouldn't execute TEXLOD if any of the pixels in a quad have
* different LOD values, so branch off groups of equal LOD.
*/
static void
emit_texlod_sequence(struct nv50_pc *pc, struct nv50_reg *tlod,
struct nv50_reg *src, struct nv50_program_exec *tex)
{
struct nv50_program_exec *join_at;
unsigned i, target = pc->p->exec_size + 9 * 2;
if (pc->p->type != PIPE_SHADER_FRAGMENT) {
emit(pc, tex);
return;
}
pc->allow32 = FALSE;
/* Subtract lod of each pixel from lod of top left pixel, jump
* texlod insn if result is 0, then repeat for 2 other pixels.
*/
join_at = emit_joinat(pc);
emit_quadop(pc, NULL, 0, 0, tlod, tlod, 0x55);
emit_branch(pc, 0, 2)->param.index = target;
for (i = 1; i < 4; ++i) {
emit_quadop(pc, NULL, 0, i, tlod, tlod, 0x55);
emit_branch(pc, 0, 2)->param.index = target;
}
emit_mov(pc, tlod, src); /* target */
emit(pc, tex); /* texlod */
join_at->param.index = target + 2 * 2;
JOIN_ON(emit_nop(pc)); /* join _after_ tex */
}
static void
emit_texbias_sequence(struct nv50_pc *pc, struct nv50_reg *t[4], unsigned arg,
struct nv50_program_exec *tex)
{
struct nv50_program_exec *e;
struct nv50_reg imm_1248, *t123[4][4], *r_bits = alloc_temp(pc, NULL);
int r_pred = 0;
unsigned n, c, i, cc[4] = { 0x0a, 0x13, 0x11, 0x10 };
pc->allow32 = FALSE;
ctor_reg(&imm_1248, P_IMMD, -1, ctor_immd_4u32(pc, 1, 2, 4, 8) * 4);
/* Subtract bias value of thread i from bias values of each thread,
* store result in r_pred, and set bit i in r_bits if result was 0.
*/
assert(arg < 4);
for (i = 0; i < 4; ++i, ++imm_1248.hw) {
emit_quadop(pc, NULL, r_pred, i, t[arg], t[arg], 0x55);
emit_mov(pc, r_bits, &imm_1248);
set_pred(pc, 2, r_pred, pc->p->exec_tail);
}
emit_mov_to_pred(pc, r_pred, r_bits);
/* The lanes of a quad are now grouped by the bit in r_pred they have
* set. Put the input values for TEX into a new register set for each
* group and execute TEX only for a specific group.
* We cannot use the same register set for each group because we need
* the derivatives, which are implicitly calculated, to be correct.
*/
for (i = 1; i < 4; ++i) {
alloc_temp4(pc, t123[i], 0);
for (c = 0; c <= arg; ++c)
emit_mov(pc, t123[i][c], t[c]);
*(e = exec(pc)) = *(tex);
e->inst[0] &= ~0x01fc;
set_dst(pc, t123[i][0], e);
set_pred(pc, cc[i], r_pred, e);
emit(pc, e);
}
/* finally TEX on the original regs (where we kept the input) */
set_pred(pc, cc[0], r_pred, tex);
emit(pc, tex);
/* put the 3 * n other results into regs for lane 0 */
n = popcnt4(((e->inst[0] >> 25) & 0x3) | ((e->inst[1] >> 12) & 0xc));
for (i = 1; i < 4; ++i) {
for (c = 0; c < n; ++c) {
emit_mov(pc, t[c], t123[i][c]);
set_pred(pc, cc[i], r_pred, pc->p->exec_tail);
}
free_temp4(pc, t123[i]);
}
emit_nop(pc);
free_temp(pc, r_bits);
}
static void
emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask,
struct nv50_reg **src, unsigned unit, unsigned type,
boolean proj, int bias_lod)
{
struct nv50_reg *t[4];
struct nv50_program_exec *e;
unsigned c, dim, arg;
/* t[i] must be within a single 128 bit super-reg */
alloc_temp4(pc, t, 0);
e = exec(pc);
e->inst[0] = 0xf0000000;
set_long(pc, e);
set_dst(pc, t[0], e);
/* TIC and TSC binding indices (TSC is ignored as TSC_LINKED = TRUE): */
e->inst[0] |= (unit << 9) /* | (unit << 17) */;
/* live flag (don't set if TEX results affect input to another TEX): */
/* e->inst[0] |= 0x00000004; */
get_tex_dim(type, &dim, &arg);
if (type == TGSI_TEXTURE_CUBE) {
e->inst[0] |= 0x08000000;
load_cube_tex_coords(pc, t, src, arg, proj);
} else
if (proj)
load_proj_tex_coords(pc, t, src, dim, arg);
else {
for (c = 0; c < dim; c++)
emit_mov(pc, t[c], src[c]);
if (arg != dim) /* depth reference value (always src.z here) */
emit_mov(pc, t[dim], src[2]);
}
e->inst[0] |= (mask & 0x3) << 25;
e->inst[1] |= (mask & 0xc) << 12;
if (!bias_lod) {
e->inst[0] |= (arg - 1) << 22;
emit(pc, e);
} else
if (bias_lod < 0) {
assert(pc->p->type == PIPE_SHADER_FRAGMENT);
e->inst[0] |= arg << 22;
e->inst[1] |= 0x20000000; /* texbias */
emit_mov(pc, t[arg], src[3]);
emit_texbias_sequence(pc, t, arg, e);
} else {
e->inst[0] |= arg << 22;
e->inst[1] |= 0x40000000; /* texlod */
emit_mov(pc, t[arg], src[3]);
emit_texlod_sequence(pc, t[arg], src[3], e);
}
#if 1
c = 0;
if (mask & 1) emit_mov(pc, dst[0], t[c++]);
if (mask & 2) emit_mov(pc, dst[1], t[c++]);
if (mask & 4) emit_mov(pc, dst[2], t[c++]);
if (mask & 8) emit_mov(pc, dst[3], t[c]);
free_temp4(pc, t);
#else
/* XXX: if p.e. MUL is used directly after TEX, it would still use
* the texture coordinates, not the fetched values: latency ? */
for (c = 0; c < 4; c++) {
if (mask & (1 << c))
assimilate_temp(pc, dst[c], t[c]);
else
free_temp(pc, t[c]);
}
#endif
}
static void
emit_ddx(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
assert(src->type == P_TEMP);
e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0240000 : 0xc0140000;
e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x86400000 : 0x89800000;
set_long(pc, e);
set_dst(pc, dst, e);
set_src_0(pc, src, e);
set_src_2(pc, src, e);
emit(pc, e);
}
static void
emit_ddy(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src)
{
struct nv50_program_exec *e = exec(pc);
assert(src->type == P_TEMP);
e->inst[0] = (src->mod & NV50_MOD_NEG) ? 0xc0250000 : 0xc0150000;
e->inst[1] = (src->mod & NV50_MOD_NEG) ? 0x85800000 : 0x8a400000;
set_long(pc, e);
set_dst(pc, dst, e);
set_src_0(pc, src, e);
set_src_2(pc, src, e);
emit(pc, e);
}
static void
convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e)
{
unsigned q = 0, m = ~0;
assert(!is_long(e));
switch (e->inst[0] >> 28) {
case 0x1:
/* MOV */
q = 0x0403c000;
m = 0xffff7fff;
break;
case 0x2:
case 0x3:
/* ADD, SUB, SUBR b32 */
m = ~(0x8000 | (127 << 16));
q = ((e->inst[0] & (~m)) >> 2) | (1 << 26);
break;
case 0x5:
/* SAD */
m = ~(0x81 << 8);
q = (0x0c << 24) | ((e->inst[0] & (0x7f << 2)) << 12);
break;
case 0x6:
/* MAD u16 */
q = (e->inst[0] & (0x7f << 2)) << 12;
break;
case 0x8:
/* INTERP (move centroid, perspective and flat bits) */
m = ~0x03000100;
q = (e->inst[0] & (3 << 24)) >> (24 - 16);
q |= (e->inst[0] & (1 << 8)) << (18 - 8);
break;
case 0x9:
/* RCP */
break;
case 0xB:
/* ADD */
m = ~(127 << 16);
q = ((e->inst[0] & (~m)) >> 2);
break;
case 0xC:
/* MUL */
m = ~0x00008000;
q = ((e->inst[0] & (~m)) << 12);
break;
case 0xE:
/* MAD (if src2 == dst) */
q = ((e->inst[0] & 0x1fc) << 12);
break;
default:
assert(0);
break;
}
set_long(pc, e);
pc->p->exec_size++;
e->inst[0] &= m;
e->inst[1] |= q;
}
/* Some operations support an optional negation flag. */
static int
get_supported_mods(const struct tgsi_full_instruction *insn, int i)
{
switch (insn->Instruction.Opcode) {
case TGSI_OPCODE_ADD:
case TGSI_OPCODE_COS:
case TGSI_OPCODE_DDX:
case TGSI_OPCODE_DDY:
case TGSI_OPCODE_DP3:
case TGSI_OPCODE_DP4:
case TGSI_OPCODE_EX2:
case TGSI_OPCODE_KIL:
case TGSI_OPCODE_LG2:
case TGSI_OPCODE_MAD:
case TGSI_OPCODE_MUL:
case TGSI_OPCODE_POW:
case TGSI_OPCODE_RCP:
