blob: feb7939081bc2e9d33fb43f15058d842eb78e47d [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.5
*
* Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Regarding GL_NV_fragment_program:
*
* Portions of this software may use or implement intellectual
* property owned and licensed by NVIDIA Corporation. NVIDIA disclaims
* any and all warranties with respect to such intellectual property,
* including any use thereof or modifications thereto.
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "program_instruction.h"
#include "program.h"
#include "s_nvfragprog.h"
#include "s_span.h"
/* if 1, print some debugging info */
#define DEBUG_FRAG 0
/**
* Fetch a texel.
*/
static void
fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLfloat lambda,
GLuint unit, GLfloat color[4] )
{
GLchan rgba[4];
SWcontext *swrast = SWRAST_CONTEXT(ctx);
/* XXX use a float-valued TextureSample routine here!!! */
swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current,
1, (const GLfloat (*)[4]) texcoord,
&lambda, &rgba);
color[0] = CHAN_TO_FLOAT(rgba[0]);
color[1] = CHAN_TO_FLOAT(rgba[1]);
color[2] = CHAN_TO_FLOAT(rgba[2]);
color[3] = CHAN_TO_FLOAT(rgba[3]);
}
/**
* Fetch a texel with the given partial derivatives to compute a level
* of detail in the mipmap.
*/
static void
fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4],
const GLfloat texdx[4], const GLfloat texdy[4],
GLuint unit, GLfloat color[4] )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
const struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel];
const GLfloat texW = (GLfloat) texImg->WidthScale;
const GLfloat texH = (GLfloat) texImg->HeightScale;
GLchan rgba[4];
GLfloat lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */
texdx[1], texdy[1], /* dt/dx, dt/dy */
texdx[3], texdy[2], /* dq/dx, dq/dy */
texW, texH,
texcoord[0], texcoord[1], texcoord[3],
1.0F / texcoord[3]);
swrast->TextureSample[unit](ctx, ctx->Texture.Unit[unit]._Current,
1, (const GLfloat (*)[4]) texcoord,
&lambda, &rgba);
color[0] = CHAN_TO_FLOAT(rgba[0]);
color[1] = CHAN_TO_FLOAT(rgba[1]);
color[2] = CHAN_TO_FLOAT(rgba[2]);
color[3] = CHAN_TO_FLOAT(rgba[3]);
}
/**
* Return a pointer to the 4-element float vector specified by the given
* source register.
*/
static INLINE const GLfloat *
get_register_pointer( GLcontext *ctx,
const struct prog_src_register *source,
const struct fp_machine *machine,
const struct fragment_program *program )
{
const GLfloat *src;
switch (source->File) {
case PROGRAM_TEMPORARY:
ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_TEMPS);
src = machine->Temporaries[source->Index];
break;
case PROGRAM_INPUT:
ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_INPUTS);
src = machine->Inputs[source->Index];
break;
case PROGRAM_OUTPUT:
/* This is only for PRINT */
ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_OUTPUTS);
src = machine->Outputs[source->Index];
break;
case PROGRAM_LOCAL_PARAM:
ASSERT(source->Index < MAX_PROGRAM_LOCAL_PARAMS);
src = program->Base.LocalParams[source->Index];
break;
case PROGRAM_ENV_PARAM:
ASSERT(source->Index < MAX_NV_FRAGMENT_PROGRAM_PARAMS);
src = ctx->FragmentProgram.Parameters[source->Index];
break;
case PROGRAM_STATE_VAR:
/* Fallthrough */
case PROGRAM_NAMED_PARAM:
ASSERT(source->Index < (GLint) program->Parameters->NumParameters);
src = program->Base.Parameters->ParameterValues[source->Index];
break;
default:
_mesa_problem(ctx, "Invalid input register file %d in fetch_vector4", source->File);
src = NULL;
}
return src;
}
/**
* Fetch a 4-element float vector from the given source register.
* Apply swizzling and negating as needed.
*/
static void
fetch_vector4( GLcontext *ctx,
const struct prog_src_register *source,
const struct fp_machine *machine,
const struct fragment_program *program,
GLfloat result[4] )
{
const GLfloat *src = get_register_pointer(ctx, source, machine, program);
ASSERT(src);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
result[1] = src[GET_SWZ(source->Swizzle, 1)];
result[2] = src[GET_SWZ(source->Swizzle, 2)];
result[3] = src[GET_SWZ(source->Swizzle, 3)];
if (source->NegateBase) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->NegateAbs) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
}
/**
* Fetch the derivative with respect to X for the given register.
* \return GL_TRUE if it was easily computed or GL_FALSE if we
* need to execute another instance of the program (ugh)!
