blob: 966b548082bcb390f3c219c5f1ae792157e9356f [file] [log] [blame]
/* $Id: light.c,v 1.5 1999/10/19 18:37:04 keithw Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.1
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include <float.h>
#ifndef XFree86Server
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdlib.h>
#else
#include "GL/xf86glx.h"
#endif
#include <stdio.h>
#include "context.h"
#include "enums.h"
#include "light.h"
#include "macros.h"
#include "matrix.h"
#include "mmath.h"
#include "simple_list.h"
#include "types.h"
#include "vb.h"
#include "xform.h"
#endif
void gl_ShadeModel( GLcontext *ctx, GLenum mode )
{
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glShadeModel");
if (MESA_VERBOSE & VERBOSE_API)
fprintf(stderr, "glShadeModel %s\n", gl_lookup_enum_by_nr(mode));
switch (mode) {
case GL_FLAT:
case GL_SMOOTH:
if (ctx->Light.ShadeModel!=mode) {
ctx->Light.ShadeModel = mode;
ctx->TriangleCaps ^= DD_FLATSHADE;
ctx->NewState |= NEW_RASTER_OPS;
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" );
}
if (ctx->Driver.ShadeModel)
(*ctx->Driver.ShadeModel)( ctx, mode );
}
void gl_Lightfv( GLcontext *ctx,
GLenum light, GLenum pname, const GLfloat *params,
GLint nparams )
{
GLint l;
(void) nparams;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLight");
l = (GLint) (light - GL_LIGHT0);
if (l<0 || l>=MAX_LIGHTS) {
gl_error( ctx, GL_INVALID_ENUM, "glLight" );
return;
}
switch (pname) {
case GL_AMBIENT:
COPY_4V( ctx->Light.Light[l].Ambient, params );
break;
case GL_DIFFUSE:
COPY_4V( ctx->Light.Light[l].Diffuse, params );
break;
case GL_SPECULAR:
COPY_4V( ctx->Light.Light[l].Specular, params );
break;
case GL_POSITION:
/* transform position by ModelView matrix */
TRANSFORM_POINT( ctx->Light.Light[l].EyePosition,
ctx->ModelView.m,
params );
break;
case GL_SPOT_DIRECTION:
/* transform direction by inverse modelview */
if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) {
gl_matrix_analyze( &ctx->ModelView );
}
TRANSFORM_NORMAL( ctx->Light.Light[l].EyeDirection,
params,
ctx->ModelView.inv );
break;
case GL_SPOT_EXPONENT:
if (params[0]<0.0 || params[0]>128.0) {
gl_error( ctx, GL_INVALID_VALUE, "glLight" );
return;
}
if (ctx->Light.Light[l].SpotExponent != params[0]) {
ctx->Light.Light[l].SpotExponent = params[0];
gl_compute_spot_exp_table( &ctx->Light.Light[l] );
}
break;
case GL_SPOT_CUTOFF:
if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) {
gl_error( ctx, GL_INVALID_VALUE, "glLight" );
return;
}
ctx->Light.Light[l].SpotCutoff = params[0];
ctx->Light.Light[l].CosCutoff = cos(params[0]*DEG2RAD);
if (ctx->Light.Light[l].CosCutoff < 0)
ctx->Light.Light[l].CosCutoff = 0;
break;
case GL_CONSTANT_ATTENUATION:
if (params[0]<0.0) {
gl_error( ctx, GL_INVALID_VALUE, "glLight" );
return;
}
ctx->Light.Light[l].ConstantAttenuation = params[0];
break;
case GL_LINEAR_ATTENUATION:
if (params[0]<0.0) {
gl_error( ctx, GL_INVALID_VALUE, "glLight" );
return;
}
ctx->Light.Light[l].LinearAttenuation = params[0];
break;
case GL_QUADRATIC_ATTENUATION:
if (params[0]<0.0) {
gl_error( ctx, GL_INVALID_VALUE, "glLight" );
return;
}
ctx->Light.Light[l].QuadraticAttenuation = params[0];
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glLight" );
break;
}
if (ctx->Driver.Lightfv)
ctx->Driver.Lightfv( ctx, light, pname, params, nparams );
ctx->NewState |= NEW_LIGHTING;
}
void gl_GetLightfv( GLcontext *ctx,
GLenum light, GLenum pname, GLfloat *params )
{
GLint l = (GLint) (light - GL_LIGHT0);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight");
if (l<0 || l>=MAX_LIGHTS) {
gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
return;
}
switch (pname) {
case GL_AMBIENT:
COPY_4V( params, ctx->Light.Light[l].Ambient );
break;
case GL_DIFFUSE:
COPY_4V( params, ctx->Light.Light[l].Diffuse );
break;
case GL_SPECULAR:
COPY_4V( params, ctx->Light.Light[l].Specular );
break;
case GL_POSITION:
COPY_4V( params, ctx->Light.Light[l].EyePosition );
break;
case GL_SPOT_DIRECTION:
COPY_3V( params, ctx->Light.Light[l].EyeDirection );
break;
case GL_SPOT_EXPONENT:
params[0] = ctx->Light.Light[l].SpotExponent;
break;
case GL_SPOT_CUTOFF:
params[0] = ctx->Light.Light[l].SpotCutoff;
break;