case TGSI_OPCODE_RSQ: /* ignored, RSQ = rsqrt(abs(src.x)) */
case TGSI_OPCODE_SCS:
case TGSI_OPCODE_SIN:
case TGSI_OPCODE_SUB:
return NV50_MOD_NEG;
case TGSI_OPCODE_MAX:
case TGSI_OPCODE_MIN:
case TGSI_OPCODE_INEG: /* tgsi src sign toggle/set would be stupid */
return NV50_MOD_ABS;
case TGSI_OPCODE_CEIL:
case TGSI_OPCODE_FLR:
case TGSI_OPCODE_TRUNC:
return NV50_MOD_NEG | NV50_MOD_ABS;
case TGSI_OPCODE_F2I:
case TGSI_OPCODE_F2U:
case TGSI_OPCODE_I2F:
case TGSI_OPCODE_U2F:
return NV50_MOD_NEG | NV50_MOD_ABS | NV50_MOD_I32;
case TGSI_OPCODE_UADD:
return NV50_MOD_NEG | NV50_MOD_I32;
case TGSI_OPCODE_SAD:
case TGSI_OPCODE_SHL:
case TGSI_OPCODE_IMAX:
case TGSI_OPCODE_IMIN:
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_NOT:
case TGSI_OPCODE_UMAD:
case TGSI_OPCODE_UMAX:
case TGSI_OPCODE_UMIN:
case TGSI_OPCODE_UMUL:
case TGSI_OPCODE_USHR:
return NV50_MOD_I32;
default:
return 0;
}
}
/* Return a read mask for source registers deduced from opcode & write mask. */
static unsigned
nv50_tgsi_src_mask(const struct tgsi_full_instruction *insn, int c)
{
unsigned x, mask = insn->Dst[0].Register.WriteMask;
switch (insn->Instruction.Opcode) {
case TGSI_OPCODE_COS:
case TGSI_OPCODE_SIN:
return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
case TGSI_OPCODE_DP3:
return 0x7;
case TGSI_OPCODE_DP4:
case TGSI_OPCODE_DPH:
case TGSI_OPCODE_KIL: /* WriteMask ignored */
return 0xf;
case TGSI_OPCODE_DST:
return mask & (c ? 0xa : 0x6);
case TGSI_OPCODE_EX2:
case TGSI_OPCODE_EXP:
case TGSI_OPCODE_LG2:
case TGSI_OPCODE_LOG:
case TGSI_OPCODE_POW:
case TGSI_OPCODE_RCP:
case TGSI_OPCODE_RSQ:
case TGSI_OPCODE_SCS:
return 0x1;
case TGSI_OPCODE_IF:
return 0x1;
case TGSI_OPCODE_LIT:
return 0xb;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
{
const struct tgsi_instruction_texture *tex;
assert(insn->Instruction.Texture);
tex = &insn->Texture;
mask = 0x7;
if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
insn->Instruction.Opcode != TGSI_OPCODE_TXD)
mask |= 0x8; /* bias, lod or proj */
switch (tex->Texture) {
case TGSI_TEXTURE_1D:
mask &= 0x9;
break;
case TGSI_TEXTURE_SHADOW1D:
mask &= 0x5;
break;
case TGSI_TEXTURE_2D:
mask &= 0xb;
break;
default:
break;
}
}
return mask;
case TGSI_OPCODE_XPD:
x = 0;
if (mask & 1) x |= 0x6;
if (mask & 2) x |= 0x5;
if (mask & 4) x |= 0x3;
return x;
default:
break;
}
return mask;
}
static struct nv50_reg *
tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst)
{
switch (dst->Register.File) {
case TGSI_FILE_TEMPORARY:
return &pc->temp[dst->Register.Index * 4 + c];
case TGSI_FILE_OUTPUT:
return &pc->result[dst->Register.Index * 4 + c];
case TGSI_FILE_ADDRESS:
{
struct nv50_reg *r = pc->addr[dst->Register.Index * 4 + c];
if (!r) {
r = alloc_addr(pc, NULL);
pc->addr[dst->Register.Index * 4 + c] = r;
}
assert(r);
return r;
}
case TGSI_FILE_NULL:
return NULL;
default:
break;
}
return NULL;
}
static struct nv50_reg *
tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src,
int mod)
{
struct nv50_reg *r = NULL;
struct nv50_reg *temp = NULL;
unsigned sgn, c, swz, cvn;
if (src->Register.File != TGSI_FILE_CONSTANT)
assert(!src->Register.Indirect);
sgn = tgsi_util_get_full_src_register_sign_mode(src, chan);
c = tgsi_util_get_full_src_register_swizzle(src, chan);
switch (c) {
case TGSI_SWIZZLE_X:
case TGSI_SWIZZLE_Y:
case TGSI_SWIZZLE_Z:
case TGSI_SWIZZLE_W:
switch (src->Register.File) {
case TGSI_FILE_INPUT:
r = &pc->attr[src->Register.Index * 4 + c];
break;
case TGSI_FILE_TEMPORARY:
r = &pc->temp[src->Register.Index * 4 + c];
break;
case TGSI_FILE_CONSTANT:
if (!src->Register.Indirect) {
r = &pc->param[src->Register.Index * 4 + c];
break;
}
/* Indicate indirection by setting r->acc < 0 and
* use the index field to select the address reg.
*/
r = reg_instance(pc, NULL);
swz = tgsi_util_get_src_register_swizzle(
&src->Indirect, 0);
ctor_reg(r, P_CONST,
src->Indirect.Index * 4 + swz,
src->Register.Index * 4 + c);
r->acc = -1;
break;
case TGSI_FILE_IMMEDIATE:
r = &pc->immd[src->Register.Index * 4 + c];
break;
case TGSI_FILE_SAMPLER:
return NULL;
case TGSI_FILE_ADDRESS:
r = pc->addr[src->Register.Index * 4 + c];
assert(r);
break;
default:
assert(0);
break;
}
break;
default:
assert(0);
break;
}
cvn = (mod & NV50_MOD_I32) ? CVT_S32_S32 : CVT_F32_F32;
switch (sgn) {
case TGSI_UTIL_SIGN_CLEAR:
r->mod = NV50_MOD_ABS;
break;
case TGSI_UTIL_SIGN_SET:
r->mod = NV50_MOD_NEG_ABS;
break;
case TGSI_UTIL_SIGN_TOGGLE:
r->mod = NV50_MOD_NEG;
break;
default:
assert(!r->mod && sgn == TGSI_UTIL_SIGN_KEEP);
break;
}
if ((r->mod & mod) != r->mod) {
temp = temp_temp(pc, NULL);
emit_cvt(pc, temp, r, -1, cvn);
r->mod = 0;
r = temp;
} else
r->mod |= mod & NV50_MOD_I32;
assert(r);
if (r->acc >= 0 && r != temp)
return reg_instance(pc, r); /* will clear r->mod */
return r;
}
/* return TRUE for ops that produce only a single result */
static boolean
is_scalar_op(unsigned op)
{
switch (op) {
case TGSI_OPCODE_COS:
case TGSI_OPCODE_DP2:
case TGSI_OPCODE_DP3:
case TGSI_OPCODE_DP4:
case TGSI_OPCODE_DPH:
case TGSI_OPCODE_EX2:
case TGSI_OPCODE_LG2:
case TGSI_OPCODE_POW:
case TGSI_OPCODE_RCP:
case TGSI_OPCODE_RSQ:
case TGSI_OPCODE_SIN:
/*
case TGSI_OPCODE_KIL:
case TGSI_OPCODE_LIT:
case TGSI_OPCODE_SCS:
*/
return TRUE;
default:
return FALSE;
}
}
/* Returns a bitmask indicating which dst components depend
* on source s, component c (reverse of nv50_tgsi_src_mask).
*/
static unsigned
nv50_tgsi_dst_revdep(unsigned op, int s, int c)
{
if (is_scalar_op(op))
return 0x1;
switch (op) {
case TGSI_OPCODE_DST:
return (1 << c) & (s ? 0xa : 0x6);
case TGSI_OPCODE_XPD:
switch (c) {
case 0: return 0x6;
case 1: return 0x5;
case 2: return 0x3;
case 3: return 0x0;
default:
assert(0);
return 0x0;
}
case TGSI_OPCODE_EXP:
case TGSI_OPCODE_LOG:
case TGSI_OPCODE_LIT:
case TGSI_OPCODE_SCS:
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
/* these take care of dangerous swizzles themselves */
return 0x0;
case TGSI_OPCODE_IF:
case TGSI_OPCODE_KIL:
/* don't call this function for these ops */
assert(0);
return 0;
default:
/* linear vector instruction */
return (1 << c);
}
}
static INLINE boolean
has_pred(struct nv50_program_exec *e, unsigned cc)
{
if (!is_long(e) || is_immd(e))
return FALSE;
return ((e->inst[1] & 0x780) == (cc << 7));
}
/* on ENDIF see if we can do "@p0.neu single_op" instead of:
* join_at ENDIF
* @p0.eq bra ENDIF
* single_op
* ENDIF: nop.join
*/
static boolean
nv50_kill_branch(struct nv50_pc *pc)
{
int lvl = pc->if_lvl;
if (pc->if_insn[lvl]->next != pc->p->exec_tail)
return FALSE;
if (is_immd(pc->p->exec_tail))
return FALSE;
/* if ccode == 'true', the BRA is from an ELSE and the predicate
* reg may no longer be valid, since we currently always use $p0
*/
if (has_pred(pc->if_insn[lvl], 0xf))
return FALSE;
assert(pc->if_insn[lvl] && pc->if_join[lvl]);
/* We'll use the exec allocated for JOIN_AT (we can't easily
* access nv50_program_exec's prev).
