| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include "ir_reader.h" |
| #include "glsl_parser_extras.h" |
| #include "glsl_types.h" |
| #include "s_expression.h" |
| |
| const static bool debug = false; |
| |
| class ir_reader { |
| public: |
| ir_reader(_mesa_glsl_parse_state *); |
| |
| void read(exec_list *instructions, const char *src, bool scan_for_protos); |
| |
| private: |
| void *mem_ctx; |
| _mesa_glsl_parse_state *state; |
| |
| void ir_read_error(s_expression *, const char *fmt, ...); |
| |
| const glsl_type *read_type(s_expression *); |
| |
| void scan_for_prototypes(exec_list *, s_expression *); |
| ir_function *read_function(s_expression *, bool skip_body); |
| void read_function_sig(ir_function *, s_expression *, bool skip_body); |
| |
| void read_instructions(exec_list *, s_expression *, ir_loop *); |
| ir_instruction *read_instruction(s_expression *, ir_loop *); |
| ir_variable *read_declaration(s_expression *); |
| ir_if *read_if(s_expression *, ir_loop *); |
| ir_loop *read_loop(s_expression *); |
| ir_return *read_return(s_expression *); |
| ir_rvalue *read_rvalue(s_expression *); |
| ir_assignment *read_assignment(s_expression *); |
| ir_expression *read_expression(s_expression *); |
| ir_call *read_call(s_expression *); |
| ir_swizzle *read_swizzle(s_expression *); |
| ir_constant *read_constant(s_expression *); |
| ir_texture *read_texture(s_expression *); |
| |
| ir_dereference *read_dereference(s_expression *); |
| }; |
| |
| ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state) |
| { |
| this->mem_ctx = state; |
| } |
| |
| void |
| _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions, |
| const char *src, bool scan_for_protos) |
| { |
| ir_reader r(state); |
| r.read(instructions, src, scan_for_protos); |
| } |
| |
| void |
| ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos) |
| { |
| void *sx_mem_ctx = ralloc_context(NULL); |
| s_expression *expr = s_expression::read_expression(sx_mem_ctx, src); |
| if (expr == NULL) { |
| ir_read_error(NULL, "couldn't parse S-Expression."); |
| return; |
| } |
| |
| if (scan_for_protos) { |
| scan_for_prototypes(instructions, expr); |
| if (state->error) |
| return; |
| } |
| |
| read_instructions(instructions, expr, NULL); |
| ralloc_free(sx_mem_ctx); |
| |
| if (debug) |
| validate_ir_tree(instructions); |
| } |
| |
| void |
| ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| state->error = true; |
| |
| if (state->current_function != NULL) |
| ralloc_asprintf_append(&state->info_log, "In function %s:\n", |
| state->current_function->function_name()); |
| ralloc_strcat(&state->info_log, "error: "); |
| |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&state->info_log, fmt, ap); |
| va_end(ap); |
| ralloc_strcat(&state->info_log, "\n"); |
| |
| if (expr != NULL) { |
| ralloc_strcat(&state->info_log, "...in this context:\n "); |
| expr->print(); |
| ralloc_strcat(&state->info_log, "\n\n"); |
| } |
| } |
| |
| const glsl_type * |
| ir_reader::read_type(s_expression *expr) |
| { |
| s_expression *s_base_type; |
| s_int *s_size; |
| |
| s_pattern pat[] = { "array", s_base_type, s_size }; |
| if (MATCH(expr, pat)) { |
| const glsl_type *base_type = read_type(s_base_type); |
| if (base_type == NULL) { |
| ir_read_error(NULL, "when reading base type of array type"); |
| return NULL; |
| } |
| |
| return glsl_type::get_array_instance(base_type, s_size->value()); |
| } |
| |
| s_symbol *type_sym = SX_AS_SYMBOL(expr); |
| if (type_sym == NULL) { |
| ir_read_error(expr, "expected <type>"); |
| return NULL; |
| } |
| |