case GL_CONSTANT_ATTENUATION:
params[0] = ctx->Light.Light[l].ConstantAttenuation;
break;
case GL_LINEAR_ATTENUATION:
params[0] = ctx->Light.Light[l].LinearAttenuation;
break;
case GL_QUADRATIC_ATTENUATION:
params[0] = ctx->Light.Light[l].QuadraticAttenuation;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
break;
}
}
void gl_GetLightiv( GLcontext *ctx, GLenum light, GLenum pname, GLint *params )
{
GLint l = (GLint) (light - GL_LIGHT0);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight");
if (l<0 || l>=MAX_LIGHTS) {
gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
return;
}
switch (pname) {
case GL_AMBIENT:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
break;
case GL_DIFFUSE:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
break;
case GL_SPECULAR:
params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
break;
case GL_POSITION:
params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
break;
case GL_SPOT_DIRECTION:
params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
break;
case GL_SPOT_EXPONENT:
params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
break;
case GL_SPOT_CUTOFF:
params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
break;
case GL_CONSTANT_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
break;
case GL_LINEAR_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
break;
case GL_QUADRATIC_ATTENUATION:
params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
break;
}
}
/**********************************************************************/
/*** Light Model ***/
/**********************************************************************/
void gl_LightModelfv( GLcontext *ctx, GLenum pname, const GLfloat *params )
{
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLightModel");
switch (pname) {
case GL_LIGHT_MODEL_AMBIENT:
COPY_4V( ctx->Light.Model.Ambient, params );
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
if (params[0]==0.0)
ctx->Light.Model.LocalViewer = GL_FALSE;
else
ctx->Light.Model.LocalViewer = GL_TRUE;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
if (params[0]==0.0)
ctx->Light.Model.TwoSide = GL_FALSE;
else
ctx->Light.Model.TwoSide = GL_TRUE;
break;
case GL_LIGHT_MODEL_COLOR_CONTROL:
ctx->TriangleCaps &= ~DD_SEPERATE_SPECULAR;
ctx->NewState |= NEW_RASTER_OPS;
if (params[0] == (GLfloat) GL_SINGLE_COLOR)
ctx->Light.Model.ColorControl = GL_SINGLE_COLOR;
else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) {
ctx->Light.Model.ColorControl = GL_SEPARATE_SPECULAR_COLOR;
ctx->TriangleCaps |= DD_SEPERATE_SPECULAR;
} else
gl_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" );
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glLightModel" );
break;
}
if (ctx->Driver.LightModelfv)
ctx->Driver.LightModelfv( ctx, pname, params );
ctx->NewState |= NEW_LIGHTING;
}
/********** MATERIAL **********/
/*
* Given a face and pname value (ala glColorMaterial), compute a bitmask
* of the targeted material values.
*/
GLuint gl_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
GLuint legal,
const char *where )
{
GLuint bitmask = 0;
/* Make a bitmask indicating what material attribute(s) we're updating */
switch (pname) {
case GL_EMISSION:
bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT;
break;
case GL_AMBIENT:
bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
break;
case GL_DIFFUSE:
bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
break;
case GL_SPECULAR:
bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT;
break;
case GL_SHININESS:
bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT;
break;
case GL_AMBIENT_AND_DIFFUSE:
bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
break;
case GL_COLOR_INDEXES:
bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
if (face==GL_FRONT) {
bitmask &= FRONT_MATERIAL_BITS;
}
else if (face==GL_BACK) {
bitmask &= BACK_MATERIAL_BITS;
}
else if (face != GL_FRONT_AND_BACK) {
gl_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
if (bitmask & ~legal) {
gl_error( ctx, GL_INVALID_ENUM, where );
return 0;
}
return bitmask;
}
/*
* Check if the global material has to be updated with info that was
* associated with a vertex via glMaterial.