*/
pc->p->exec_size -= 4; /* remove JOIN_AT and BRA */
*pc->if_join[lvl] = *pc->p->exec_tail;
FREE(pc->if_insn[lvl]);
FREE(pc->p->exec_tail);
pc->p->exec_tail = pc->if_join[lvl];
pc->p->exec_tail->next = NULL;
set_pred(pc, 0xd, 0, pc->p->exec_tail);
return TRUE;
}
static void
nv50_fp_move_results(struct nv50_pc *pc)
{
struct nv50_reg reg;
unsigned i;
ctor_reg(&reg, P_TEMP, -1, -1);
for (i = 0; i < pc->result_nr * 4; ++i) {
if (pc->result[i].rhw < 0 || pc->result[i].hw < 0)
continue;
if (pc->result[i].rhw != pc->result[i].hw) {
reg.hw = pc->result[i].rhw;
emit_mov(pc, &reg, &pc->result[i]);
}
}
}
static boolean
nv50_program_tx_insn(struct nv50_pc *pc,
const struct tgsi_full_instruction *inst)
{
struct nv50_reg *rdst[4], *dst[4], *brdc, *src[3][4], *temp;
unsigned mask, sat, unit;
int i, c;
mask = inst->Dst[0].Register.WriteMask;
sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE;
memset(src, 0, sizeof(src));
for (c = 0; c < 4; c++) {
if ((mask & (1 << c)) && !pc->r_dst[c])
dst[c] = tgsi_dst(pc, c, &inst->Dst[0]);
else
dst[c] = pc->r_dst[c];
rdst[c] = dst[c];
}
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
const struct tgsi_full_src_register *fs = &inst->Src[i];
unsigned src_mask;
int mod_supp;
src_mask = nv50_tgsi_src_mask(inst, i);
mod_supp = get_supported_mods(inst, i);
if (fs->Register.File == TGSI_FILE_SAMPLER)
unit = fs->Register.Index;
for (c = 0; c < 4; c++)
if (src_mask & (1 << c))
src[i][c] = tgsi_src(pc, c, fs, mod_supp);
}
brdc = temp = pc->r_brdc;
if (brdc && brdc->type != P_TEMP) {
temp = temp_temp(pc, NULL);
if (sat)
brdc = temp;
} else
if (sat) {
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)) || dst[c]->type == P_TEMP)
continue;
/* rdst[c] = dst[c]; */ /* done above */
dst[c] = temp_temp(pc, NULL);
}
}
assert(brdc || !is_scalar_op(inst->Instruction.Opcode));
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ABS:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_ABS | CVT_F32_F32);
}
break;
case TGSI_OPCODE_ADD:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_add(pc, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_AND:
case TGSI_OPCODE_XOR:
case TGSI_OPCODE_OR:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_bitop2(pc, dst[c], src[0][c], src[1][c],
inst->Instruction.Opcode);
}
break;
case TGSI_OPCODE_ARL:
assert(src[0][0]);
temp = temp_temp(pc, NULL);
emit_cvt(pc, temp, src[0][0], -1, CVT_FLOOR | CVT_S32_F32);
emit_arl(pc, dst[0], temp, 4);
break;
case TGSI_OPCODE_BGNLOOP:
pc->loop_brka[pc->loop_lvl] = emit_breakaddr(pc);
pc->loop_pos[pc->loop_lvl++] = pc->p->exec_size;
terminate_mbb(pc);
break;
case TGSI_OPCODE_BGNSUB:
assert(!pc->in_subroutine);
pc->in_subroutine = TRUE;
/* probably not necessary, but align to 8 byte boundary */
if (!is_long(pc->p->exec_tail))
convert_to_long(pc, pc->p->exec_tail);
break;
case TGSI_OPCODE_BRK:
assert(pc->loop_lvl > 0);
emit_break(pc, -1, 0);
break;
case TGSI_OPCODE_CAL:
assert(inst->Label.Label < pc->insn_nr);
emit_call(pc, -1, 0)->param.index = inst->Label.Label;
/* replaced by actual offset in nv50_program_fixup_insns */
break;
case TGSI_OPCODE_CEIL:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_CEIL | CVT_F32_F32 | CVT_RI);
}
break;
case TGSI_OPCODE_CMP:
pc->allow32 = FALSE;
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, NULL, src[0][c], 1, CVT_F32_F32);
emit_mov(pc, dst[c], src[1][c]);
set_pred(pc, 0x1, 1, pc->p->exec_tail); /* @SF */
emit_mov(pc, dst[c], src[2][c]);
set_pred(pc, 0x6, 1, pc->p->exec_tail); /* @NSF */
}
break;
case TGSI_OPCODE_CONT:
assert(pc->loop_lvl > 0);
emit_branch(pc, -1, 0)->param.index =
pc->loop_pos[pc->loop_lvl - 1];
break;
case TGSI_OPCODE_COS:
if (mask & 8) {
emit_precossin(pc, temp, src[0][3]);
emit_flop(pc, NV50_FLOP_COS, dst[3], temp);
if (!(mask &= 7))
break;
if (temp == dst[3])
temp = brdc = temp_temp(pc, NULL);
}
emit_precossin(pc, temp, src[0][0]);
emit_flop(pc, NV50_FLOP_COS, brdc, temp);
break;
case TGSI_OPCODE_DDX:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_ddx(pc, dst[c], src[0][c]);
}
break;
case TGSI_OPCODE_DDY:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_ddy(pc, dst[c], src[0][c]);
}
break;
case TGSI_OPCODE_DP3:
emit_mul(pc, temp, src[0][0], src[1][0]);
emit_mad(pc, temp, src[0][1], src[1][1], temp);
emit_mad(pc, brdc, src[0][2], src[1][2], temp);
break;
case TGSI_OPCODE_DP4:
emit_mul(pc, temp, src[0][0], src[1][0]);
emit_mad(pc, temp, src[0][1], src[1][1], temp);
emit_mad(pc, temp, src[0][2], src[1][2], temp);
emit_mad(pc, brdc, src[0][3], src[1][3], temp);
break;
case TGSI_OPCODE_DPH:
emit_mul(pc, temp, src[0][0], src[1][0]);
emit_mad(pc, temp, src[0][1], src[1][1], temp);
emit_mad(pc, temp, src[0][2], src[1][2], temp);
emit_add(pc, brdc, src[1][3], temp);
break;
case TGSI_OPCODE_DST:
if (mask & (1 << 1))
emit_mul(pc, dst[1], src[0][1], src[1][1]);
if (mask & (1 << 2))
emit_mov(pc, dst[2], src[0][2]);
if (mask & (1 << 3))
emit_mov(pc, dst[3], src[1][3]);
if (mask & (1 << 0))
emit_mov_immdval(pc, dst[0], 1.0f);
break;
case TGSI_OPCODE_ELSE:
emit_branch(pc, -1, 0);
pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
pc->if_insn[pc->if_lvl++] = pc->p->exec_tail;
terminate_mbb(pc);
break;
case TGSI_OPCODE_ENDIF:
pc->if_insn[--pc->if_lvl]->param.index = pc->p->exec_size;
/* try to replace branch over 1 insn with a predicated insn */
if (nv50_kill_branch(pc) == TRUE)
break;
if (pc->if_join[pc->if_lvl]) {
pc->if_join[pc->if_lvl]->param.index = pc->p->exec_size;
pc->if_join[pc->if_lvl] = NULL;
}
terminate_mbb(pc);
/* emit a NOP as join point, we could set it on the next
* one, but would have to make sure it is long and !immd
*/
JOIN_ON(emit_nop(pc));
break;
case TGSI_OPCODE_ENDLOOP:
emit_branch(pc, -1, 0)->param.index =
pc->loop_pos[--pc->loop_lvl];
pc->loop_brka[pc->loop_lvl]->param.index = pc->p->exec_size;
terminate_mbb(pc);
break;
case TGSI_OPCODE_ENDSUB:
assert(pc->in_subroutine);
pc->in_subroutine = FALSE;
break;
case TGSI_OPCODE_EX2:
emit_preex2(pc, temp, src[0][0]);
emit_flop(pc, NV50_FLOP_EX2, brdc, temp);
break;
case TGSI_OPCODE_EXP:
{
struct nv50_reg *t[2];
assert(!temp);
t[0] = temp_temp(pc, NULL);
t[1] = temp_temp(pc, NULL);
if (mask & 0x6)
emit_mov(pc, t[0], src[0][0]);
if (mask & 0x3)
emit_flr(pc, t[1], src[0][0]);
if (mask & (1 << 1))
emit_sub(pc, dst[1], t[0], t[1]);
if (mask & (1 << 0)) {
emit_preex2(pc, t[1], t[1]);
emit_flop(pc, NV50_FLOP_EX2, dst[0], t[1]);
}
if (mask & (1 << 2)) {
emit_preex2(pc, t[0], t[0]);
emit_flop(pc, NV50_FLOP_EX2, dst[2], t[0]);
}
if (mask & (1 << 3))
emit_mov_immdval(pc, dst[3], 1.0f);
}
break;
case TGSI_OPCODE_F2I:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_TRUNC | CVT_S32_F32);
}
break;
case TGSI_OPCODE_F2U:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_TRUNC | CVT_U32_F32);
}
break;
case TGSI_OPCODE_FLR:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_flr(pc, dst[c], src[0][c]);
}
break;
case TGSI_OPCODE_FRC:
temp = temp_temp(pc, NULL);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_flr(pc, temp, src[0][c]);
emit_sub(pc, dst[c], src[0][c], temp);
}
break;
case TGSI_OPCODE_I2F:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_S32);
}
break;
case TGSI_OPCODE_IF:
assert(pc->if_lvl < NV50_MAX_COND_NESTING);
emit_cvt(pc, NULL, src[0][0], 0, CVT_ABS | CVT_F32_F32);
pc->if_join[pc->if_lvl] = emit_joinat(pc);
pc->if_insn[pc->if_lvl++] = emit_branch(pc, 0, 2);;
terminate_mbb(pc);
break;
case TGSI_OPCODE_IMAX:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x08c, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_IMIN:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x0ac, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_INEG:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_S32_S32 | CVT_NEG);
}
break;
case TGSI_OPCODE_KIL:
assert(src[0][0] && src[0][1] && src[0][2] && src[0][3]);
emit_kil(pc, src[0][0]);
emit_kil(pc, src[0][1]);
emit_kil(pc, src[0][2]);
emit_kil(pc, src[0][3]);
break;
case TGSI_OPCODE_KILP:
emit_kil(pc, NULL);
break;
case TGSI_OPCODE_LIT:
emit_lit(pc, &dst[0], mask, &src[0][0]);
