blob: 81af5f60689858d56444855965f1e9053381e8b1 [file] [log] [blame]
/* $Id: accum.c,v 1.13 1999/11/25 17:36:48 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.3
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include "glheader.h"
#include "accum.h"
#include "context.h"
#include "mem.h"
#include "masking.h"
#include "span.h"
#include "types.h"
#endif
/*
* Accumulation buffer notes
*
* Normally, accumulation buffer values are GLshorts with values in
* [-32767, 32767] which represent floating point colors in [-1, 1],
* as suggested by the OpenGL specification.
*
* We optimize for the common case used for full-scene antialiasing:
* // start with accum buffer cleared to zero
* glAccum(GL_LOAD, w); // or GL_ACCUM the first image
* glAccum(GL_ACCUM, w);
* ...
* glAccum(GL_ACCUM, w);
* glAccum(GL_RETURN, 1.0);
* That is, we start with an empty accumulation buffer and accumulate
* n images, each with weight w = 1/n.
* In this scenario, we can simply store unscaled integer values in
* the accum buffer instead of scaled integers. We'll also keep track
* of the w value so when we do GL_RETURN we simply divide the accumulated
* values by n (=1/w).
* This lets us avoid _many_ int->float->int conversions.
*/
#define USE_OPTIMIZED_ACCUM /* enable the optimization */
void gl_alloc_accum_buffer( GLcontext *ctx )
{
GLint n;
if (ctx->DrawBuffer->Accum) {
FREE( ctx->DrawBuffer->Accum );
ctx->DrawBuffer->Accum = NULL;
}
/* allocate accumulation buffer if not already present */
n = ctx->DrawBuffer->Width * ctx->DrawBuffer->Height * 4 * sizeof(GLaccum);
ctx->DrawBuffer->Accum = (GLaccum *) MALLOC( n );
if (!ctx->DrawBuffer->Accum) {
/* unable to setup accumulation buffer */
gl_error( ctx, GL_OUT_OF_MEMORY, "glAccum" );
}
#ifdef USE_OPTIMIZED_ACCUM
ctx->IntegerAccumMode = GL_TRUE;
#else
ctx->IntegerAccumMode = GL_FALSE;
#endif
ctx->IntegerAccumScaler = 0.0;
}
void
_mesa_ClearAccum( GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glAccum");
ctx->Accum.ClearColor[0] = CLAMP( red, -1.0, 1.0 );
ctx->Accum.ClearColor[1] = CLAMP( green, -1.0, 1.0 );
ctx->Accum.ClearColor[2] = CLAMP( blue, -1.0, 1.0 );
ctx->Accum.ClearColor[3] = CLAMP( alpha, -1.0, 1.0 );
}
/*
* This is called when we fall out of optimized/unscaled accum buffer mode.
* That is, we convert each unscaled accum buffer value into a scaled value
* representing the range[-1, 1].
*/
static void rescale_accum( GLcontext *ctx )
{
const GLuint n = ctx->DrawBuffer->Width * ctx->DrawBuffer->Height * 4;
const GLfloat fChanMax = (1 << (sizeof(GLchan) * 8)) - 1;
const GLfloat s = ctx->IntegerAccumScaler * (32767.0 / fChanMax);
GLaccum *accum = ctx->DrawBuffer->Accum;
GLuint i;
assert(ctx->IntegerAccumMode);
assert(accum);
for (i = 0; i < n; i++) {
accum[i] = (GLaccum) (accum[i] * s);
}
ctx->IntegerAccumMode = GL_FALSE;
}
void
_mesa_Accum( GLenum op, GLfloat value )
{
GET_CURRENT_CONTEXT(ctx);
GLuint xpos, ypos, width, height, width4;
GLfloat acc_scale;
GLubyte rgba[MAX_WIDTH][4];
const GLint iChanMax = (1 << (sizeof(GLchan) * 8)) - 1;
const GLfloat fChanMax = (1 << (sizeof(GLchan) * 8)) - 1;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glAccum");
if (ctx->Visual->AccumBits == 0 || ctx->DrawBuffer != ctx->ReadBuffer) {
gl_error(ctx, GL_INVALID_OPERATION, "glAccum");
return;
}
if (!ctx->DrawBuffer->Accum) {
gl_warning(ctx, "Calling glAccum() without an accumulation buffer (low memory?)");
return;
}
if (sizeof(GLaccum)==1) {
acc_scale = 127.0;
}