* This function is used when any material values get changed between
* glBegin/glEnd either by calling glMaterial() or by calling glColor()
* when GL_COLOR_MATERIAL is enabled.
*
* KW: Added code here to keep the precomputed variables uptodate.
* This means we can use the faster shade functions when using
* GL_COLOR_MATERIAL, and we can also now use the precomputed
* values in the slower shading functions, which further offsets
* the cost of doing this here.
*/
void gl_update_material( GLcontext *ctx,
struct gl_material *src,
GLuint bitmask )
{
struct gl_light *light, *list = &ctx->Light.EnabledList;
GLfloat tmp[4];
if (ctx->Light.ColorMaterialEnabled)
bitmask &= ~ctx->Light.ColorMaterialBitmask;
if (!bitmask)
return;
if (bitmask & FRONT_AMBIENT_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, src[0].Ambient, mat->Ambient );
ACC_SCALE_3V( ctx->Light.BaseColor[0], ctx->Light.Model.Ambient, tmp);
foreach (light, list) {
ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
}
COPY_4FV( mat->Ambient, src[0].Ambient );
}
if (bitmask & BACK_AMBIENT_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, src[1].Ambient, mat->Ambient );
ACC_SCALE_3V( ctx->Light.BaseColor[1], ctx->Light.Model.Ambient, tmp);
foreach (light, list) {
ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
}
COPY_4FV( mat->Ambient, src[1].Ambient );
}
if (bitmask & FRONT_DIFFUSE_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, src[0].Diffuse, mat->Diffuse );
foreach (light, list) {
ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp );
}
COPY_4FV( mat->Diffuse, src[0].Diffuse );
FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]);
}
if (bitmask & BACK_DIFFUSE_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, src[1].Diffuse, mat->Diffuse );
foreach (light, list) {
ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp );
}
COPY_4FV( mat->Diffuse, src[1].Diffuse );
FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]);
}
if (bitmask & FRONT_SPECULAR_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, src[0].Specular, mat->Specular );
foreach (light, list) {
if (light->Flags & LIGHT_SPECULAR) {
ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp );
light->IsMatSpecular[0] =
(LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16);
}
}
COPY_4FV( mat->Specular, src[0].Specular );
}
if (bitmask & BACK_SPECULAR_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, src[1].Specular, mat->Specular );
foreach (light, list) {
if (light->Flags & LIGHT_SPECULAR) {
ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp );
light->IsMatSpecular[1] =
(LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16);
}
}
COPY_4FV( mat->Specular, src[1].Specular );
}
if (bitmask & FRONT_EMISSION_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, src[0].Emission, mat->Emission );
ACC_3V( ctx->Light.BaseColor[0], tmp );
COPY_4FV( mat->Emission, src[0].Emission );
}
if (bitmask & BACK_EMISSION_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, src[1].Emission, mat->Emission );
ACC_3V( ctx->Light.BaseColor[1], tmp );
COPY_4FV( mat->Emission, src[1].Emission );
}
if (bitmask & FRONT_SHININESS_BIT) {
GLfloat shininess = ctx->Light.Material[0].Shininess = src[0].Shininess;
gl_compute_shine_table( ctx, 0, shininess );
gl_compute_shine_table( ctx, 2, shininess * .5 );
}
if (bitmask & BACK_SHININESS_BIT) {
GLfloat shininess = ctx->Light.Material[1].Shininess = src[1].Shininess;
gl_compute_shine_table( ctx, 1, shininess );
gl_compute_shine_table( ctx, 3, shininess * .5 );
}
if (bitmask & FRONT_INDEXES_BIT) {
ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex;
ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex;
ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex;
}
if (bitmask & BACK_INDEXES_BIT) {
ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex;
ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex;
ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex;
}
}
void gl_update_color_material( GLcontext *ctx,
const GLubyte rgba[4] )
{
struct gl_light *light, *list = &ctx->Light.EnabledList;
GLuint bitmask = ctx->Light.ColorMaterialBitmask;
GLfloat tmp[4], color[4];
UBYTE_RGBA_TO_FLOAT_RGBA( color, rgba );
if (bitmask & FRONT_AMBIENT_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, color, mat->Ambient );
ACC_SCALE_3V( ctx->Light.BaseColor[0], ctx->Light.Model.Ambient, tmp);
foreach (light, list) {
ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
}
COPY_4FV( mat->Ambient, color );
}