| const glsl_type *type = state->symbols->get_type(type_sym->value()); |
| if (type == NULL) |
| ir_read_error(expr, "invalid type: %s", type_sym->value()); |
| |
| return type; |
| } |
| |
| |
| void |
| ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr) |
| { |
| s_list *list = SX_AS_LIST(expr); |
| if (list == NULL) { |
| ir_read_error(expr, "Expected (<instruction> ...); found an atom."); |
| return; |
| } |
| |
| foreach_iter(exec_list_iterator, it, list->subexpressions) { |
| s_list *sub = SX_AS_LIST(it.get()); |
| if (sub == NULL) |
| continue; // not a (function ...); ignore it. |
| |
| s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head()); |
| if (tag == NULL || strcmp(tag->value(), "function") != 0) |
| continue; // not a (function ...); ignore it. |
| |
| ir_function *f = read_function(sub, true); |
| if (f == NULL) |
| return; |
| instructions->push_tail(f); |
| } |
| } |
| |
| ir_function * |
| ir_reader::read_function(s_expression *expr, bool skip_body) |
| { |
| bool added = false; |
| s_symbol *name; |
| |
| s_pattern pat[] = { "function", name }; |
| if (!PARTIAL_MATCH(expr, pat)) { |
| ir_read_error(expr, "Expected (function <name> (signature ...) ...)"); |
| return NULL; |
| } |
| |
| ir_function *f = state->symbols->get_function(name->value()); |
| if (f == NULL) { |
| f = new(mem_ctx) ir_function(name->value()); |
| added = state->symbols->add_function(f); |
| assert(added); |
| } |
| |
| exec_list_iterator it = ((s_list *) expr)->subexpressions.iterator(); |
| it.next(); // skip "function" tag |
| it.next(); // skip function name |
| for (/* nothing */; it.has_next(); it.next()) { |
| s_expression *s_sig = (s_expression *) it.get(); |
| read_function_sig(f, s_sig, skip_body); |
| } |
| return added ? f : NULL; |
| } |
| |
| void |
| ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body) |
| { |
| s_expression *type_expr; |
| s_list *paramlist; |
| s_list *body_list; |
| |
| s_pattern pat[] = { "signature", type_expr, paramlist, body_list }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "Expected (signature <type> (parameters ...) " |
| "(<instruction> ...))"); |
| return; |
| } |
| |
| const glsl_type *return_type = read_type(type_expr); |
| if (return_type == NULL) |
| return; |
| |
| s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head()); |
| if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) { |
| ir_read_error(paramlist, "Expected (parameters ...)"); |
| return; |
| } |
| |
| // Read the parameters list into a temporary place. |
| exec_list hir_parameters; |
| state->symbols->push_scope(); |
| |
| exec_list_iterator it = paramlist->subexpressions.iterator(); |
| for (it.next() /* skip "parameters" */; it.has_next(); it.next()) { |
| ir_variable *var = read_declaration((s_expression *) it.get()); |
| if (var == NULL) |
| return; |
| |
| hir_parameters.push_tail(var); |
| } |
| |
| ir_function_signature *sig = f->exact_matching_signature(&hir_parameters); |
| if (sig == NULL && skip_body) { |
| /* If scanning for prototypes, generate a new signature. */ |
| sig = new(mem_ctx) ir_function_signature(return_type); |
| sig->is_builtin = true; |
| f->add_signature(sig); |
| } else if (sig != NULL) { |
| const char *badvar = sig->qualifiers_match(&hir_parameters); |
| if (badvar != NULL) { |
| ir_read_error(expr, "function `%s' parameter `%s' qualifiers " |
| "don't match prototype", f->name, badvar); |
| return; |
| } |
| |
| if (sig->return_type != return_type) { |
| ir_read_error(expr, "function `%s' return type doesn't " |
| "match prototype", f->name); |