break;
case TGSI_OPCODE_LG2:
emit_flop(pc, NV50_FLOP_LG2, brdc, src[0][0]);
break;
case TGSI_OPCODE_LOG:
{
struct nv50_reg *t[2];
t[0] = temp_temp(pc, NULL);
if (mask & (1 << 1))
t[1] = temp_temp(pc, NULL);
else
t[1] = t[0];
emit_cvt(pc, t[0], src[0][0], -1, CVT_ABS | CVT_F32_F32);
emit_flop(pc, NV50_FLOP_LG2, t[1], t[0]);
if (mask & (1 << 2))
emit_mov(pc, dst[2], t[1]);
emit_flr(pc, t[1], t[1]);
if (mask & (1 << 0))
emit_mov(pc, dst[0], t[1]);
if (mask & (1 << 1)) {
t[1]->mod = NV50_MOD_NEG;
emit_preex2(pc, t[1], t[1]);
t[1]->mod = 0;
emit_flop(pc, NV50_FLOP_EX2, t[1], t[1]);
emit_mul(pc, dst[1], t[0], t[1]);
}
if (mask & (1 << 3))
emit_mov_immdval(pc, dst[3], 1.0f);
}
break;
case TGSI_OPCODE_LRP:
temp = temp_temp(pc, NULL);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_sub(pc, temp, src[1][c], src[2][c]);
emit_mad(pc, dst[c], temp, src[0][c], src[2][c]);
}
break;
case TGSI_OPCODE_MAD:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
}
break;
case TGSI_OPCODE_MAX:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x880, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_MIN:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x8a0, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_MOV:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_mov(pc, dst[c], src[0][c]);
}
break;
case TGSI_OPCODE_MUL:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_mul(pc, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_NOT:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_not(pc, dst[c], src[0][c]);
}
break;
case TGSI_OPCODE_POW:
emit_pow(pc, brdc, src[0][0], src[1][0]);
break;
case TGSI_OPCODE_RCP:
if (!sat && popcnt4(mask) == 1)
brdc = dst[ffs(mask) - 1];
emit_flop(pc, NV50_FLOP_RCP, brdc, src[0][0]);
break;
case TGSI_OPCODE_RET:
if (pc->p->type == PIPE_SHADER_FRAGMENT && !pc->in_subroutine)
nv50_fp_move_results(pc);
emit_ret(pc, -1, 0);
break;
case TGSI_OPCODE_RSQ:
if (!sat && popcnt4(mask) == 1)
brdc = dst[ffs(mask) - 1];
src[0][0]->mod |= NV50_MOD_ABS;
emit_flop(pc, NV50_FLOP_RSQ, brdc, src[0][0]);
break;
case TGSI_OPCODE_SAD:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_sad(pc, dst[c], src[0][c], src[1][c], src[2][c]);
}
break;
case TGSI_OPCODE_SCS:
temp = temp_temp(pc, NULL);
if (mask & 3)
emit_precossin(pc, temp, src[0][0]);
if (mask & (1 << 0))
emit_flop(pc, NV50_FLOP_COS, dst[0], temp);
if (mask & (1 << 1))
emit_flop(pc, NV50_FLOP_SIN, dst[1], temp);
if (mask & (1 << 2))
emit_mov_immdval(pc, dst[2], 0.0);
if (mask & (1 << 3))
emit_mov_immdval(pc, dst[3], 1.0);
break;
case TGSI_OPCODE_SHL:
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_USHR:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_shift(pc, dst[c], src[0][c], src[1][c],
inst->Instruction.Opcode);
}
break;
case TGSI_OPCODE_SIN:
if (mask & 8) {
emit_precossin(pc, temp, src[0][3]);
emit_flop(pc, NV50_FLOP_SIN, dst[3], temp);
if (!(mask &= 7))
break;
if (temp == dst[3])
temp = brdc = temp_temp(pc, NULL);
}
emit_precossin(pc, temp, src[0][0]);
emit_flop(pc, NV50_FLOP_SIN, brdc, temp);
break;
case TGSI_OPCODE_SLT:
case TGSI_OPCODE_SGE:
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_SGT:
case TGSI_OPCODE_SLE:
case TGSI_OPCODE_SNE:
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_USEQ:
case TGSI_OPCODE_USGE:
case TGSI_OPCODE_USLT:
case TGSI_OPCODE_USNE:
{
uint8_t cc, ty;
map_tgsi_setop_hw(inst->Instruction.Opcode, &cc, &ty);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_set(pc, cc, dst[c], -1, src[0][c], src[1][c], ty);
}
}
break;
case TGSI_OPCODE_SUB:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_sub(pc, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_TEX:
emit_tex(pc, dst, mask, src[0], unit,
inst->Texture.Texture, FALSE, 0);
break;
case TGSI_OPCODE_TXB:
emit_tex(pc, dst, mask, src[0], unit,
inst->Texture.Texture, FALSE, -1);
break;
case TGSI_OPCODE_TXL:
emit_tex(pc, dst, mask, src[0], unit,
inst->Texture.Texture, FALSE, 1);
break;
case TGSI_OPCODE_TXP:
emit_tex(pc, dst, mask, src[0], unit,
inst->Texture.Texture, TRUE, 0);
break;
case TGSI_OPCODE_TRUNC:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1,
CVT_TRUNC | CVT_F32_F32 | CVT_RI);
}
break;
case TGSI_OPCODE_U2F:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_cvt(pc, dst[c], src[0][c], -1, CVT_F32_U32);
}
break;
case TGSI_OPCODE_UADD:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_add_b32(pc, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_UMAX:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x084, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_UMIN:
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_minmax(pc, 0x0a4, dst[c], src[0][c], src[1][c]);
}
break;
case TGSI_OPCODE_UMAD:
{
assert(!temp);
temp = temp_temp(pc, NULL);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_mul_u16(pc, temp, src[0][c], 0, src[1][c], 1);
emit_mad_u16(pc, temp, src[0][c], 1, src[1][c], 0,
temp);
emit_shl_imm(pc, temp, temp, 16);
emit_mad_u16(pc, temp, src[0][c], 0, src[1][c], 0,
temp);
emit_add_b32(pc, dst[c], temp, src[2][c]);
}
}
break;
case TGSI_OPCODE_UMUL:
{
assert(!temp);
temp = temp_temp(pc, NULL);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
emit_mul_u16(pc, temp, src[0][c], 0, src[1][c], 1);
emit_mad_u16(pc, temp, src[0][c], 1, src[1][c], 0,
temp);
emit_shl_imm(pc, temp, temp, 16);
emit_mad_u16(pc, dst[c], src[0][c], 0, src[1][c], 0,
temp);
}
}
break;
case TGSI_OPCODE_XPD:
temp = temp_temp(pc, NULL);
if (mask & (1 << 0)) {
emit_mul(pc, temp, src[0][2], src[1][1]);
emit_msb(pc, dst[0], src[0][1], src[1][2], temp);
}
if (mask & (1 << 1)) {
emit_mul(pc, temp, src[0][0], src[1][2]);
emit_msb(pc, dst[1], src[0][2], src[1][0], temp);
}
if (mask & (1 << 2)) {
emit_mul(pc, temp, src[0][1], src[1][0]);
emit_msb(pc, dst[2], src[0][0], src[1][1], temp);
}
if (mask & (1 << 3))
emit_mov_immdval(pc, dst[3], 1.0);
break;
case TGSI_OPCODE_END:
if (pc->p->type == PIPE_SHADER_FRAGMENT)
nv50_fp_move_results(pc);
/* last insn must be long so it can have the exit bit set */
if (!is_long(pc->p->exec_tail))
convert_to_long(pc, pc->p->exec_tail);
else
if (is_immd(pc->p->exec_tail) || is_join(pc->p->exec_tail))
emit_nop(pc);
pc->p->exec_tail->inst[1] |= 1; /* set exit bit */
break;
default:
NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode);
return FALSE;
}
if (brdc) {
if (sat)
emit_sat(pc, brdc, brdc);
for (c = 0; c < 4; c++)
if ((mask & (1 << c)) && dst[c] != brdc)
emit_mov(pc, dst[c], brdc);
} else
if (sat) {
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
/* In this case we saturate later, and dst[c] won't
* be another temp_temp (and thus lost), since rdst
* already is TEMP (see above). */
if (rdst[c]->type == P_TEMP && rdst[c]->index < 0)
continue;
emit_sat(pc, rdst[c], dst[c]);
}
}
kill_temp_temp(pc, NULL);
pc->reg_instance_nr = 0;
return TRUE;
}
static void
prep_inspect_insn(struct nv50_pc *pc, const struct tgsi_full_instruction *insn)
{
struct nv50_reg *r, *reg = NULL;
const struct tgsi_full_src_register *src;
const struct tgsi_dst_register *dst;
unsigned i, c, k, mask;
dst = &insn->Dst[0].Register;
mask = dst->WriteMask;
if (dst->File == TGSI_FILE_TEMPORARY)
reg = pc->temp;
else
if (dst->File == TGSI_FILE_OUTPUT) {
reg = pc->result;
if (insn->Instruction.Opcode == TGSI_OPCODE_MOV &&
dst->Index == pc->edgeflag_out &&
insn->Src[0].Register.File == TGSI_FILE_INPUT)
pc->p->cfg.edgeflag_in = insn->Src[0].Register.Index;
}
if (reg) {
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
reg[dst->Index * 4 + c].acc = pc->insn_nr;
}
}
for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
src = &insn->Src[i];
if (src->Register.File == TGSI_FILE_TEMPORARY)
reg = pc->temp;
else
if (src->Register.File == TGSI_FILE_INPUT)
reg = pc->attr;
else
continue;
mask = nv50_tgsi_src_mask(insn, i);
for (c = 0; c < 4; c++) {
if (!(mask & (1 << c)))
continue;
k = tgsi_util_get_full_src_register_swizzle(src, c);
r = &reg[src->Register.Index * 4 + k];
/* If used before written, pre-allocate the reg,
* lest we overwrite results from a subroutine.
