blob: edd535a8846c1db1a21b66a5a4f838325af041f8 [file] [log] [blame]
/**************************************************************************
*
* Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* TGSI to PowerPC code generation.
*/
#include "pipe/p_config.h"
#if defined(PIPE_ARCH_PPC)
#include "pipe/p_debug.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/u_sse.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
#include "tgsi_exec.h"
#include "tgsi_ppc.h"
#include "rtasm/rtasm_ppc.h"
#define FOR_EACH_CHANNEL( CHAN )\
for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
#define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN)))
#define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
#define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
FOR_EACH_CHANNEL( CHAN )\
IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
#define CHAN_X 0
#define CHAN_Y 1
#define CHAN_Z 2
#define CHAN_W 3
#define TEMP_ONE_I TGSI_EXEC_TEMP_ONE_I
#define TEMP_ONE_C TGSI_EXEC_TEMP_ONE_C
#define TEMP_R0 TGSI_EXEC_TEMP_R0
#define TEMP_ADDR TGSI_EXEC_TEMP_ADDR
/**
* Context/state used during code gen.
*/
struct gen_context
{
struct ppc_function *f;
int inputs_reg; /**< GP register pointing to input params */
int outputs_reg; /**< GP register pointing to output params */
int temps_reg; /**< GP register pointing to temporary "registers" */
int immed_reg; /**< GP register pointing to immediates buffer */
int const_reg; /**< GP register pointing to constants buffer */
int one_vec; /**< vector register with {1.0, 1.0, 1.0, 1.0} */
int bit31_vec; /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
};
/**
* Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
*/
static int
gen_one_vec(struct gen_context *gen)
{
if (gen->one_vec < 0) {
gen->one_vec = ppc_allocate_vec_register(gen->f);
ppc_vload_float(gen->f, gen->one_vec, 1.0f);
}
return gen->one_vec;
}
/**
* Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
*/
static int
gen_get_bit31_vec(struct gen_context *gen)
{
if (gen->bit31_vec < 0) {
gen->bit31_vec = ppc_allocate_vec_register(gen->f);
ppc_vspltisw(gen->f, gen->bit31_vec, -1);
ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
}
return gen->bit31_vec;
}
/**
* Register fetch, put result in 'dst_vec'.
*/
static void
emit_fetch(struct gen_context *gen,
unsigned dst_vec,
const struct tgsi_full_src_register *reg,
const unsigned chan_index)
{
uint swizzle = tgsi_util_get_full_src_register_extswizzle(reg, chan_index);
switch (swizzle) {
case TGSI_EXTSWIZZLE_X:
case TGSI_EXTSWIZZLE_Y:
case TGSI_EXTSWIZZLE_Z:
case TGSI_EXTSWIZZLE_W:
switch (reg->SrcRegister.File) {
case TGSI_FILE_INPUT:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
ppc_li(gen->f, offset_reg, offset);
ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
ppc_release_register(gen->f, offset_reg);
}
break;
case TGSI_FILE_TEMPORARY:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
ppc_li(gen->f, offset_reg, offset);
ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
ppc_release_register(gen->f, offset_reg);
}
break;
case TGSI_FILE_IMMEDIATE:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
ppc_li(gen->f, offset_reg, offset);
ppc_lvx(gen->f, dst_vec, gen->immed_reg, offset_reg);
ppc_release_register(gen->f, offset_reg);
}
break;
case TGSI_FILE_CONSTANT:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->SrcRegister.Index * 4 + swizzle) * 4;
ppc_li(gen->f, offset_reg, offset);
/* Load 4-byte word into vector register.
* The vector slot depends on the effective address we load from.
* We know that our constants start at a 16-byte boundary so we
* know that 'swizzle' tells us which vector slot will have the
* loaded word. The other vector slots will be undefined.