| return; |
| } |
| } else { |
| /* No prototype for this body exists - skip it. */ |
| state->symbols->pop_scope(); |
| return; |
| } |
| assert(sig != NULL); |
| |
| sig->replace_parameters(&hir_parameters); |
| |
| if (!skip_body && !body_list->subexpressions.is_empty()) { |
| if (sig->is_defined) { |
| ir_read_error(expr, "function %s redefined", f->name); |
| return; |
| } |
| state->current_function = sig; |
| read_instructions(&sig->body, body_list, NULL); |
| state->current_function = NULL; |
| sig->is_defined = true; |
| } |
| |
| state->symbols->pop_scope(); |
| } |
| |
| void |
| ir_reader::read_instructions(exec_list *instructions, s_expression *expr, |
| ir_loop *loop_ctx) |
| { |
| // Read in a list of instructions |
| s_list *list = SX_AS_LIST(expr); |
| if (list == NULL) { |
| ir_read_error(expr, "Expected (<instruction> ...); found an atom."); |
| return; |
| } |
| |
| foreach_iter(exec_list_iterator, it, list->subexpressions) { |
| s_expression *sub = (s_expression*) it.get(); |
| ir_instruction *ir = read_instruction(sub, loop_ctx); |
| if (ir != NULL) { |
| /* Global variable declarations should be moved to the top, before |
| * any functions that might use them. Functions are added to the |
| * instruction stream when scanning for prototypes, so without this |
| * hack, they always appear before variable declarations. |
| */ |
| if (state->current_function == NULL && ir->as_variable() != NULL) |
| instructions->push_head(ir); |
| else |
| instructions->push_tail(ir); |
| } |
| } |
| } |
| |
| |
| ir_instruction * |
| ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx) |
| { |
| s_symbol *symbol = SX_AS_SYMBOL(expr); |
| if (symbol != NULL) { |
| if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL) |
| return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break); |
| if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL) |
| return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue); |
| } |
| |
| s_list *list = SX_AS_LIST(expr); |
| if (list == NULL || list->subexpressions.is_empty()) { |
| ir_read_error(expr, "Invalid instruction.\n"); |
| return NULL; |
| } |
| |
| s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); |
| if (tag == NULL) { |
| ir_read_error(expr, "expected instruction tag"); |
| return NULL; |
| } |
| |
| ir_instruction *inst = NULL; |
| if (strcmp(tag->value(), "declare") == 0) { |
| inst = read_declaration(list); |
| } else if (strcmp(tag->value(), "assign") == 0) { |
| inst = read_assignment(list); |
| } else if (strcmp(tag->value(), "if") == 0) { |
| inst = read_if(list, loop_ctx); |
| } else if (strcmp(tag->value(), "loop") == 0) { |
| inst = read_loop(list); |
| } else if (strcmp(tag->value(), "return") == 0) { |
| inst = read_return(list); |
| } else if (strcmp(tag->value(), "function") == 0) { |
| inst = read_function(list, false); |
| } else { |
| inst = read_rvalue(list); |
| if (inst == NULL) |
| ir_read_error(NULL, "when reading instruction"); |
| } |
| return inst; |
| } |
| |
| ir_variable * |
| ir_reader::read_declaration(s_expression *expr) |
| { |
| s_list *s_quals; |
| s_expression *s_type; |
| s_symbol *s_name; |
| |
| s_pattern pat[] = { "declare", s_quals, s_type, s_name }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)"); |
| return NULL; |
| } |
| |
| const glsl_type *type = read_type(s_type); |
| if (type == NULL) |
| return NULL; |
| |
| ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(), |
| ir_var_auto); |
| |
| foreach_iter(exec_list_iterator, it, s_quals->subexpressions) { |
| s_symbol *qualifier = SX_AS_SYMBOL(it.get()); |