if (bitmask & BACK_AMBIENT_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, color, mat->Ambient );
ACC_SCALE_3V( ctx->Light.BaseColor[1], ctx->Light.Model.Ambient, tmp);
foreach (light, list) {
ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
}
COPY_4FV( mat->Ambient, color );
}
if (bitmask & FRONT_DIFFUSE_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, color, mat->Diffuse );
foreach (light, list) {
ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp );
}
COPY_4FV( mat->Diffuse, color );
FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]);
}
if (bitmask & BACK_DIFFUSE_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, color, mat->Diffuse );
foreach (light, list) {
ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp );
}
COPY_4FV( mat->Diffuse, color );
FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]);
}
if (bitmask & FRONT_SPECULAR_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, color, mat->Specular );
foreach (light, list) {
if (light->Flags & LIGHT_SPECULAR) {
ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp );
light->IsMatSpecular[0] =
(LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16);
}
}
COPY_4FV( mat->Specular, color );
}
if (bitmask & BACK_SPECULAR_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, color, mat->Specular );
foreach (light, list) {
if (light->Flags & LIGHT_SPECULAR) {
ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp );
light->IsMatSpecular[1] =
(LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16);
}
}
COPY_4FV( mat->Specular, color );
}
if (bitmask & FRONT_EMISSION_BIT) {
struct gl_material *mat = &ctx->Light.Material[0];
SUB_3V( tmp, color, mat->Emission );
ACC_3V( ctx->Light.BaseColor[0], tmp );
COPY_4FV( mat->Emission, color );
}
if (bitmask & BACK_EMISSION_BIT) {
struct gl_material *mat = &ctx->Light.Material[1];
SUB_3V( tmp, color, mat->Emission );
ACC_3V( ctx->Light.BaseColor[1], tmp );
COPY_4FV( mat->Emission, color );
}
}
void gl_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode )
{
GLuint bitmask;
GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT |
FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT |
FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT |
FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT);
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glColorMaterial");
bitmask = gl_material_bitmask( ctx, face, mode, legal, "glColorMaterial" );
if (bitmask != 0) {
ctx->Light.ColorMaterialBitmask = bitmask;
ctx->Light.ColorMaterialFace = face;
ctx->Light.ColorMaterialMode = mode;
}
}
/* KW: This is now called directly (ie by name) from the glMaterial*
* API functions.
*/
void gl_Materialfv( GLcontext *ctx,
GLenum face, GLenum pname, const GLfloat *params )
{
struct immediate *IM;
struct gl_material *mat;
GLuint bitmask;
GLuint count;
bitmask = gl_material_bitmask( ctx, face, pname, ~0, "gl_Materialfv" );
if (bitmask == 0)
return;
IM = ctx->input;
count = IM->Count;
if (!IM->Material) {
IM->Material =
(struct gl_material (*)[2]) MALLOC( sizeof(struct gl_material) *
VB_SIZE * 2 );
IM->MaterialMask = (GLuint *) MALLOC( sizeof(GLuint) * VB_SIZE );
}
if (!(IM->Flag[count] & VERT_MATERIAL)) {
IM->Flag[count] |= VERT_MATERIAL;
IM->MaterialMask[count] = 0;
}
IM->MaterialMask[count] |= bitmask;
mat = IM->Material[count];
if (bitmask & FRONT_AMBIENT_BIT) {
COPY_4FV( mat[0].Ambient, params );
}
if (bitmask & BACK_AMBIENT_BIT) {
COPY_4FV( mat[1].Ambient, params );
}
if (bitmask & FRONT_DIFFUSE_BIT) {
COPY_4FV( mat[0].Diffuse, params );
}
if (bitmask & BACK_DIFFUSE_BIT) {
COPY_4FV( mat[1].Diffuse, params );
}
if (bitmask & FRONT_SPECULAR_BIT) {
COPY_4FV( mat[0].Specular, params );
}
if (bitmask & BACK_SPECULAR_BIT) {
COPY_4FV( mat[1].Specular, params );
}
if (bitmask & FRONT_EMISSION_BIT) {
COPY_4FV( mat[0].Emission, params );
}
if (bitmask & BACK_EMISSION_BIT) {
COPY_4FV( mat[1].Emission, params );
}
if (bitmask & FRONT_SHININESS_BIT) {
GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F );
mat[0].Shininess = shininess;
}
if (bitmask & BACK_SHININESS_BIT) {
GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F );
mat[1].Shininess = shininess;
}
if (bitmask & FRONT_INDEXES_BIT) {
mat[0].AmbientIndex = params[0];
mat[0].DiffuseIndex = params[1];
mat[0].SpecularIndex = params[2];
}
if (bitmask & BACK_INDEXES_BIT) {
mat[1].AmbientIndex = params[0];
mat[1].DiffuseIndex = params[1];
mat[1].SpecularIndex = params[2];
}
}
void gl_GetMaterialfv( GLcontext *ctx,