*/
ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
/* splat word[swizzle] across the vector reg */
ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
ppc_release_register(gen->f, offset_reg);
}
break;
default:
assert( 0 );
}
break;
case TGSI_EXTSWIZZLE_ZERO:
ppc_vload_float(gen->f, dst_vec, 0.0f);
break;
case TGSI_EXTSWIZZLE_ONE:
{
int one_vec = gen_one_vec(gen);
ppc_vecmove(gen->f, dst_vec, one_vec);
}
break;
default:
assert( 0 );
}
{
uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
if (sign_op != TGSI_UTIL_SIGN_KEEP) {
int bit31_vec = gen_get_bit31_vec(gen);
switch (sign_op) {
case TGSI_UTIL_SIGN_CLEAR:
/* vec = vec & ~bit31 */
ppc_vandc(gen->f, dst_vec, dst_vec, bit31_vec);
break;
case TGSI_UTIL_SIGN_SET:
/* vec = vec | bit31 */
ppc_vor(gen->f, dst_vec, dst_vec, bit31_vec);
break;
case TGSI_UTIL_SIGN_TOGGLE:
/* vec = vec ^ bit31 */
ppc_vxor(gen->f, dst_vec, dst_vec, bit31_vec);
break;
default:
assert(0);
}
}
}
}
#define FETCH( GEN, INST, DST_VEC, SRC_REG, CHAN ) \
emit_fetch( GEN, DST_VEC, &(INST).FullSrcRegisters[SRC_REG], CHAN )
/**
* Register store. Store 'src_vec' at location indicated by 'reg'.
*/
static void
emit_store(struct gen_context *gen,
unsigned src_vec,
const struct tgsi_full_dst_register *reg,
const struct tgsi_full_instruction *inst,
unsigned chan_index)
{
switch (reg->DstRegister.File) {
case TGSI_FILE_OUTPUT:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
ppc_li(gen->f, offset_reg, offset);
ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
ppc_release_register(gen->f, offset_reg);
}
break;
case TGSI_FILE_TEMPORARY:
{
int offset_reg = ppc_allocate_register(gen->f);
int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
ppc_li(gen->f, offset_reg, offset);
ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
ppc_release_register(gen->f, offset_reg);
}
break;
#if 0
case TGSI_FILE_ADDRESS:
emit_addrs(
func,
xmm,
reg->DstRegister.Index,
chan_index );
break;
#endif
default:
assert( 0 );
}
#if 0
switch( inst->Instruction.Saturate ) {
case TGSI_SAT_NONE:
break;
case TGSI_SAT_ZERO_ONE:
/* assert( 0 ); */
break;
case TGSI_SAT_MINUS_PLUS_ONE:
assert( 0 );
break;
}
#endif
}
#define STORE( GEN, INST, XMM, INDEX, CHAN )\
emit_store( GEN, XMM, &(INST).FullDstRegisters[INDEX], &(INST), CHAN )
static void
emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
int v1 = ppc_allocate_vec_register(gen->f);
uint chan_index;
FETCH(gen, *inst, v0, 0, CHAN_X);
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_RSQ:
/* v1 = 1.0 / sqrt(v0) */
ppc_vrsqrtefp(gen->f, v1, v0);
break;
case TGSI_OPCODE_RCP:
/* v1 = 1.0 / v0 */
ppc_vrefp(gen->f, v1, v0);
break;
default:
assert(0);
}
FOR_EACH_DST0_ENABLED_CHANNEL( *inst, chan_index ) {
STORE(gen, *inst, v1, 0, chan_index);
}
ppc_release_vec_register(gen->f, v0);
ppc_release_vec_register(gen->f, v1);
}
static void
emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
uint chan_index;
FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
FETCH(gen, *inst, 0, 0, chan_index); /* v0 = srcreg[0] */
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ABS:
/* turn off the most significant bit of each vector float word */
{
int v1 = ppc_allocate_vec_register(gen->f);
ppc_vspltisw(gen->f, v1, -1); /* v1 = {-1, -1, -1, -1} */