*/
if (!r->acc && r->type == P_TEMP)
alloc_reg(pc, r);
r->acc = pc->insn_nr;
}
}
}
/* Returns a bitmask indicating which dst components need to be
* written to temporaries first to avoid 'corrupting' sources.
*
* m[i] (out) indicate component to write in the i-th position
* rdep[c] (in) bitmasks of dst[i] that require dst[c] as source
*/
static unsigned
nv50_revdep_reorder(unsigned m[4], unsigned rdep[4])
{
unsigned i, c, x, unsafe;
for (c = 0; c < 4; c++)
m[c] = c;
/* Swap as long as a dst component written earlier is depended on
* by one written later, but the next one isn't depended on by it.
*/
for (c = 0; c < 3; c++) {
if (rdep[m[c + 1]] & (1 << m[c]))
continue; /* if next one is depended on by us */
for (i = c + 1; i < 4; i++)
/* if we are depended on by a later one */
if (rdep[m[c]] & (1 << m[i]))
break;
if (i == 4)
continue;
/* now, swap */
x = m[c];
m[c] = m[c + 1];
m[c + 1] = x;
/* restart */
c = 0;
}
/* mark dependencies that could not be resolved by reordering */
for (i = 0; i < 3; ++i)
for (c = i + 1; c < 4; ++c)
if (rdep[m[i]] & (1 << m[c]))
unsafe |= (1 << i);
/* NOTE: $unsafe is with respect to order, not component */
return unsafe;
}
/* Select a suitable dst register for broadcasting scalar results,
* or return NULL if we have to allocate an extra TEMP.
*
* If e.g. only 1 component is written, we may also emit the final
* result to a write-only register.
*/
static struct nv50_reg *
tgsi_broadcast_dst(struct nv50_pc *pc,
const struct tgsi_full_dst_register *fd, unsigned mask)
{
if (fd->Register.File == TGSI_FILE_TEMPORARY) {
int c = ffs(~mask & fd->Register.WriteMask);
if (c)
return tgsi_dst(pc, c - 1, fd);
} else {
int c = ffs(fd->Register.WriteMask) - 1;
if ((1 << c) == fd->Register.WriteMask)
return tgsi_dst(pc, c, fd);
}
return NULL;
}
/* Scan source swizzles and return a bitmask indicating dst regs that
* also occur among the src regs, and fill rdep for nv50_revdep_reoder.
*/
static unsigned
nv50_tgsi_scan_swizzle(const struct tgsi_full_instruction *insn,
unsigned rdep[4])
{
const struct tgsi_full_dst_register *fd = &insn->Dst[0];
const struct tgsi_full_src_register *fs;
unsigned i, deqs = 0;
for (i = 0; i < 4; ++i)
rdep[i] = 0;
for (i = 0; i < insn->Instruction.NumSrcRegs; i++) {
unsigned chn, mask = nv50_tgsi_src_mask(insn, i);
int ms = get_supported_mods(insn, i);
fs = &insn->Src[i];
if (fs->Register.File != fd->Register.File ||
fs->Register.Index != fd->Register.Index)
continue;
for (chn = 0; chn < 4; ++chn) {
unsigned s, c;
if (!(mask & (1 << chn))) /* src is not read */
continue;
c = tgsi_util_get_full_src_register_swizzle(fs, chn);
s = tgsi_util_get_full_src_register_sign_mode(fs, chn);
if (!(fd->Register.WriteMask & (1 << c)))
continue;
if (s == TGSI_UTIL_SIGN_TOGGLE && !(ms & NV50_MOD_NEG))
continue;
if (s == TGSI_UTIL_SIGN_CLEAR && !(ms & NV50_MOD_ABS))
continue;
if ((s == TGSI_UTIL_SIGN_SET) && ((ms & 3) != 3))
continue;
rdep[c] |= nv50_tgsi_dst_revdep(
insn->Instruction.Opcode, i, chn);
deqs |= (1 << c);
}
}
return deqs;
}
static boolean
nv50_tgsi_insn(struct nv50_pc *pc, const union tgsi_full_token *tok)
{
struct tgsi_full_instruction insn = tok->FullInstruction;
const struct tgsi_full_dst_register *fd;
unsigned i, deqs, rdep[4], m[4];
fd = &tok->FullInstruction.Dst[0];
deqs = nv50_tgsi_scan_swizzle(&insn, rdep);
if (is_scalar_op(insn.Instruction.Opcode)) {
pc->r_brdc = tgsi_broadcast_dst(pc, fd, deqs);
if (!pc->r_brdc)
pc->r_brdc = temp_temp(pc, NULL);
return nv50_program_tx_insn(pc, &insn);
}
pc->r_brdc = NULL;
if (!deqs || (!rdep[0] && !rdep[1] && !rdep[2] && !rdep[3]))
return nv50_program_tx_insn(pc, &insn);
deqs = nv50_revdep_reorder(m, rdep);
for (i = 0; i < 4; ++i) {
assert(pc->r_dst[m[i]] == NULL);
insn.Dst[0].Register.WriteMask =
fd->Register.WriteMask & (1 << m[i]);
if (!insn.Dst[0].Register.WriteMask)
continue;
if (deqs & (1 << i))
pc->r_dst[m[i]] = alloc_temp(pc, NULL);
if (!nv50_program_tx_insn(pc, &insn))
return FALSE;
}
for (i = 0; i < 4; i++) {
struct nv50_reg *reg = pc->r_dst[i];
if (!reg)
continue;
pc->r_dst[i] = NULL;
if (insn.Instruction.Saturate == TGSI_SAT_ZERO_ONE)
emit_sat(pc, tgsi_dst(pc, i, fd), reg);
else
emit_mov(pc, tgsi_dst(pc, i, fd), reg);
free_temp(pc, reg);
}
return TRUE;
}
static void
load_interpolant(struct nv50_pc *pc, struct nv50_reg *reg)
{
struct nv50_reg *iv, **ppiv;
unsigned mode = pc->interp_mode[reg->index];
ppiv = (mode & INTERP_CENTROID) ? &pc->iv_c : &pc->iv_p;
iv = *ppiv;
if ((mode & INTERP_PERSPECTIVE) && !iv) {
iv = *ppiv = alloc_temp(pc, NULL);
iv->rhw = popcnt4(pc->p->cfg.regs[1] >> 24) - 1;
emit_interp(pc, iv, NULL, mode & INTERP_CENTROID);
emit_flop(pc, NV50_FLOP_RCP, iv, iv);
/* XXX: when loading interpolants dynamically, move these
* to the program head, or make sure it can't be skipped.
*/
}
emit_interp(pc, reg, iv, mode);
}
/* The face input is always at v[255] (varying space), with a
* value of 0 for back-facing, and 0xffffffff for front-facing.