| if (qualifier == NULL) { |
| ir_read_error(expr, "qualifier list must contain only symbols"); |
| return NULL; |
| } |
| |
| // FINISHME: Check for duplicate/conflicting qualifiers. |
| if (strcmp(qualifier->value(), "centroid") == 0) { |
| var->centroid = 1; |
| } else if (strcmp(qualifier->value(), "invariant") == 0) { |
| var->invariant = 1; |
| } else if (strcmp(qualifier->value(), "uniform") == 0) { |
| var->mode = ir_var_uniform; |
| } else if (strcmp(qualifier->value(), "auto") == 0) { |
| var->mode = ir_var_auto; |
| } else if (strcmp(qualifier->value(), "in") == 0) { |
| var->mode = ir_var_in; |
| } else if (strcmp(qualifier->value(), "const_in") == 0) { |
| var->mode = ir_var_const_in; |
| } else if (strcmp(qualifier->value(), "out") == 0) { |
| var->mode = ir_var_out; |
| } else if (strcmp(qualifier->value(), "inout") == 0) { |
| var->mode = ir_var_inout; |
| } else if (strcmp(qualifier->value(), "smooth") == 0) { |
| var->interpolation = INTERP_QUALIFIER_SMOOTH; |
| } else if (strcmp(qualifier->value(), "flat") == 0) { |
| var->interpolation = INTERP_QUALIFIER_FLAT; |
| } else if (strcmp(qualifier->value(), "noperspective") == 0) { |
| var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE; |
| } else { |
| ir_read_error(expr, "unknown qualifier: %s", qualifier->value()); |
| return NULL; |
| } |
| } |
| |
| // Add the variable to the symbol table |
| state->symbols->add_variable(var); |
| |
| return var; |
| } |
| |
| |
| ir_if * |
| ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx) |
| { |
| s_expression *s_cond; |
| s_expression *s_then; |
| s_expression *s_else; |
| |
| s_pattern pat[] = { "if", s_cond, s_then, s_else }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))"); |
| return NULL; |
| } |
| |
| ir_rvalue *condition = read_rvalue(s_cond); |
| if (condition == NULL) { |
| ir_read_error(NULL, "when reading condition of (if ...)"); |
| return NULL; |
| } |
| |
| ir_if *iff = new(mem_ctx) ir_if(condition); |
| |
| read_instructions(&iff->then_instructions, s_then, loop_ctx); |
| read_instructions(&iff->else_instructions, s_else, loop_ctx); |
| if (state->error) { |
| delete iff; |
| iff = NULL; |
| } |
| return iff; |
| } |
| |
| |
| ir_loop * |
| ir_reader::read_loop(s_expression *expr) |
| { |
| s_expression *s_counter, *s_from, *s_to, *s_inc, *s_body; |
| |
| s_pattern pat[] = { "loop", s_counter, s_from, s_to, s_inc, s_body }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (loop <counter> <from> <to> " |
| "<increment> <body>)"); |
| return NULL; |
| } |
| |
| // FINISHME: actually read the count/from/to fields. |
| |
| ir_loop *loop = new(mem_ctx) ir_loop; |
| read_instructions(&loop->body_instructions, s_body, loop); |
| if (state->error) { |
| delete loop; |
| loop = NULL; |
| } |
| return loop; |
| } |
| |
| |
| ir_return * |
| ir_reader::read_return(s_expression *expr) |
| { |
| s_expression *s_retval; |
| |
| s_pattern return_value_pat[] = { "return", s_retval}; |
| s_pattern return_void_pat[] = { "return" }; |
| if (MATCH(expr, return_value_pat)) { |
| ir_rvalue *retval = read_rvalue(s_retval); |
| if (retval == NULL) { |
| ir_read_error(NULL, "when reading return value"); |
| return NULL; |
| } |
| return new(mem_ctx) ir_return(retval); |
| } else if (MATCH(expr, return_void_pat)) { |
| return new(mem_ctx) ir_return; |
| } else { |
| ir_read_error(expr, "expected (return <rvalue>) or (return)"); |
| return NULL; |
| } |
| } |
| |
| |
| ir_rvalue * |
| ir_reader::read_rvalue(s_expression *expr) |
| { |
| s_list *list = SX_AS_LIST(expr); |