ppc_vslw(gen->f, v1, v1, v1); /* v1 = {1<<31, 1<<31, 1<<31, 1<<31} */
ppc_vandc(gen->f, v0, v0, v1); /* v0 = v0 & ~v1 */
ppc_release_vec_register(gen->f, v1);
}
break;
case TGSI_OPCODE_FLOOR:
ppc_vrfim(gen->f, v0, v0); /* v0 = floor(v0) */
break;
case TGSI_OPCODE_FRAC:
{
int v1 = ppc_allocate_vec_register(gen->f);
ppc_vrfim(gen->f, v1, v0); /* v1 = floor(v0) */
ppc_vsubfp(gen->f, v0, v0, v1); /* v0 = v0 - v1 */
ppc_release_vec_register(gen->f, v1);
}
break;
case TGSI_OPCODE_EXPBASE2:
ppc_vexptefp(gen->f, v0, v0); /* v0 = 2^v0 */
break;
case TGSI_OPCODE_LOGBASE2:
/* XXX this may be broken! */
ppc_vlogefp(gen->f, v0, v0); /* v0 = log2(v0) */
break;
case TGSI_OPCODE_MOV:
/* nothing */
break;
default:
assert(0);
}
STORE(gen, *inst, v0, 0, chan_index); /* store v0 */
}
ppc_release_vec_register(gen->f, v0);
}
static void
emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
int v1 = ppc_allocate_vec_register(gen->f);
int v2 = ppc_allocate_vec_register(gen->f);
uint chan_index;
FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
FETCH(gen, *inst, v0, 0, chan_index); /* v0 = srcreg[0] */
FETCH(gen, *inst, v1, 1, chan_index); /* v1 = srcreg[1] */
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ADD:
ppc_vaddfp(gen->f, v2, v0, v1);
break;
case TGSI_OPCODE_SUB:
ppc_vsubfp(gen->f, v2, v0, v1);
break;
case TGSI_OPCODE_MUL:
ppc_vxor(gen->f, v2, v2, v2); /* v2 = {0, 0, 0, 0} */
ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v0 */
break;
case TGSI_OPCODE_MIN:
ppc_vminfp(gen->f, v2, v0, v1);
break;
case TGSI_OPCODE_MAX:
ppc_vmaxfp(gen->f, v2, v0, v1);
break;
default:
assert(0);
}
STORE(gen, *inst, v2, 0, chan_index); /* store v2 */
}
ppc_release_vec_register(gen->f, v0);
ppc_release_vec_register(gen->f, v1);
ppc_release_vec_register(gen->f, v2);
}
/**
* Vector comparisons, resulting in 1.0 or 0.0 values.
*/
static void
emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
int v1 = ppc_allocate_vec_register(gen->f);
int v2 = ppc_allocate_vec_register(gen->f);
uint chan_index;
boolean complement = FALSE;
int one_vec = gen_one_vec(gen);
FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
FETCH(gen, *inst, v0, 0, chan_index); /* v0 = srcreg[0] */
FETCH(gen, *inst, v1, 1, chan_index); /* v1 = srcreg[1] */
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_SNE:
complement = TRUE;
/* fall-through */
case TGSI_OPCODE_SEQ:
ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
break;
case TGSI_OPCODE_SGE:
complement = TRUE;
/* fall-through */
case TGSI_OPCODE_SLT:
ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
break;
case TGSI_OPCODE_SLE:
complement = TRUE;
/* fall-through */
case TGSI_OPCODE_SGT:
ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
break;
default:
assert(0);
}
/* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
if (complement)
ppc_vandc(gen->f, v2, one_vec, v2); /* v2 = one_vec & ~v2 */
else
ppc_vand(gen->f, v2, one_vec, v2); /* v2 = one_vec & v2 */
STORE(gen, *inst, v2, 0, chan_index); /* store v2 */
}
ppc_release_vec_register(gen->f, v0);
ppc_release_vec_register(gen->f, v1);
ppc_release_vec_register(gen->f, v2);
}
static void
emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
int v1 = ppc_allocate_vec_register(gen->f);