else if (sizeof(GLaccum)==2) {
acc_scale = 32767.0;
}
else {
/* sizeof(GLaccum) > 2 (Cray) */
acc_scale = (float) SHRT_MAX;
}
if (ctx->NewState)
gl_update_state( ctx );
/* Determine region to operate upon. */
if (ctx->Scissor.Enabled) {
xpos = ctx->Scissor.X;
ypos = ctx->Scissor.Y;
width = ctx->Scissor.Width;
height = ctx->Scissor.Height;
}
else {
/* whole window */
xpos = 0;
ypos = 0;
width = ctx->DrawBuffer->Width;
height = ctx->DrawBuffer->Height;
}
width4 = 4 * width;
switch (op) {
case GL_ADD:
{
const GLaccum intVal = (GLaccum) (value * acc_scale);
GLuint j;
/* Leave optimized accum buffer mode */
if (ctx->IntegerAccumMode)
rescale_accum(ctx);
for (j = 0; j < height; j++) {
GLaccum * acc = ctx->DrawBuffer->Accum + ypos * width4 + 4 * xpos;
GLuint i;
for (i = 0; i < width4; i++) {
acc[i] += intVal;
}
ypos++;
}
}
break;
case GL_MULT:
{
GLuint j;
/* Leave optimized accum buffer mode */
if (ctx->IntegerAccumMode)
rescale_accum(ctx);
for (j = 0; j < height; j++) {
GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + 4 * xpos;
GLuint i;
for (i = 0; i < width4; i++) {
acc[i] = (GLaccum) ( (GLfloat) acc[i] * value );
}
ypos++;
}
}
break;
case GL_ACCUM:
(*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer,
ctx->Pixel.DriverReadBuffer );
/* May have to leave optimized accum buffer mode */
if (ctx->IntegerAccumScaler == 0.0 && value > 0.0 && value <= 1.0)
ctx->IntegerAccumScaler = value;
if (ctx->IntegerAccumMode && value != ctx->IntegerAccumScaler)
rescale_accum(ctx);
if (ctx->IntegerAccumMode) {
/* simply add integer color values into accum buffer */
GLuint j;
GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos * 4;
assert(ctx->IntegerAccumScaler > 0.0);
assert(ctx->IntegerAccumScaler <= 1.0);
for (j = 0; j < height; j++) {
GLuint i, i4;
gl_read_rgba_span(ctx, ctx->DrawBuffer, width, xpos, ypos, rgba);
for (i = i4 = 0; i < width; i++, i4+=4) {
acc[i4+0] += rgba[i][RCOMP];
acc[i4+1] += rgba[i][GCOMP];
acc[i4+2] += rgba[i][BCOMP];
acc[i4+3] += rgba[i][ACOMP];
}
acc += width4;
ypos++;
}
}
else {
/* scaled integer accum buffer */
const GLfloat rscale = value * acc_scale / fChanMax;
const GLfloat gscale = value * acc_scale / fChanMax;
const GLfloat bscale = value * acc_scale / fChanMax;
const GLfloat ascale = value * acc_scale / fChanMax;
GLuint j;
for (j=0;j<height;j++) {
GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos * 4;
GLuint i;
gl_read_rgba_span(ctx, ctx->DrawBuffer, width, xpos, ypos, rgba);
for (i=0;i<width;i++) {
*acc += (GLaccum) ( (GLfloat) rgba[i][RCOMP] * rscale ); acc++;
*acc += (GLaccum) ( (GLfloat) rgba[i][GCOMP] * gscale ); acc++;
*acc += (GLaccum) ( (GLfloat) rgba[i][BCOMP] * bscale ); acc++;
*acc += (GLaccum) ( (GLfloat) rgba[i][ACOMP] * ascale ); acc++;
}
ypos++;
}
}
/* restore read buffer = draw buffer (the default) */
(*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer,
ctx->Color.DriverDrawBuffer );
break;
case GL_LOAD:
(*ctx->Driver.SetReadBuffer)( ctx, ctx->ReadBuffer,
ctx->Pixel.DriverReadBuffer );
/* This is a change to go into optimized accum buffer mode */
if (value > 0.0 && value <= 1.0) {
#ifdef USE_OPTIMIZED_ACCUM
ctx->IntegerAccumMode = GL_TRUE;
#else
ctx->IntegerAccumMode = GL_FALSE;
#endif
ctx->IntegerAccumScaler = value;
}
else {
ctx->IntegerAccumMode = GL_FALSE;
ctx->IntegerAccumScaler = 0.0;
}
if (ctx->IntegerAccumMode) {
/* just copy values into accum buffer */
GLuint j;
GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos * 4;
assert(ctx->IntegerAccumScaler > 0.0);