*/
static void
load_frontfacing(struct nv50_pc *pc, struct nv50_reg *a)
{
struct nv50_reg *one = alloc_immd(pc, 1.0f);
assert(a->rhw == -1);
alloc_reg(pc, a); /* do this before rhw is set */
a->rhw = 255;
load_interpolant(pc, a);
emit_bitop2(pc, a, a, one, TGSI_OPCODE_AND);
FREE(one);
}
static boolean
nv50_program_tx_prep(struct nv50_pc *pc)
{
struct tgsi_parse_context tp;
struct nv50_program *p = pc->p;
boolean ret = FALSE;
unsigned i, c, flat_nr = 0;
tgsi_parse_init(&tp, pc->p->pipe.tokens);
while (!tgsi_parse_end_of_tokens(&tp)) {
const union tgsi_full_token *tok = &tp.FullToken;
tgsi_parse_token(&tp);
switch (tok->Token.Type) {
case TGSI_TOKEN_TYPE_IMMEDIATE:
{
const struct tgsi_full_immediate *imm =
&tp.FullToken.FullImmediate;
ctor_immd_4f32(pc, imm->u[0].Float,
imm->u[1].Float,
imm->u[2].Float,
imm->u[3].Float);
}
break;
case TGSI_TOKEN_TYPE_DECLARATION:
{
const struct tgsi_full_declaration *d;
unsigned si, last, first, mode;
d = &tp.FullToken.FullDeclaration;
first = d->Range.First;
last = d->Range.Last;
switch (d->Declaration.File) {
case TGSI_FILE_TEMPORARY:
break;
case TGSI_FILE_OUTPUT:
if (!d->Declaration.Semantic ||
p->type == PIPE_SHADER_FRAGMENT)
break;
si = d->Semantic.Index;
switch (d->Semantic.Name) {
case TGSI_SEMANTIC_BCOLOR:
p->cfg.two_side[si].hw = first;
if (p->cfg.io_nr > first)
p->cfg.io_nr = first;
break;
case TGSI_SEMANTIC_PSIZE:
p->cfg.psiz = first;
if (p->cfg.io_nr > first)
p->cfg.io_nr = first;
break;
case TGSI_SEMANTIC_EDGEFLAG:
pc->edgeflag_out = first;
break;
/*
case TGSI_SEMANTIC_CLIP_DISTANCE:
p->cfg.clpd = MIN2(p->cfg.clpd, first);
break;
*/
default:
break;
}
break;
case TGSI_FILE_INPUT:
{
if (p->type != PIPE_SHADER_FRAGMENT)
break;
switch (d->Declaration.Interpolate) {
case TGSI_INTERPOLATE_CONSTANT:
mode = INTERP_FLAT;
flat_nr++;
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
mode = INTERP_PERSPECTIVE;
p->cfg.regs[1] |= 0x08 << 24;
break;
default:
mode = INTERP_LINEAR;
break;
}
if (d->Declaration.Centroid)
mode |= INTERP_CENTROID;
assert(last < 32);
for (i = first; i <= last; i++)
pc->interp_mode[i] = mode;
}
break;
case TGSI_FILE_ADDRESS:
case TGSI_FILE_CONSTANT:
case TGSI_FILE_SAMPLER:
break;
default:
NOUVEAU_ERR("bad decl file %d\n",
d->Declaration.File);
goto out_err;
}
}
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
pc->insn_nr++;
prep_inspect_insn(pc, &tok->FullInstruction);
break;
default:
break;
}
}
if (p->type == PIPE_SHADER_VERTEX) {
int rid = 0;
for (i = 0; i < pc->attr_nr * 4; ++i) {
if (pc->attr[i].acc) {
pc->attr[i].hw = rid++;
p->cfg.attr[i / 32] |= 1 << (i % 32);
}
}
for (i = 0, rid = 0; i < pc->result_nr; ++i) {
p->cfg.io[i].hw = rid;
p->cfg.io[i].id = i;
for (c = 0; c < 4; ++c) {
int n = i * 4 + c;
if (!pc->result[n].acc)
continue;
pc->result[n].hw = rid++;
p->cfg.io[i].mask |= 1 << c;
}
}
for (c = 0; c < 2; ++c)
if (p->cfg.two_side[c].hw < 0x40)
p->cfg.two_side[c] = p->cfg.io[
p->cfg.two_side[c].hw];
if (p->cfg.psiz < 0x40)
p->cfg.psiz = p->cfg.io[p->cfg.psiz].hw;
} else
if (p->type == PIPE_SHADER_FRAGMENT) {
int rid, aid;
unsigned n = 0, m = pc->attr_nr - flat_nr;
pc->allow32 = TRUE;
int base = (TGSI_SEMANTIC_POSITION ==
p->info.input_semantic_name[0]) ? 0 : 1;
/* non-flat interpolants have to be mapped to
* the lower hardware IDs, so sort them:
*/
for (i = 0; i < pc->attr_nr; i++) {
if (pc->interp_mode[i] == INTERP_FLAT)
p->cfg.io[m++].id = i;
else {
if (!(pc->interp_mode[i] & INTERP_PERSPECTIVE))
p->cfg.io[n].linear = TRUE;
p->cfg.io[n++].id = i;
}
}
if (!base) /* set w-coordinate mask from perspective interp */
p->cfg.io[0].mask |= p->cfg.regs[1] >> 24;
aid = popcnt4( /* if fcrd isn't contained in cfg.io */
base ? (p->cfg.regs[1] >> 24) : p->cfg.io[0].mask);
for (n = 0; n < pc->attr_nr; ++n) {
p->cfg.io[n].hw = rid = aid;
i = p->cfg.io[n].id;
if (p->info.input_semantic_name[n] ==
TGSI_SEMANTIC_FACE) {
load_frontfacing(pc, &pc->attr[i * 4]);
continue;
}
for (c = 0; c < 4; ++c) {
if (!pc->attr[i * 4 + c].acc)
continue;
pc->attr[i * 4 + c].rhw = rid++;
p->cfg.io[n].mask |= 1 << c;
load_interpolant(pc, &pc->attr[i * 4 + c]);
}
aid += popcnt4(p->cfg.io[n].mask);
}
if (!base)
p->cfg.regs[1] |= p->cfg.io[0].mask << 24;
m = popcnt4(p->cfg.regs[1] >> 24);
/* set count of non-position inputs and of non-flat
* non-position inputs for FP_INTERPOLANT_CTRL
*/
p->cfg.regs[1] |= aid - m;
if (flat_nr) {
i = p->cfg.io[pc->attr_nr - flat_nr].hw;
p->cfg.regs[1] |= (i - m) << 16;
} else
p->cfg.regs[1] |= p->cfg.regs[1] << 16;
/* mark color semantic for light-twoside */
n = 0x40;
for (i = 0; i < pc->attr_nr; i++) {
ubyte si, sn;
sn = p->info.input_semantic_name[p->cfg.io[i].id];
si = p->info.input_semantic_index[p->cfg.io[i].id];
if (sn == TGSI_SEMANTIC_COLOR) {
p->cfg.two_side[si] = p->cfg.io[i];
/* increase colour count */
p->cfg.regs[0] += popcnt4(
p->cfg.two_side[si].mask) << 16;
n = MIN2(n, p->cfg.io[i].hw - m);
}
}
if (n < 0x40)
p->cfg.regs[0] += n;
/* Initialize FP results:
* FragDepth is always first TGSI and last hw output
*/
i = p->info.writes_z ? 4 : 0;
for (rid = 0; i < pc->result_nr * 4; i++)
pc->result[i].rhw = rid++;
if (p->info.writes_z)
pc->result[2].rhw = rid;
p->cfg.high_result = rid;
/* separate/different colour results for MRTs ? */
if (pc->result_nr - (p->info.writes_z ? 1 : 0) > 1)
p->cfg.regs[2] |= 1;
}
if (pc->immd_nr) {
int rid = 0;
pc->immd = MALLOC(pc->immd_nr * 4 * sizeof(struct nv50_reg));
if (!pc->immd)
goto out_err;
for (i = 0; i < pc->immd_nr; i++) {
for (c = 0; c < 4; c++, rid++)
ctor_reg(&pc->immd[rid], P_IMMD, i, rid);
}
}
ret = TRUE;
out_err:
if (pc->iv_p)
free_temp(pc, pc->iv_p);
if (pc->iv_c)
free_temp(pc, pc->iv_c);
tgsi_parse_free(&tp);
return ret;
}
static void
free_nv50_pc(struct nv50_pc *pc)
{
if (pc->immd)
FREE(pc->immd);
if (pc->param)
FREE(pc->param);
if (pc->result)
FREE(pc->result);
if (pc->attr)
FREE(pc->attr);
if (pc->temp)
FREE(pc->temp);
FREE(pc);
}
static boolean
ctor_nv50_pc(struct nv50_pc *pc, struct nv50_program *p)
{
int i, c;
unsigned rtype[2] = { P_ATTR, P_RESULT };
pc->p = p;
pc->temp_nr = p->info.file_max[TGSI_FILE_TEMPORARY] + 1;
pc->attr_nr = p->info.file_max[TGSI_FILE_INPUT] + 1;
pc->result_nr = p->info.file_max[TGSI_FILE_OUTPUT] + 1;
pc->param_nr = p->info.file_max[TGSI_FILE_CONSTANT] + 1;
pc->addr_nr = p->info.file_max[TGSI_FILE_ADDRESS] + 1;
assert(pc->addr_nr <= 2);
p->cfg.high_temp = 4;
p->cfg.two_side[0].hw = 0x40;
p->cfg.two_side[1].hw = 0x40;
p->cfg.edgeflag_in = pc->edgeflag_out = 0xff;
switch (p->type) {
case PIPE_SHADER_VERTEX:
p->cfg.psiz = 0x40;
p->cfg.clpd = 0x40;
p->cfg.io_nr = pc->result_nr;
break;
case PIPE_SHADER_FRAGMENT:
rtype[0] = rtype[1] = P_TEMP;
p->cfg.regs[0] = 0x01000004;
p->cfg.io_nr = pc->attr_nr;
if (p->info.writes_z) {