int v2 = ppc_allocate_vec_register(gen->f);
uint chan_index;
ppc_vxor(gen->f, v2, v2, v2); /* v2 = {0, 0, 0, 0} */
FETCH(gen, *inst, v0, 0, CHAN_X); /* v0 = src0.XXXX */
FETCH(gen, *inst, v1, 1, CHAN_X); /* v1 = src1.XXXX */
ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
FETCH(gen, *inst, v0, 0, CHAN_Y); /* v0 = src0.YYYY */
FETCH(gen, *inst, v1, 1, CHAN_Y); /* v1 = src1.YYYY */
ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
FETCH(gen, *inst, v0, 0, CHAN_Z); /* v0 = src0.ZZZZ */
FETCH(gen, *inst, v1, 1, CHAN_Z); /* v1 = src1.ZZZZ */
ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
FETCH(gen, *inst, v0, 0, CHAN_W); /* v0 = src0.WWWW */
FETCH(gen, *inst, v1, 1, CHAN_W); /* v1 = src1.WWWW */
ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
}
else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
FETCH(gen, *inst, v1, 1, CHAN_W); /* v1 = src1.WWWW */
ppc_vaddfp(gen->f, v2, v2, v1); /* v2 = v2 + v1 */
}
FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
STORE(gen, *inst, v2, 0, chan_index); /* store v2 */
}
ppc_release_vec_register(gen->f, v0);
ppc_release_vec_register(gen->f, v1);
ppc_release_vec_register(gen->f, v2);
}
static void
emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int v0 = ppc_allocate_vec_register(gen->f);
int v1 = ppc_allocate_vec_register(gen->f);
int v2 = ppc_allocate_vec_register(gen->f);
int v3 = ppc_allocate_vec_register(gen->f);
uint chan_index;
FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
FETCH(gen, *inst, v0, 0, chan_index); /* v0 = srcreg[0] */
FETCH(gen, *inst, v1, 1, chan_index); /* v1 = srcreg[1] */
FETCH(gen, *inst, v2, 2, chan_index); /* v2 = srcreg[2] */
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_MAD:
ppc_vmaddfp(gen->f, v3, v0, v1, v2); /* v3 = v0 * v1 + v2 */
break;
case TGSI_OPCODE_LRP:
ppc_vsubfp(gen->f, v3, v1, v2); /* v3 = v1 - v2 */
ppc_vmaddfp(gen->f, v3, v0, v3, v2); /* v3 = v0 * v3 + v2 */
break;
default:
assert(0);
}
STORE(gen, *inst, v3, 0, chan_index); /* store v3 */
}
ppc_release_vec_register(gen->f, v0);
ppc_release_vec_register(gen->f, v1);
ppc_release_vec_register(gen->f, v2);
ppc_release_vec_register(gen->f, v3);
}
/** Approximation for vr = pow(va, vb) */
static void
ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
{
/* pow(a,b) ~= exp2(log2(a) * b) */
int t_vec = ppc_allocate_vec_register(f);
int zero_vec = ppc_allocate_vec_register(f);
ppc_vload_float(f, zero_vec, 0.0f);
ppc_vlogefp(f, t_vec, va); /* t = log2(va) */
ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec); /* t = t * vb */
ppc_vexptefp(f, vr, t_vec); /* vr = 2^t */
ppc_release_vec_register(f, t_vec);
ppc_release_vec_register(f, zero_vec);
}
static void
emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
{
int one_vec = gen_one_vec(gen);
/* Compute X */
if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
STORE(gen, *inst, one_vec, 0, CHAN_X);
}
/* Compute Y, Z */
if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
int x_vec = ppc_allocate_vec_register(gen->f);
int zero_vec = ppc_allocate_vec_register(gen->f);
FETCH(gen, *inst, x_vec, 0, CHAN_X); /* x_vec = src[0].x */
ppc_vload_float(gen->f, zero_vec, 0.0f); /* zero = {0,0,0,0} */
ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