| if (list == NULL || list->subexpressions.is_empty()) |
| return NULL; |
| |
| s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); |
| if (tag == NULL) { |
| ir_read_error(expr, "expected rvalue tag"); |
| return NULL; |
| } |
| |
| ir_rvalue *rvalue = read_dereference(list); |
| if (rvalue != NULL || state->error) |
| return rvalue; |
| else if (strcmp(tag->value(), "swiz") == 0) { |
| rvalue = read_swizzle(list); |
| } else if (strcmp(tag->value(), "expression") == 0) { |
| rvalue = read_expression(list); |
| } else if (strcmp(tag->value(), "call") == 0) { |
| rvalue = read_call(list); |
| } else if (strcmp(tag->value(), "constant") == 0) { |
| rvalue = read_constant(list); |
| } else { |
| rvalue = read_texture(list); |
| if (rvalue == NULL && !state->error) |
| ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value()); |
| } |
| |
| return rvalue; |
| } |
| |
| ir_assignment * |
| ir_reader::read_assignment(s_expression *expr) |
| { |
| s_expression *cond_expr = NULL; |
| s_expression *lhs_expr, *rhs_expr; |
| s_list *mask_list; |
| |
| s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr }; |
| s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr }; |
| if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) { |
| ir_read_error(expr, "expected (assign [<condition>] (<write mask>) " |
| "<lhs> <rhs>)"); |
| return NULL; |
| } |
| |
| ir_rvalue *condition = NULL; |
| if (cond_expr != NULL) { |
| condition = read_rvalue(cond_expr); |
| if (condition == NULL) { |
| ir_read_error(NULL, "when reading condition of assignment"); |
| return NULL; |
| } |
| } |
| |
| unsigned mask = 0; |
| |
| s_symbol *mask_symbol; |
| s_pattern mask_pat[] = { mask_symbol }; |
| if (MATCH(mask_list, mask_pat)) { |
| const char *mask_str = mask_symbol->value(); |
| unsigned mask_length = strlen(mask_str); |
| if (mask_length > 4) { |
| ir_read_error(expr, "invalid write mask: %s", mask_str); |
| return NULL; |
| } |
| |
| const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */ |
| |
| for (unsigned i = 0; i < mask_length; i++) { |
| if (mask_str[i] < 'w' || mask_str[i] > 'z') { |
| ir_read_error(expr, "write mask contains invalid character: %c", |
| mask_str[i]); |
| return NULL; |
| } |
| mask |= 1 << idx_map[mask_str[i] - 'w']; |
| } |
| } else if (!mask_list->subexpressions.is_empty()) { |
| ir_read_error(mask_list, "expected () or (<write mask>)"); |
| return NULL; |
| } |
| |
| ir_dereference *lhs = read_dereference(lhs_expr); |
| if (lhs == NULL) { |
| ir_read_error(NULL, "when reading left-hand side of assignment"); |
| return NULL; |
| } |
| |
| ir_rvalue *rhs = read_rvalue(rhs_expr); |
| if (rhs == NULL) { |
| ir_read_error(NULL, "when reading right-hand side of assignment"); |
| return NULL; |
| } |
| |
| if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) { |
| ir_read_error(expr, "non-zero write mask required."); |
| return NULL; |
| } |
| |
| return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask); |
| } |
| |
| ir_call * |
| ir_reader::read_call(s_expression *expr) |
| { |
| s_symbol *name; |
| s_list *params; |
| |
| s_pattern pat[] = { "call", name, params }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (call <name> (<param> ...))"); |
| return NULL; |
| } |
| |
| exec_list parameters; |
| |
| foreach_iter(exec_list_iterator, it, params->subexpressions) { |
| s_expression *expr = (s_expression*) it.get(); |
| ir_rvalue *param = read_rvalue(expr); |
| if (param == NULL) { |
| ir_read_error(expr, "when reading parameter to function call"); |
| return NULL; |
| } |
| parameters.push_tail(param); |