assert(ctx->IntegerAccumScaler <= 1.0);
for (j = 0; j < height; j++) {
GLuint i, i4;
gl_read_rgba_span(ctx, ctx->DrawBuffer, width, xpos, ypos, rgba);
for (i = i4 = 0; i < width; i++, i4 += 4) {
acc[i4+0] = rgba[i][RCOMP];
acc[i4+1] = rgba[i][GCOMP];
acc[i4+2] = rgba[i][BCOMP];
acc[i4+3] = rgba[i][ACOMP];
}
acc += width4;
ypos++;
}
}
else {
/* scaled integer accum buffer */
const GLfloat rscale = value * acc_scale / fChanMax;
const GLfloat gscale = value * acc_scale / fChanMax;
const GLfloat bscale = value * acc_scale / fChanMax;
const GLfloat ascale = value * acc_scale / fChanMax;
const GLfloat d = 3.0 / acc_scale;
GLuint i, j;
for (j = 0; j < height; j++) {
GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos * 4;
gl_read_rgba_span(ctx, ctx->DrawBuffer, width, xpos, ypos, rgba);
for (i=0;i<width;i++) {
*acc++ = (GLaccum) ((GLfloat) rgba[i][RCOMP] * rscale + d);
*acc++ = (GLaccum) ((GLfloat) rgba[i][GCOMP] * gscale + d);
*acc++ = (GLaccum) ((GLfloat) rgba[i][BCOMP] * bscale + d);
*acc++ = (GLaccum) ((GLfloat) rgba[i][ACOMP] * ascale + d);
}
ypos++;
}
}
/* restore read buffer = draw buffer (the default) */
(*ctx->Driver.SetReadBuffer)( ctx, ctx->DrawBuffer,
ctx->Color.DriverDrawBuffer );
break;
case GL_RETURN:
/* May have to leave optimized accum buffer mode */
if (ctx->IntegerAccumMode && value != 1.0)
rescale_accum(ctx);
if (ctx->IntegerAccumMode) {
/* build lookup table to avoid many floating point multiplies */
const GLfloat mult = ctx->IntegerAccumScaler;
static GLchan multTable[32768];
static GLfloat prevMult = 0.0;
GLuint j;
const GLint max = 256 / mult;
if (mult != prevMult) {
assert(max <= 32768);
for (j = 0; j < max; j++)
multTable[j] = (GLint) ((GLfloat) j * mult + 0.5F);
prevMult = mult;
}
assert(ctx->IntegerAccumScaler > 0.0);
assert(ctx->IntegerAccumScaler <= 1.0);
for (j = 0; j < height; j++) {
const GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos*4;
GLuint i, i4;
for (i = i4 = 0; i < width; i++, i4 += 4) {
ASSERT(acc[i4+0] < max);
ASSERT(acc[i4+1] < max);
ASSERT(acc[i4+2] < max);
ASSERT(acc[i4+3] < max);
rgba[i][RCOMP] = multTable[acc[i4+0]];
rgba[i][GCOMP] = multTable[acc[i4+1]];
rgba[i][BCOMP] = multTable[acc[i4+2]];
rgba[i][ACOMP] = multTable[acc[i4+3]];
}
if (ctx->Color.SWmasking) {
gl_mask_rgba_span( ctx, width, xpos, ypos, rgba );
}
(*ctx->Driver.WriteRGBASpan)( ctx, width, xpos, ypos,
(const GLubyte (*)[4])rgba, NULL );
ypos++;
}
}
else {
const GLfloat rscale = value / acc_scale * fChanMax;
const GLfloat gscale = value / acc_scale * fChanMax;
const GLfloat bscale = value / acc_scale * fChanMax;
const GLfloat ascale = value / acc_scale * fChanMax;
GLuint i, j;
for (j=0;j<height;j++) {
const GLaccum *acc = ctx->DrawBuffer->Accum + ypos * width4 + xpos*4;
for (i=0;i<width;i++) {
GLint r, g, b, a;
r = (GLint) ( (GLfloat) (*acc++) * rscale + 0.5F );
g = (GLint) ( (GLfloat) (*acc++) * gscale + 0.5F );
b = (GLint) ( (GLfloat) (*acc++) * bscale + 0.5F );
a = (GLint) ( (GLfloat) (*acc++) * ascale + 0.5F );
rgba[i][RCOMP] = CLAMP( r, 0, iChanMax );
rgba[i][GCOMP] = CLAMP( g, 0, iChanMax );
rgba[i][BCOMP] = CLAMP( b, 0, iChanMax );
rgba[i][ACOMP] = CLAMP( a, 0, iChanMax );
}
if (ctx->Color.SWmasking) {
gl_mask_rgba_span( ctx, width, xpos, ypos, rgba );
}
(*ctx->Driver.WriteRGBASpan)( ctx, width, xpos, ypos,
(const GLubyte (*)[4])rgba, NULL );
ypos++;
}
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glAccum" );
}
}
/*
* Clear the accumulation Buffer.