STORE(gen, *inst, x_vec, 0, CHAN_Y); /* store Y */
}
if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
int y_vec = ppc_allocate_vec_register(gen->f);
int z_vec = ppc_allocate_vec_register(gen->f);
int w_vec = ppc_allocate_vec_register(gen->f);
int pow_vec = ppc_allocate_vec_register(gen->f);
int pos_vec = ppc_allocate_vec_register(gen->f);
int c128_vec = ppc_allocate_vec_register(gen->f);
FETCH(gen, *inst, y_vec, 0, CHAN_Y); /* y_vec = src[0].y */
ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
FETCH(gen, *inst, w_vec, 0, CHAN_W); /* w_vec = src[0].w */
/* XXX clamp Y to [-128, 128] */
ppc_vload_float(gen->f, c128_vec, 128.0f);
/* if temp.x > 0
* pow(tmp.y, tmp.w)
* else
* 0.0
*/
ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec); /* pow = pow(y, w) */
ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
ppc_vand(gen->f, z_vec, pow_vec, pos_vec); /* z = pow & pos */
STORE(gen, *inst, z_vec, 0, CHAN_Z); /* store Z */
ppc_release_vec_register(gen->f, y_vec);
ppc_release_vec_register(gen->f, z_vec);
ppc_release_vec_register(gen->f, w_vec);
ppc_release_vec_register(gen->f, pow_vec);
ppc_release_vec_register(gen->f, pos_vec);
}
ppc_release_vec_register(gen->f, x_vec);
ppc_release_vec_register(gen->f, zero_vec);
}
/* Compute W */
if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
STORE(gen, *inst, one_vec, 0, CHAN_W);
}
}
static int
emit_instruction(struct gen_context *gen,
struct tgsi_full_instruction *inst)
{
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_MOV:
case TGSI_OPCODE_ABS:
case TGSI_OPCODE_FLOOR:
case TGSI_OPCODE_FRAC:
case TGSI_OPCODE_EXPBASE2:
case TGSI_OPCODE_LOGBASE2:
emit_unaryop(gen, inst);
break;
case TGSI_OPCODE_RSQ:
case TGSI_OPCODE_RCP:
emit_scalar_unaryop(gen, inst);
break;
case TGSI_OPCODE_ADD:
case TGSI_OPCODE_SUB:
case TGSI_OPCODE_MUL:
case TGSI_OPCODE_MIN:
case TGSI_OPCODE_MAX:
emit_binop(gen, inst);
break;
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_SNE:
case TGSI_OPCODE_SLT:
case TGSI_OPCODE_SGT:
case TGSI_OPCODE_SLE:
case TGSI_OPCODE_SGE:
emit_inequality(gen, inst);
break;
case TGSI_OPCODE_MAD:
case TGSI_OPCODE_LRP:
emit_triop(gen, inst);
break;
case TGSI_OPCODE_DP3:
case TGSI_OPCODE_DP4:
case TGSI_OPCODE_DPH:
emit_dotprod(gen, inst);
break;
case TGSI_OPCODE_LIT:
emit_lit(gen, inst);
break;
case TGSI_OPCODE_END:
/* normal end */
return 1;
default:
return 0;
}
return 1;
}
static void
emit_declaration(
struct ppc_function *func,
struct tgsi_full_declaration *decl )
{
if( decl->Declaration.File == TGSI_FILE_INPUT ) {
#if 0
unsigned first, last, mask;
unsigned i, j;
first = decl->DeclarationRange.First;
last = decl->DeclarationRange.Last;
mask = decl->Declaration.UsageMask;
for( i = first; i <= last; i++ ) {
for( j = 0; j < NUM_CHANNELS; j++ ) {
if( mask & (1 << j) ) {
switch( decl->Declaration.Interpolate ) {
case TGSI_INTERPOLATE_CONSTANT:
emit_coef_a0( func, 0, i, j );
emit_inputs( func, 0, i, j );
break;
case TGSI_INTERPOLATE_LINEAR:
emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
emit_coef_dadx( func, 1, i, j );
emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
emit_coef_dady( func, 3, i, j );
emit_mul( func, 0, 1 ); /* x * dadx */
emit_coef_a0( func, 4, i, j );