GLenum face, GLenum pname, GLfloat *params )
{
GLuint f;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialfv");
if (face==GL_FRONT) {
f = 0;
}
else if (face==GL_BACK) {
f = 1;
}
else {
gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
return;
}
switch (pname) {
case GL_AMBIENT:
COPY_4FV( params, ctx->Light.Material[f].Ambient );
break;
case GL_DIFFUSE:
COPY_4FV( params, ctx->Light.Material[f].Diffuse );
break;
case GL_SPECULAR:
COPY_4FV( params, ctx->Light.Material[f].Specular );
break;
case GL_EMISSION:
COPY_4FV( params, ctx->Light.Material[f].Emission );
break;
case GL_SHININESS:
*params = ctx->Light.Material[f].Shininess;
break;
case GL_COLOR_INDEXES:
params[0] = ctx->Light.Material[f].AmbientIndex;
params[1] = ctx->Light.Material[f].DiffuseIndex;
params[2] = ctx->Light.Material[f].SpecularIndex;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
}
}
void gl_GetMaterialiv( GLcontext *ctx,
GLenum face, GLenum pname, GLint *params )
{
GLuint f;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialiv");
if (face==GL_FRONT) {
f = 0;
}
else if (face==GL_BACK) {
f = 1;
}
else {
gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
return;
}
switch (pname) {
case GL_AMBIENT:
params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] );
params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] );
params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] );
params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] );
break;
case GL_DIFFUSE:
params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] );
params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] );
params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] );
params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] );
break;
case GL_SPECULAR:
params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] );
params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] );
params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] );
params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] );
break;
case GL_EMISSION:
params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] );
params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] );
params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] );
params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] );
break;
case GL_SHININESS:
*params = ROUNDF( ctx->Light.Material[f].Shininess );
break;
case GL_COLOR_INDEXES:
params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex );
params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex );
params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex );
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
}
}
/**********************************************************************/
/***** Lighting computation *****/
/**********************************************************************/
/*
* Notes:
* When two-sided lighting is enabled we compute the color (or index)
* for both the front and back side of the primitive. Then, when the
* orientation of the facet is later learned, we can determine which
* color (or index) to use for rendering.
*
* KW: We now know orientation in advance and only shade for
* the side or sides which are actually required.
*
* Variables:
* n = normal vector
* V = vertex position
* P = light source position
* Pe = (0,0,0,1)
*
* Precomputed:
* IF P[3]==0 THEN
* // light at infinity
* IF local_viewer THEN
* VP_inf_norm = unit vector from V to P // Precompute
* ELSE
* // eye at infinity
* h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
* ENDIF
* ENDIF
*
* Functions:
* Normalize( v ) = normalized vector v
* Magnitude( v ) = length of vector v
*/
/*
* Whenever the spotlight exponent for a light changes we must call
* this function to recompute the exponent lookup table.
*/
void gl_compute_spot_exp_table( struct gl_light *l )
{
int i;
double exponent = l->SpotExponent;
double tmp = 0;
int clamp = 0;
l->SpotExpTable[0][0] = 0.0;
for (i=EXP_TABLE_SIZE-1;i>0;i--) {
if (clamp == 0) {
tmp = pow(i/(double)(EXP_TABLE_SIZE-1), exponent);
if (tmp < FLT_MIN*100.0) {
tmp = 0.0;
clamp = 1;
}
}
l->SpotExpTable[i][0] = tmp;
}
for (i=0;i<EXP_TABLE_SIZE-1;i++) {
l->SpotExpTable[i][1] = l->SpotExpTable[i+1][0] - l->SpotExpTable[i][0];
}
l->SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
}
/* Calculate a new shine table. Doing this here saves a branch in
* lighting, and the cost of doing it early may be partially offset
* by keeping a MRU cache of shine tables for various shine values.