| } |
| |
| ir_function *f = state->symbols->get_function(name->value()); |
| if (f == NULL) { |
| ir_read_error(expr, "found call to undefined function %s", |
| name->value()); |
| return NULL; |
| } |
| |
| ir_function_signature *callee = f->matching_signature(¶meters); |
| if (callee == NULL) { |
| ir_read_error(expr, "couldn't find matching signature for function " |
| "%s", name->value()); |
| return NULL; |
| } |
| |
| return new(mem_ctx) ir_call(callee, ¶meters); |
| } |
| |
| ir_expression * |
| ir_reader::read_expression(s_expression *expr) |
| { |
| s_expression *s_type; |
| s_symbol *s_op; |
| s_expression *s_arg1; |
| |
| s_pattern pat[] = { "expression", s_type, s_op, s_arg1 }; |
| if (!PARTIAL_MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (expression <type> <operator> " |
| "<operand> [<operand>])"); |
| return NULL; |
| } |
| s_expression *s_arg2 = (s_expression *) s_arg1->next; // may be tail sentinel |
| |
| const glsl_type *type = read_type(s_type); |
| if (type == NULL) |
| return NULL; |
| |
| /* Read the operator */ |
| ir_expression_operation op = ir_expression::get_operator(s_op->value()); |
| if (op == (ir_expression_operation) -1) { |
| ir_read_error(expr, "invalid operator: %s", s_op->value()); |
| return NULL; |
| } |
| |
| unsigned num_operands = ir_expression::get_num_operands(op); |
| if (num_operands == 1 && !s_arg1->next->is_tail_sentinel()) { |
| ir_read_error(expr, "expected (expression <type> %s <operand>)", |
| s_op->value()); |
| return NULL; |
| } |
| |
| ir_rvalue *arg1 = read_rvalue(s_arg1); |
| ir_rvalue *arg2 = NULL; |
| if (arg1 == NULL) { |
| ir_read_error(NULL, "when reading first operand of %s", s_op->value()); |
| return NULL; |
| } |
| |
| if (num_operands == 2) { |
| if (s_arg2->is_tail_sentinel() || !s_arg2->next->is_tail_sentinel()) { |
| ir_read_error(expr, "expected (expression <type> %s <operand> " |
| "<operand>)", s_op->value()); |
| return NULL; |
| } |
| arg2 = read_rvalue(s_arg2); |
| if (arg2 == NULL) { |
| ir_read_error(NULL, "when reading second operand of %s", |
| s_op->value()); |
| return NULL; |
| } |
| } |
| |
| return new(mem_ctx) ir_expression(op, type, arg1, arg2); |
| } |
| |
| ir_swizzle * |
| ir_reader::read_swizzle(s_expression *expr) |
| { |
| s_symbol *swiz; |
| s_expression *sub; |
| |
| s_pattern pat[] = { "swiz", swiz, sub }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)"); |
| return NULL; |
| } |
| |
| if (strlen(swiz->value()) > 4) { |
| ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value()); |
| return NULL; |
| } |
| |
| ir_rvalue *rvalue = read_rvalue(sub); |
| if (rvalue == NULL) |
| return NULL; |
| |
| ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(), |
| rvalue->type->vector_elements); |
| if (ir == NULL) |
| ir_read_error(expr, "invalid swizzle"); |
| |
| return ir; |
| } |
| |
| ir_constant * |
| ir_reader::read_constant(s_expression *expr) |
| { |
| s_expression *type_expr; |
| s_list *values; |
| |
| s_pattern pat[] = { "constant", type_expr, values }; |
| if (!MATCH(expr, pat)) { |
| ir_read_error(expr, "expected (constant <type> (...))"); |
| return NULL; |
| } |
| |
| const glsl_type *type = read_type(type_expr); |
| if (type == NULL) |
| return NULL; |
| |
| if (values == NULL) { |
| ir_read_error(expr, "expected (constant <type> (...))"); |
| return NULL; |
| } |
| |
| if (type->is_array()) { |
| unsigned elements_supplied = 0; |
| exec_list elements; |
| foreach_iter(exec_list_iterator, it, values->subexpressions) { |
| s_expression *elt = (s_expression *) it.get(); |