emit_mul( func, 2, 3 ); /* y * dady */
emit_add( func, 0, 4 ); /* x * dadx + a0 */
emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
emit_inputs( func, 0, i, j );
break;
case TGSI_INTERPOLATE_PERSPECTIVE:
emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
emit_coef_dadx( func, 1, i, j );
emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
emit_coef_dady( func, 3, i, j );
emit_mul( func, 0, 1 ); /* x * dadx */
emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
emit_coef_a0( func, 5, i, j );
emit_rcp( func, 4, 4 ); /* 1.0 / w */
emit_mul( func, 2, 3 ); /* y * dady */
emit_add( func, 0, 5 ); /* x * dadx + a0 */
emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
emit_mul( func, 0, 4 ); /* (x * dadx + y * dady + a0) / w */
emit_inputs( func, 0, i, j );
break;
default:
assert( 0 );
break;
}
}
}
}
#endif
}
}
static void
emit_prologue(struct ppc_function *func)
{
/* XXX set up stack frame */
}
static void
emit_epilogue(struct ppc_function *func)
{
ppc_return(func);
/* XXX restore prev stack frame */
}
/**
* Translate a TGSI vertex/fragment shader to PPC code.
*
* \param tokens the TGSI input shader
* \param func the output PPC code/function
* \param immediates buffer to place immediates, later passed to PPC func
* \return TRUE for success, FALSE if translation failed
*/
boolean
tgsi_emit_ppc(const struct tgsi_token *tokens,
struct ppc_function *func,
float (*immediates)[4],
boolean do_swizzles )
{
struct tgsi_parse_context parse;
/*boolean instruction_phase = FALSE;*/
unsigned ok = 1;
uint num_immediates = 0;
struct gen_context gen;
util_init_math();
tgsi_parse_init( &parse, tokens );
gen.f = func;
gen.inputs_reg = ppc_reserve_register(func, 3); /* first function param */
gen.outputs_reg = ppc_reserve_register(func, 4); /* second function param */
gen.temps_reg = ppc_reserve_register(func, 5); /* ... */
gen.immed_reg = ppc_reserve_register(func, 6);
gen.const_reg = ppc_reserve_register(func, 7);
gen.one_vec = -1;
gen.bit31_vec = -1;
emit_prologue(func);
while (!tgsi_parse_end_of_tokens(&parse) && ok) {
tgsi_parse_token(&parse);
switch (parse.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_DECLARATION:
if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
emit_declaration(func, &parse.FullToken.FullDeclaration );
}
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
if (!ok) {
debug_printf("failed to translate tgsi opcode %d to PPC (%s)\n",
parse.FullToken.FullInstruction.Instruction.Opcode,
parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
"vertex shader" : "fragment shader");
}
break;
case TGSI_TOKEN_TYPE_IMMEDIATE:
/* splat each immediate component into a float[4] vector for SoA */
{
const uint size = parse.FullToken.FullImmediate.Immediate.Size - 1;
float *imm = (float *) immediates;
uint i;
assert(size <= 4);
assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
for (i = 0; i < size; i++) {
const float value =
parse.FullToken.FullImmediate.u.ImmediateFloat32[i].Float;
imm[num_immediates * 4 + 0] =
imm[num_immediates * 4 + 1] =
imm[num_immediates * 4 + 2] =
imm[num_immediates * 4 + 3] = value;
num_immediates++;
}
}
break;
default:
ok = 0;
assert( 0 );
}
}
emit_epilogue(func);
tgsi_parse_free( &parse );
return ok;
}
#endif /* PIPE_ARCH_PPC */