*/
static void compute_shine_table( struct gl_shine_tab *tab, GLfloat shininess )
{
int i;
GLfloat *m = tab->tab;
m[0] = 0;
if (shininess == 0) {
for (i = 1 ; i <= SHINE_TABLE_SIZE ; i++)
m[i] = 1;
} else {
for (i = 1 ; i <= SHINE_TABLE_SIZE ; i++) {
double t = pow( i/(GLfloat)SHINE_TABLE_SIZE, shininess );
m[i] = 0;
if (t > 1e-20) m[i] = t;
}
}
tab->shininess = shininess;
}
#define DISTSQR(a,b) ((a-b)*(a-b))
void gl_compute_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess )
{
struct gl_shine_tab *list = ctx->ShineTabList;
struct gl_shine_tab *s;
foreach(s, list)
if ( DISTSQR(s->shininess, shininess) < 1e-4 )
break;
if (s == list)
{
foreach(s, list)
if (s->refcount == 0) break;
compute_shine_table( s, shininess );
}
ctx->ShineTable[i]->refcount--;
ctx->ShineTable[i] = s;
move_to_tail( list, s );
s->refcount++;
}
void gl_reinit_light_attrib( GLcontext *ctx, struct gl_light_attrib *l )
{
GLuint i;
if (ctx->ShineTable[0]->shininess != l->Material[0].Shininess) {
gl_compute_shine_table( ctx, 0, l->Material[0].Shininess );
gl_compute_shine_table( ctx, 2, l->Material[0].Shininess * .5 );
}
if (ctx->ShineTable[1]->shininess != l->Material[1].Shininess) {
gl_compute_shine_table( ctx, 1, l->Material[1].Shininess );
gl_compute_shine_table( ctx, 3, l->Material[1].Shininess * .5 );
}
make_empty_list( &l->EnabledList );
for (i = 0 ; i < MAX_LIGHTS ; i++) {
if (l->Light[i].Enabled)
insert_at_tail( &l->EnabledList, &l->Light[i] );
}
}
/*
* Examine current lighting parameters to determine if the optimized lighting
* function can be used.
* Also, precompute some lighting values such as the products of light
* source and material ambient, diffuse and specular coefficients.
*/
void gl_update_lighting( GLcontext *ctx )
{
struct gl_light *light;
ctx->Light.Flags = 0;
foreach(light, &ctx->Light.EnabledList) {
light->Flags = 0;
if (light->EyePosition[3] != 0.0F)
light->Flags |= LIGHT_POSITIONAL;
if (LEN_SQUARED_3FV(light->Specular) > 1e-16)
light->Flags |= LIGHT_SPECULAR;
if (light->SpotCutoff != 180.0F)
light->Flags |= LIGHT_SPOT;
ctx->Light.Flags |= light->Flags;
}
ctx->Light.NeedVertices =
((ctx->Light.Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
(ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) ||
(ctx->Light.Model.LocalViewer && (ctx->Light.Flags & LIGHT_SPECULAR)));
/* Precompute some shading values.
*/
if (ctx->Visual->RGBAflag)
{
GLuint sides = ((ctx->TriangleCaps & DD_TRI_LIGHT_TWOSIDE) ? 2 : 1);
GLuint side;
for (side=0; side < sides; side++) {
struct gl_material *mat = &ctx->Light.Material[side];
COPY_3V(ctx->Light.BaseColor[side], mat->Emission);
ACC_SCALE_3V(ctx->Light.BaseColor[side],
ctx->Light.Model.Ambient,
mat->Ambient);
FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[side],
ctx->Light.Material[side].Diffuse[3] );
}
foreach (light, &ctx->Light.EnabledList) {
for (side=0; side< sides; side++) {
struct gl_material *mat = &ctx->Light.Material[side];
SCALE_3V( light->MatDiffuse[side], light->Diffuse, mat->Diffuse );
SCALE_3V( light->MatAmbient[side], light->Ambient, mat->Ambient );
ACC_3V( ctx->Light.BaseColor[side], light->MatAmbient[side] );
if (light->Flags & LIGHT_SPECULAR)
{
SCALE_3V( light->MatSpecular[side], light->Specular,
mat->Specular);
light->IsMatSpecular[side] =
(LEN_SQUARED_3FV(light->MatSpecular[side]) > 1e-16);
}
else
light->IsMatSpecular[side] = 0;
}
}
}
else
{
static GLfloat ci[3] = { .30, .59, .11 };
foreach(light, &ctx->Light.EnabledList) {
light->dli = DOT3(ci, light->Diffuse);
light->sli = DOT3(ci, light->Specular);
}
}
}
/* Need to seriously restrict the circumstances under which these
* calc's are performed.