*/
void gl_clear_accum_buffer( GLcontext *ctx )
{
GLuint buffersize;
GLfloat acc_scale;
if (ctx->Visual->AccumBits==0) {
/* No accumulation buffer! */
return;
}
if (sizeof(GLaccum)==1) {
acc_scale = 127.0;
}
else if (sizeof(GLaccum)==2) {
acc_scale = 32767.0;
}
else {
/* sizeof(GLaccum) > 2 (Cray) */
acc_scale = (float) SHRT_MAX;
}
/* number of pixels */
buffersize = ctx->DrawBuffer->Width * ctx->DrawBuffer->Height;
if (!ctx->DrawBuffer->Accum) {
/* try to alloc accumulation buffer */
ctx->DrawBuffer->Accum = (GLaccum *)
MALLOC( buffersize * 4 * sizeof(GLaccum) );
}
if (ctx->DrawBuffer->Accum) {
if (ctx->Scissor.Enabled) {
/* Limit clear to scissor box */
GLaccum r, g, b, a;
GLint i, j;
GLint width, height;
GLaccum *row;
r = (GLaccum) (ctx->Accum.ClearColor[0] * acc_scale);
g = (GLaccum) (ctx->Accum.ClearColor[1] * acc_scale);
b = (GLaccum) (ctx->Accum.ClearColor[2] * acc_scale);
a = (GLaccum) (ctx->Accum.ClearColor[3] * acc_scale);
/* size of region to clear */
width = 4 * (ctx->DrawBuffer->Xmax - ctx->DrawBuffer->Xmin + 1);
height = ctx->DrawBuffer->Ymax - ctx->DrawBuffer->Ymin + 1;
/* ptr to first element to clear */
row = ctx->DrawBuffer->Accum
+ 4 * (ctx->DrawBuffer->Ymin * ctx->DrawBuffer->Width
+ ctx->DrawBuffer->Xmin);
for (j=0;j<height;j++) {
for (i=0;i<width;i+=4) {
row[i+0] = r;
row[i+1] = g;
row[i+2] = b;
row[i+3] = a;
}
row += 4 * ctx->DrawBuffer->Width;
}
}
else {
/* clear whole buffer */
if (ctx->Accum.ClearColor[0]==0.0 &&
ctx->Accum.ClearColor[1]==0.0 &&
ctx->Accum.ClearColor[2]==0.0 &&
ctx->Accum.ClearColor[3]==0.0) {
/* Black */
MEMSET( ctx->DrawBuffer->Accum, 0, buffersize * 4 * sizeof(GLaccum) );
}
else {
/* Not black */
GLaccum *acc, r, g, b, a;
GLuint i;
acc = ctx->DrawBuffer->Accum;
r = (GLaccum) (ctx->Accum.ClearColor[0] * acc_scale);
g = (GLaccum) (ctx->Accum.ClearColor[1] * acc_scale);
b = (GLaccum) (ctx->Accum.ClearColor[2] * acc_scale);
a = (GLaccum) (ctx->Accum.ClearColor[3] * acc_scale);
for (i=0;i<buffersize;i++) {
*acc++ = r;
*acc++ = g;
*acc++ = b;
*acc++ = a;
}
}
}
/* update optimized accum state vars */
if (ctx->Accum.ClearColor[0] == 0.0 && ctx->Accum.ClearColor[1] == 0.0 &&
ctx->Accum.ClearColor[2] == 0.0 && ctx->Accum.ClearColor[3] == 0.0) {
#ifdef USE_OPTIMIZED_ACCUM
ctx->IntegerAccumMode = GL_TRUE;
#else
ctx->IntegerAccumMode = GL_FALSE;
#endif
ctx->IntegerAccumScaler = 0.0; /* denotes empty accum buffer */
}
else {
ctx->IntegerAccumMode = GL_FALSE;
}
}
}