p->cfg.regs[2] |= 0x00000100;
p->cfg.regs[3] |= 0x00000011;
}
if (p->info.uses_kill)
p->cfg.regs[2] |= 0x00100000;
break;
}
if (pc->temp_nr) {
pc->temp = MALLOC(pc->temp_nr * 4 * sizeof(struct nv50_reg));
if (!pc->temp)
return FALSE;
for (i = 0; i < pc->temp_nr * 4; ++i)
ctor_reg(&pc->temp[i], P_TEMP, i / 4, -1);
}
if (pc->attr_nr) {
pc->attr = MALLOC(pc->attr_nr * 4 * sizeof(struct nv50_reg));
if (!pc->attr)
return FALSE;
for (i = 0; i < pc->attr_nr * 4; ++i)
ctor_reg(&pc->attr[i], rtype[0], i / 4, -1);
}
if (pc->result_nr) {
unsigned nr = pc->result_nr * 4;
pc->result = MALLOC(nr * sizeof(struct nv50_reg));
if (!pc->result)
return FALSE;
for (i = 0; i < nr; ++i)
ctor_reg(&pc->result[i], rtype[1], i / 4, -1);
}
if (pc->param_nr) {
int rid = 0;
pc->param = MALLOC(pc->param_nr * 4 * sizeof(struct nv50_reg));
if (!pc->param)
return FALSE;
for (i = 0; i < pc->param_nr; ++i)
for (c = 0; c < 4; ++c, ++rid)
ctor_reg(&pc->param[rid], P_CONST, i, rid);
}
if (pc->addr_nr) {
pc->addr = CALLOC(pc->addr_nr * 4, sizeof(struct nv50_reg *));
if (!pc->addr)
return FALSE;
}
for (i = 0; i < NV50_SU_MAX_ADDR; ++i)
ctor_reg(&pc->r_addr[i], P_ADDR, -256, i + 1);
return TRUE;
}
static void
nv50_program_fixup_insns(struct nv50_pc *pc)
{
struct nv50_program_exec *e, **bra_list;
unsigned i, n, pos;
bra_list = CALLOC(pc->p->exec_size, sizeof(struct nv50_program_exec *));
/* Collect branch instructions, we need to adjust their offsets
* when converting 32 bit instructions to 64 bit ones
*/
for (n = 0, e = pc->p->exec_head; e; e = e->next)
if (e->param.index >= 0 && !e->param.mask)
bra_list[n++] = e;
/* Make sure we don't have any single 32 bit instructions. */
for (e = pc->p->exec_head, pos = 0; e; e = e->next) {
pos += is_long(e) ? 2 : 1;
if ((pos & 1) && (!e->next || is_long(e->next))) {
for (i = 0; i < n; ++i)
if (bra_list[i]->param.index >= pos)
bra_list[i]->param.index += 1;
for (i = 0; i < pc->insn_nr; ++i)
if (pc->insn_pos[i] >= pos)
pc->insn_pos[i] += 1;
convert_to_long(pc, e);
++pos;
}
}
FREE(bra_list);
if (!pc->p->info.opcode_count[TGSI_OPCODE_CAL])
return;
/* fill in CALL offsets */
for (e = pc->p->exec_head; e; e = e->next) {
if ((e->inst[0] & 2) && (e->inst[0] >> 28) == 0x2)
e->param.index = pc->insn_pos[e->param.index];
}
}
static boolean
nv50_program_tx(struct nv50_program *p)
{
struct tgsi_parse_context parse;
struct nv50_pc *pc;
boolean ret;
pc = CALLOC_STRUCT(nv50_pc);
if (!pc)
return FALSE;
ret = ctor_nv50_pc(pc, p);
if (ret == FALSE)
goto out_cleanup;
ret = nv50_program_tx_prep(pc);
if (ret == FALSE)
goto out_cleanup;
pc->insn_pos = MALLOC(pc->insn_nr * sizeof(unsigned));
tgsi_parse_init(&parse, pc->p->pipe.tokens);
while (!tgsi_parse_end_of_tokens(&parse)) {
const union tgsi_full_token *tok = &parse.FullToken;
/* previously allow32 was FALSE for first & last instruction */
pc->allow32 = TRUE;
tgsi_parse_token(&parse);
switch (tok->Token.Type) {
case TGSI_TOKEN_TYPE_INSTRUCTION:
pc->insn_pos[pc->insn_cur] = pc->p->exec_size;
++pc->insn_cur;
ret = nv50_tgsi_insn(pc, tok);
if (ret == FALSE)
goto out_err;
break;
default:
break;
}
}
nv50_program_fixup_insns(pc);
p->param_nr = pc->param_nr * 4;
p->immd_nr = pc->immd_nr * 4;
p->immd = pc->immd_buf;
out_err:
tgsi_parse_free(&parse);
out_cleanup:
free_nv50_pc(pc);
return ret;
}
static void
nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p)
{
if (nv50_program_tx(p) == FALSE)
assert(0);
p->translated = TRUE;
}
static void
nv50_program_upload_data(struct nv50_context *nv50, uint32_t *map,
unsigned start, unsigned count, unsigned cbuf)
{
struct nouveau_channel *chan = nv50->screen->base.channel;
struct nouveau_grobj *tesla = nv50->screen->tesla;
while (count) {
unsigned nr = count > 2047 ? 2047 : count;
BEGIN_RING(chan, tesla, NV50TCL_CB_ADDR, 1);
OUT_RING (chan, (cbuf << 0) | (start << 8));
BEGIN_RING(chan, tesla, NV50TCL_CB_DATA(0) | 0x40000000, nr);
OUT_RINGp (chan, map, nr);
map += nr;
start += nr;
count -= nr;
}
}
static void
nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p)
{
struct pipe_screen *pscreen = nv50->pipe.screen;
if (!p->data[0] && p->immd_nr) {
struct nouveau_resource *heap = nv50->screen->immd_heap[0];
if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) {
while (heap->next && heap->size < p->immd_nr) {
struct nv50_program *evict = heap->next->priv;
nouveau_resource_free(&evict->data[0]);
}
if (nouveau_resource_alloc(heap, p->immd_nr, p,
&p->data[0]))
assert(0);
}
/* immediates only need to be uploaded again when freed */
nv50_program_upload_data(nv50, p->immd, p->data[0]->start,
p->immd_nr, NV50_CB_PMISC);
}
assert(p->param_nr <= 512);
if (p->param_nr) {
unsigned cb;
uint32_t *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type],
PIPE_BUFFER_USAGE_CPU_READ);
if (p->type == PIPE_SHADER_VERTEX)
cb = NV50_CB_PVP;
else
cb = NV50_CB_PFP;
nv50_program_upload_data(nv50, map, 0, p->param_nr, cb);
pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]);
}
}
static void
nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p)
{
struct nouveau_channel *chan = nv50->screen->base.channel;
struct nv50_program_exec *e;
uint32_t *up, i;
boolean upload = FALSE;
if (!p->bo) {
nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100,
p->exec_size * 4, &p->bo);
upload = TRUE;
}
if (p->data[0] && p->data[0]->start != p->data_start[0])
upload = TRUE;
if (!upload)
return;
up = MALLOC(p->exec_size * 4);
for (i = 0, e = p->exec_head; e; e = e->next) {
unsigned ei, ci, bs;
if (e->param.index >= 0 && e->param.mask) {
bs = (e->inst[1] >> 22) & 0x07;
assert(bs < 2);
ei = e->param.shift >> 5;
ci = e->param.index;
if (bs == 0)
ci += p->data[bs]->start;
e->inst[ei] &= ~e->param.mask;
e->inst[ei] |= (ci << e->param.shift);
} else
if (e->param.index >= 0) {
/* zero mask means param is a jump/branch offset */
assert(!(e->param.index & 1));
/* seem to be 8 byte steps */
ei = (e->param.index >> 1) + 0 /* START_ID */;
e->inst[0] &= 0xf0000fff;
e->inst[0] |= ei << 12;
}
up[i++] = e->inst[0];
if (is_long(e))
up[i++] = e->inst[1];
}
assert(i == p->exec_size);
if (p->data[0])
p->data_start[0] = p->data[0]->start;
#ifdef NV50_PROGRAM_DUMP
NOUVEAU_ERR("-------\n");
for (e = p->exec_head; e; e = e->next) {
NOUVEAU_ERR("0x%08x\n", e->inst[0]);
if (is_long(e))
NOUVEAU_ERR("0x%08x\n", e->inst[1]);
}
#endif
nv50_upload_sifc(nv50, p->bo, 0, NOUVEAU_BO_VRAM,
NV50_2D_DST_FORMAT_R8_UNORM, 65536, 1, 262144,
up, NV50_2D_SIFC_FORMAT_R8_UNORM, 0,
0, 0, p->exec_size * 4, 1, 1);
FREE(up);
}
void
nv50_vertprog_validate(struct nv50_context *nv50)
{
struct nouveau_grobj *tesla = nv50->screen->tesla;
struct nv50_program *p = nv50->vertprog;
struct nouveau_stateobj *so;
if (!p->translated) {
nv50_program_validate(nv50, p);
if (!p->translated)
assert(0);