| ir_constant *ir_elt = read_constant(elt); |
| if (ir_elt == NULL) |
| return NULL; |
| elements.push_tail(ir_elt); |
| elements_supplied++; |
| } |
| |
| if (elements_supplied != type->length) { |
| ir_read_error(values, "expected exactly %u array elements, " |
| "given %u", type->length, elements_supplied); |
| return NULL; |
| } |
| return new(mem_ctx) ir_constant(type, &elements); |
| } |
| |
| ir_constant_data data = { { 0 } }; |
| |
| // Read in list of values (at most 16). |
| unsigned k = 0; |
| foreach_iter(exec_list_iterator, it, values->subexpressions) { |
| if (k >= 16) { |
| ir_read_error(values, "expected at most 16 numbers"); |
| return NULL; |
| } |
| |
| s_expression *expr = (s_expression*) it.get(); |
| |
| if (type->base_type == GLSL_TYPE_FLOAT) { |
| s_number *value = SX_AS_NUMBER(expr); |
| if (value == NULL) { |
| ir_read_error(values, "expected numbers"); |
| return NULL; |
| } |
| data.f[k] = value->fvalue(); |
| } else { |
| s_int *value = SX_AS_INT(expr); |
| if (value == NULL) { |
| ir_read_error(values, "expected integers"); |
| return NULL; |
| } |
| |
| switch (type->base_type) { |
| case GLSL_TYPE_UINT: { |
| data.u[k] = value->value(); |
| break; |
| } |
| case GLSL_TYPE_INT: { |
| data.i[k] = value->value(); |
| break; |
| } |
| case GLSL_TYPE_BOOL: { |
| data.b[k] = value->value(); |
| break; |
| } |
| default: |
| ir_read_error(values, "unsupported constant type"); |
| return NULL; |
| } |
| } |
| ++k; |
| } |
| if (k != type->components()) { |
| ir_read_error(values, "expected %u constant values, found %u", |
| type->components(), k); |
| return NULL; |
| } |
| |
| return new(mem_ctx) ir_constant(type, &data); |
| } |
| |
| ir_dereference * |
| ir_reader::read_dereference(s_expression *expr) |
| { |
| s_symbol *s_var; |
| s_expression *s_subject; |
| s_expression *s_index; |
| s_symbol *s_field; |
| |
| s_pattern var_pat[] = { "var_ref", s_var }; |
| s_pattern array_pat[] = { "array_ref", s_subject, s_index }; |
| s_pattern record_pat[] = { "record_ref", s_subject, s_field }; |
| |
| if (MATCH(expr, var_pat)) { |
| ir_variable *var = state->symbols->get_variable(s_var->value()); |
| if (var == NULL) { |
| ir_read_error(expr, "undeclared variable: %s", s_var->value()); |
| return NULL; |
| } |
| return new(mem_ctx) ir_dereference_variable(var); |
| } else if (MATCH(expr, array_pat)) { |
| ir_rvalue *subject = read_rvalue(s_subject); |
| if (subject == NULL) { |
| ir_read_error(NULL, "when reading the subject of an array_ref"); |
| return NULL; |
| } |
| |
| ir_rvalue *idx = read_rvalue(s_index); |
| if (subject == NULL) { |
| ir_read_error(NULL, "when reading the index of an array_ref"); |
| return NULL; |
| } |
| return new(mem_ctx) ir_dereference_array(subject, idx); |
| } else if (MATCH(expr, record_pat)) { |
| ir_rvalue *subject = read_rvalue(s_subject); |
| if (subject == NULL) { |
| ir_read_error(NULL, "when reading the subject of a record_ref"); |
| return NULL; |
| } |
| return new(mem_ctx) ir_dereference_record(subject, s_field->value()); |
| } |
| return NULL; |
| } |
| |
| ir_texture * |
| ir_reader::read_texture(s_expression *expr) |
| { |
| s_symbol *tag = NULL; |
| s_expression *s_type = NULL; |
| s_expression *s_sampler = NULL; |
| s_expression *s_coord = NULL; |
| s_expression *s_offset = NULL; |
| s_expression *s_proj = NULL; |
| s_list *s_shadow = NULL; |
| s_expression *s_lod = NULL; |
| |
| ir_texture_opcode op = ir_tex; /* silence warning */ |
| |
| s_pattern tex_pattern[] = |
| { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow }; |
| s_pattern txf_pattern[] = |