*/
void gl_compute_light_positions( GLcontext *ctx )
{
struct gl_light *light;
if (ctx->Light.NeedVertices && !ctx->Light.Model.LocalViewer) {
GLfloat eye_z[3] = { 0, 0, 1 };
if (!ctx->NeedEyeCoords) {
TRANSFORM_NORMAL( ctx->EyeZDir, eye_z, ctx->ModelView.m );
} else {
COPY_3V( ctx->EyeZDir, eye_z );
}
}
foreach (light, &ctx->Light.EnabledList) {
if (!ctx->NeedEyeCoords) {
TRANSFORM_POINT( light->Position, ctx->ModelView.inv,
light->EyePosition );
} else {
COPY_4FV( light->Position, light->EyePosition );
}
if (!(light->Flags & LIGHT_POSITIONAL))
{
/* VP (VP) = Normalize( Position ) */
COPY_3V( light->VP_inf_norm, light->Position );
NORMALIZE_3FV( light->VP_inf_norm );
if (!ctx->Light.Model.LocalViewer)
{
/* h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
ADD_3V( light->h_inf_norm, light->VP_inf_norm, ctx->EyeZDir);
NORMALIZE_3FV( light->h_inf_norm );
}
light->VP_inf_spot_attenuation = 1.0;
}
if (light->Flags & LIGHT_SPOT)
{
if (ctx->NeedEyeNormals) {
COPY_3V( light->NormDirection, light->EyeDirection );
} else {
TRANSFORM_NORMAL( light->NormDirection,
light->EyeDirection,
ctx->ModelView.m);
}
NORMALIZE_3FV( light->NormDirection );
/* Unlikely occurrance?
*/
if (!(light->Flags & LIGHT_POSITIONAL)) {
GLfloat PV_dot_dir = - DOT3(light->VP_inf_norm,
light->NormDirection);
if (PV_dot_dir > light->CosCutoff) {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
light->VP_inf_spot_attenuation =
(light->SpotExpTable[k][0] +
(x-k)*light->SpotExpTable[k][1]);
}
else
light->VP_inf_spot_attenuation = 0;
}
}
}
}
void gl_update_normal_transform( GLcontext *ctx )
{
GLuint new_flag = 0;
normal_func *last = ctx->NormalTransform;
ctx->vb_rescale_factor = 1.0;
if (ctx->NeedEyeCoords) {
if (ctx->NeedNormals) {
GLuint transform = NORM_TRANSFORM_NO_ROT;
if (ctx->ModelView.flags & (MAT_FLAG_GENERAL |
MAT_FLAG_ROTATION |
MAT_FLAG_GENERAL_3D |
MAT_FLAG_PERSPECTIVE))
transform = NORM_TRANSFORM;
new_flag = ctx->NewState & NEW_MODELVIEW;
ctx->vb_rescale_factor = ctx->rescale_factor;
if (ctx->Transform.Normalize)
{
ctx->NormalTransform = gl_normal_tab[transform | NORM_NORMALIZE];
}
else if (ctx->Transform.RescaleNormals &&
ctx->rescale_factor != 1.0)
{
ctx->NormalTransform = gl_normal_tab[transform | NORM_RESCALE];
}
else
{
ctx->NormalTransform = gl_normal_tab[transform];
}
} else {
ctx->NormalTransform = 0;
}
}
else {
if (ctx->NeedNormals) {
ctx->vb_rescale_factor = 1.0/ctx->rescale_factor;
if (ctx->Transform.Normalize)
{
ctx->NormalTransform = gl_normal_tab[NORM_NORMALIZE];
}
else if (!ctx->Transform.RescaleNormals &&
ctx->rescale_factor != 1.0)
{
ctx->NormalTransform = gl_normal_tab[NORM_RESCALE];
}
else
{
ctx->NormalTransform = 0;
}
} else {
ctx->NormalTransform = 0;
}
}
if (last != ctx->NormalTransform || new_flag)
ctx->NewState |= NEW_NORMAL_TRANSFORM;
}