}
nv50_program_validate_data(nv50, p);
nv50_program_validate_code(nv50, p);
so = so_new(5, 8, 2);
so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2);
so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
NOUVEAU_BO_HIGH, 0, 0);
so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
NOUVEAU_BO_LOW, 0, 0);
so_method(so, tesla, NV50TCL_VP_ATTR_EN_0, 2);
so_data (so, p->cfg.attr[0]);
so_data (so, p->cfg.attr[1]);
so_method(so, tesla, NV50TCL_VP_REG_ALLOC_RESULT, 1);
so_data (so, p->cfg.high_result);
so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 2);
so_data (so, p->cfg.high_result); //8);
so_data (so, p->cfg.high_temp);
so_method(so, tesla, NV50TCL_VP_START_ID, 1);
so_data (so, 0); /* program start offset */
so_ref(so, &nv50->state.vertprog);
so_ref(NULL, &so);
}
void
nv50_fragprog_validate(struct nv50_context *nv50)
{
struct nouveau_grobj *tesla = nv50->screen->tesla;
struct nv50_program *p = nv50->fragprog;
struct nouveau_stateobj *so;
if (!p->translated) {
nv50_program_validate(nv50, p);
if (!p->translated)
assert(0);
}
nv50_program_validate_data(nv50, p);
nv50_program_validate_code(nv50, p);
so = so_new(6, 7, 2);
so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2);
so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
NOUVEAU_BO_HIGH, 0, 0);
so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD |
NOUVEAU_BO_LOW, 0, 0);
so_method(so, tesla, NV50TCL_FP_REG_ALLOC_TEMP, 1);
so_data (so, p->cfg.high_temp);
so_method(so, tesla, NV50TCL_FP_RESULT_COUNT, 1);
so_data (so, p->cfg.high_result);
so_method(so, tesla, NV50TCL_FP_CONTROL, 1);
so_data (so, p->cfg.regs[2]);
so_method(so, tesla, NV50TCL_FP_CTRL_UNK196C, 1);
so_data (so, p->cfg.regs[3]);
so_method(so, tesla, NV50TCL_FP_START_ID, 1);
so_data (so, 0); /* program start offset */
so_ref(so, &nv50->state.fragprog);
so_ref(NULL, &so);
}
static uint32_t
nv50_pntc_replace(struct nv50_context *nv50, uint32_t pntc[8], unsigned base)
{
struct nv50_program *fp = nv50->fragprog;
struct nv50_program *vp = nv50->vertprog;
unsigned i, c, m = base;
uint32_t origin = 0x00000010;
/* XXX: this might not work correctly in all cases yet - we'll
* just assume that an FP generic input that is not written in
* the VP is PointCoord.
*/
memset(pntc, 0, 8 * sizeof(uint32_t));
for (i = 0; i < fp->cfg.io_nr; i++) {
uint8_t sn, si;
uint8_t j, k = fp->cfg.io[i].id;
unsigned n = popcnt4(fp->cfg.io[i].mask);
if (fp->info.input_semantic_name[k] != TGSI_SEMANTIC_GENERIC) {
m += n;
continue;
}
for (j = 0; j < vp->info.num_outputs; ++j) {
sn = vp->info.output_semantic_name[j];
si = vp->info.output_semantic_index[j];
if (sn == fp->info.input_semantic_name[k] &&
si == fp->info.input_semantic_index[k])
break;
}
if (j < vp->info.num_outputs) {
ubyte mode =
nv50->rasterizer->pipe.sprite_coord_mode[si];
if (mode == PIPE_SPRITE_COORD_NONE) {
m += n;
continue;
} else
if (mode == PIPE_SPRITE_COORD_LOWER_LEFT)
origin = 0;
}
/* this is either PointCoord or replaced by sprite coords */
for (c = 0; c < 4; c++) {
if (!(fp->cfg.io[i].mask & (1 << c)))
continue;
pntc[m / 8] |= (c + 1) << ((m % 8) * 4);
++m;
}
}
return origin;
}
static int
nv50_sreg4_map(uint32_t *p_map, int mid, uint32_t lin[4],
struct nv50_sreg4 *fpi, struct nv50_sreg4 *vpo)
{
int c;
uint8_t mv = vpo->mask, mf = fpi->mask, oid = vpo->hw;
uint8_t *map = (uint8_t *)p_map;
for (c = 0; c < 4; ++c) {
if (mf & 1) {
if (fpi->linear == TRUE)
lin[mid / 32] |= 1 << (mid % 32);
map[mid++] = (mv & 1) ? oid : ((c == 3) ? 0x41 : 0x40);
}
oid += mv & 1;
mf >>= 1;
mv >>= 1;
}
return mid;
}
void
nv50_linkage_validate(struct nv50_context *nv50)
{
struct nouveau_grobj *tesla = nv50->screen->tesla;
struct nv50_program *vp = nv50->vertprog;
struct nv50_program *fp = nv50->fragprog;
struct nouveau_stateobj *so;
struct nv50_sreg4 dummy, *vpo;
int i, n, c, m = 0;
uint32_t map[16], lin[4], reg[5], pcrd[8];
memset(map, 0, sizeof(map));
memset(lin, 0, sizeof(lin));
reg[1] = 0x00000004; /* low and high clip distance map ids */
reg[2] = 0x00000000; /* layer index map id (disabled, GP only) */
reg[3] = 0x00000000; /* point size map id & enable */
reg[0] = fp->cfg.regs[0]; /* colour semantic reg */
reg[4] = fp->cfg.regs[1]; /* interpolant info */
dummy.linear = FALSE;
dummy.mask = 0xf; /* map all components of HPOS */
m = nv50_sreg4_map(map, m, lin, &dummy, &vp->cfg.io[0]);
dummy.mask = 0x0;
if (vp->cfg.clpd < 0x40) {
for (c = 0; c < vp->cfg.clpd_nr; ++c)
map[m++] = vp->cfg.clpd + c;
reg[1] = (m << 8);
}
reg[0] |= m << 8; /* adjust BFC0 id */
/* if light_twoside is active, it seems FFC0_ID == BFC0_ID is bad */
if (nv50->rasterizer->pipe.light_twoside) {
vpo = &vp->cfg.two_side[0];
m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[0], &vpo[0]);
m = nv50_sreg4_map(map, m, lin, &fp->cfg.two_side[1], &vpo[1]);
}
reg[0] += m - 4; /* adjust FFC0 id */
reg[4] |= m << 8; /* set mid where 'normal' FP inputs start */
for (i = 0; i < fp->cfg.io_nr; i++) {
ubyte sn = fp->info.input_semantic_name[fp->cfg.io[i].id];
ubyte si = fp->info.input_semantic_index[fp->cfg.io[i].id];
/* position must be mapped first */
assert(i == 0 || sn != TGSI_SEMANTIC_POSITION);
/* maybe even remove these from cfg.io */
if (sn == TGSI_SEMANTIC_POSITION || sn == TGSI_SEMANTIC_FACE)
continue;
/* VP outputs and vp->cfg.io are in the same order */
for (n = 0; n < vp->info.num_outputs; ++n) {
if (vp->info.output_semantic_name[n] == sn &&
vp->info.output_semantic_index[n] == si)
break;
}
vpo = (n < vp->info.num_outputs) ? &vp->cfg.io[n] : &dummy;
m = nv50_sreg4_map(map, m, lin, &fp->cfg.io[i], vpo);
}
if (nv50->rasterizer->pipe.point_size_per_vertex) {
map[m / 4] |= vp->cfg.psiz << ((m % 4) * 8);
reg[3] = (m++ << 4) | 1;
}
/* now fill the stateobj */
so = so_new(7, 57, 0);
n = (m + 3) / 4;
so_method(so, tesla, NV50TCL_VP_RESULT_MAP_SIZE, 1);
so_data (so, m);
so_method(so, tesla, NV50TCL_VP_RESULT_MAP(0), n);
so_datap (so, map, n);
so_method(so, tesla, NV50TCL_MAP_SEMANTIC_0, 4);
so_datap (so, reg, 4);
so_method(so, tesla, NV50TCL_FP_INTERPOLANT_CTRL, 1);
so_data (so, reg[4]);
so_method(so, tesla, NV50TCL_NOPERSPECTIVE_BITMAP(0), 4);
so_datap (so, lin, 4);
if (nv50->rasterizer->pipe.point_sprite) {
so_method(so, tesla, NV50TCL_POINT_SPRITE_CTRL, 1);
so_data (so,
nv50_pntc_replace(nv50, pcrd, (reg[4] >> 8) & 0xff));
so_method(so, tesla, NV50TCL_POINT_COORD_REPLACE_MAP(0), 8);
so_datap (so, pcrd, 8);
}
so_ref(so, &nv50->state.programs);
so_ref(NULL, &so);
}
void
nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p)
{
while (p->exec_head) {
struct nv50_program_exec *e = p->exec_head;
p->exec_head = e->next;
FREE(e);
}
p->exec_tail = NULL;
p->exec_size = 0;
nouveau_bo_ref(NULL, &p->bo);
nouveau_resource_free(&p->data[0]);
p->translated = 0;
}