| { "txf", s_type, s_sampler, s_coord, s_offset, s_lod }; |
| s_pattern txs_pattern[] = |
| { "txs", s_type, s_sampler, s_lod }; |
| s_pattern other_pattern[] = |
| { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod }; |
| |
| if (MATCH(expr, tex_pattern)) { |
| op = ir_tex; |
| } else if (MATCH(expr, txf_pattern)) { |
| op = ir_txf; |
| } else if (MATCH(expr, txs_pattern)) { |
| op = ir_txs; |
| } else if (MATCH(expr, other_pattern)) { |
| op = ir_texture::get_opcode(tag->value()); |
| if (op == -1) |
| return NULL; |
| } else { |
| ir_read_error(NULL, "unexpected texture pattern"); |
| return NULL; |
| } |
| |
| ir_texture *tex = new(mem_ctx) ir_texture(op); |
| |
| // Read return type |
| const glsl_type *type = read_type(s_type); |
| if (type == NULL) { |
| ir_read_error(NULL, "when reading type in (%s ...)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| |
| // Read sampler (must be a deref) |
| ir_dereference *sampler = read_dereference(s_sampler); |
| if (sampler == NULL) { |
| ir_read_error(NULL, "when reading sampler in (%s ...)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| tex->set_sampler(sampler, type); |
| |
| if (op != ir_txs) { |
| // Read coordinate (any rvalue) |
| tex->coordinate = read_rvalue(s_coord); |
| if (tex->coordinate == NULL) { |
| ir_read_error(NULL, "when reading coordinate in (%s ...)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| |
| // Read texel offset - either 0 or an rvalue. |
| s_int *si_offset = SX_AS_INT(s_offset); |
| if (si_offset == NULL || si_offset->value() != 0) { |
| tex->offset = read_rvalue(s_offset); |
| if (tex->offset == NULL) { |
| ir_read_error(s_offset, "expected 0 or an expression"); |
| return NULL; |
| } |
| } |
| } |
| |
| if (op != ir_txf && op != ir_txs) { |
| s_int *proj_as_int = SX_AS_INT(s_proj); |
| if (proj_as_int && proj_as_int->value() == 1) { |
| tex->projector = NULL; |
| } else { |
| tex->projector = read_rvalue(s_proj); |
| if (tex->projector == NULL) { |
| ir_read_error(NULL, "when reading projective divide in (%s ..)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| } |
| |
| if (s_shadow->subexpressions.is_empty()) { |
| tex->shadow_comparitor = NULL; |
| } else { |
| tex->shadow_comparitor = read_rvalue(s_shadow); |
| if (tex->shadow_comparitor == NULL) { |
| ir_read_error(NULL, "when reading shadow comparitor in (%s ..)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| } |
| } |
| |
| switch (op) { |
| case ir_txb: |
| tex->lod_info.bias = read_rvalue(s_lod); |
| if (tex->lod_info.bias == NULL) { |
| ir_read_error(NULL, "when reading LOD bias in (txb ...)"); |
| return NULL; |
| } |
| break; |
| case ir_txl: |
| case ir_txf: |
| case ir_txs: |
| tex->lod_info.lod = read_rvalue(s_lod); |
| if (tex->lod_info.lod == NULL) { |
| ir_read_error(NULL, "when reading LOD in (%s ...)", |
| tex->opcode_string()); |
| return NULL; |
| } |
| break; |
| case ir_txd: { |
| s_expression *s_dx, *s_dy; |
| s_pattern dxdy_pat[] = { s_dx, s_dy }; |
| if (!MATCH(s_lod, dxdy_pat)) { |
| ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)"); |
| return NULL; |
| } |
| tex->lod_info.grad.dPdx = read_rvalue(s_dx); |
| if (tex->lod_info.grad.dPdx == NULL) { |
| ir_read_error(NULL, "when reading dPdx in (txd ...)"); |
| return NULL; |
| } |
| tex->lod_info.grad.dPdy = read_rvalue(s_dy); |
| if (tex->lod_info.grad.dPdy == NULL) { |
| ir_read_error(NULL, "when reading dPdy in (txd ...)"); |
| return NULL; |
| } |
| break; |
| } |
| default: |
| // tex doesn't have any extra parameters. |
| break; |
| }; |
| return tex; |
| } |