*/
static GLboolean
fetch_vector4_deriv( GLcontext *ctx,
const struct prog_src_register *source,
const struct sw_span *span,
char xOrY, GLint column, GLfloat result[4] )
{
GLfloat src[4];
ASSERT(xOrY == 'X' || xOrY == 'Y');
switch (source->Index) {
case FRAG_ATTRIB_WPOS:
if (xOrY == 'X') {
src[0] = 1.0;
src[1] = 0.0;
src[2] = span->dzdx / ctx->DrawBuffer->_DepthMaxF;
src[3] = span->dwdx;
}
else {
src[0] = 0.0;
src[1] = 1.0;
src[2] = span->dzdy / ctx->DrawBuffer->_DepthMaxF;
src[3] = span->dwdy;
}
break;
case FRAG_ATTRIB_COL0:
if (xOrY == 'X') {
src[0] = span->drdx * (1.0F / CHAN_MAXF);
src[1] = span->dgdx * (1.0F / CHAN_MAXF);
src[2] = span->dbdx * (1.0F / CHAN_MAXF);
src[3] = span->dadx * (1.0F / CHAN_MAXF);
}
else {
src[0] = span->drdy * (1.0F / CHAN_MAXF);
src[1] = span->dgdy * (1.0F / CHAN_MAXF);
src[2] = span->dbdy * (1.0F / CHAN_MAXF);
src[3] = span->dady * (1.0F / CHAN_MAXF);
}
break;
case FRAG_ATTRIB_COL1:
if (xOrY == 'X') {
src[0] = span->dsrdx * (1.0F / CHAN_MAXF);
src[1] = span->dsgdx * (1.0F / CHAN_MAXF);
src[2] = span->dsbdx * (1.0F / CHAN_MAXF);
src[3] = 0.0; /* XXX need this */
}
else {
src[0] = span->dsrdy * (1.0F / CHAN_MAXF);
src[1] = span->dsgdy * (1.0F / CHAN_MAXF);
src[2] = span->dsbdy * (1.0F / CHAN_MAXF);
src[3] = 0.0; /* XXX need this */
}
break;
case FRAG_ATTRIB_FOGC:
if (xOrY == 'X') {
src[0] = span->dfogdx;
src[1] = 0.0;
src[2] = 0.0;
src[3] = 0.0;
}
else {
src[0] = span->dfogdy;
src[1] = 0.0;
src[2] = 0.0;
src[3] = 0.0;
}
break;
case FRAG_ATTRIB_TEX0:
case FRAG_ATTRIB_TEX1:
case FRAG_ATTRIB_TEX2:
case FRAG_ATTRIB_TEX3:
case FRAG_ATTRIB_TEX4:
case FRAG_ATTRIB_TEX5:
case FRAG_ATTRIB_TEX6:
case FRAG_ATTRIB_TEX7:
if (xOrY == 'X') {
const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
/* this is a little tricky - I think I've got it right */
const GLfloat invQ = 1.0f / (span->tex[u][3]
+ span->texStepX[u][3] * column);
src[0] = span->texStepX[u][0] * invQ;
src[1] = span->texStepX[u][1] * invQ;
src[2] = span->texStepX[u][2] * invQ;
src[3] = span->texStepX[u][3] * invQ;
}
else {
const GLuint u = source->Index - FRAG_ATTRIB_TEX0;
/* Tricky, as above, but in Y direction */
const GLfloat invQ = 1.0f / (span->tex[u][3] + span->texStepY[u][3]);
src[0] = span->texStepY[u][0] * invQ;
src[1] = span->texStepY[u][1] * invQ;
src[2] = span->texStepY[u][2] * invQ;
src[3] = span->texStepY[u][3] * invQ;
}
break;
default:
return GL_FALSE;
}
result[0] = src[GET_SWZ(source->Swizzle, 0)];
result[1] = src[GET_SWZ(source->Swizzle, 1)];
result[2] = src[GET_SWZ(source->Swizzle, 2)];
result[3] = src[GET_SWZ(source->Swizzle, 3)];
if (source->NegateBase) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->NegateAbs) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
return GL_TRUE;
}
/**
* As above, but only return result[0] element.
*/
static void
fetch_vector1( GLcontext *ctx,
const struct prog_src_register *source,
const struct fp_machine *machine,
const struct fragment_program *program,
GLfloat result[4] )
{
const GLfloat *src = get_register_pointer(ctx, source, machine, program);
ASSERT(src);
result[0] = src[GET_SWZ(source->Swizzle, 0)];
if (source->NegateBase) {
result[0] = -result[0];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
}
if (source->NegateAbs) {
result[0] = -result[0];
}
}
/**
* Test value against zero and return GT, LT, EQ or UN if NaN.
*/
static INLINE GLuint
generate_cc( float value )
{
if (value != value)
return COND_UN; /* NaN */
if (value > 0.0F)
return COND_GT;
if (value < 0.0F)
return COND_LT;
return COND_EQ;
}
/**
* Test if the ccMaskRule is satisfied by the given condition code.
* Used to mask destination writes according to the current condition codee.
*/
static INLINE GLboolean
test_cc(GLuint condCode, GLuint ccMaskRule)
{
switch (ccMaskRule) {
case COND_EQ: return (condCode == COND_EQ);
case COND_NE: return (condCode != COND_EQ);
case COND_LT: return (condCode == COND_LT);
case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
case COND_GT: return (condCode == COND_GT);
case COND_TR: return GL_TRUE;
case COND_FL: return GL_FALSE;
default: return GL_TRUE;
}
}
/**
* Store 4 floats into a register. Observe the instructions saturate and
* set-condition-code flags.
*/
static void
store_vector4( const struct prog_instruction *inst,
struct fp_machine *machine,
const GLfloat value[4] )
{
const struct prog_dst_register *dest = &(inst->DstReg);
const GLboolean clamp = inst->Saturate;
const GLboolean updateCC = inst->CondUpdate;
GLfloat *dstReg;
GLfloat dummyReg[4];
GLfloat clampedValue[4];
GLboolean condWriteMask[4];
GLuint writeMask = dest->WriteMask;
switch (dest->File) {
case PROGRAM_OUTPUT:
dstReg = machine->Outputs[dest->Index];
break;
case PROGRAM_TEMPORARY:
dstReg = machine->Temporaries[dest->Index];
break;
case PROGRAM_WRITE_ONLY:
dstReg = dummyReg;
return;
default:
_mesa_problem(NULL, "bad register file in store_vector4(fp)");
return;
}
#if DEBUG_FRAG
if (value[0] > 1.0e10 ||
IS_INF_OR_NAN(value[0]) ||
IS_INF_OR_NAN(value[1]) ||
IS_INF_OR_NAN(value[2]) ||
IS_INF_OR_NAN(value[3]) )
printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
#endif
if (clamp) {
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
value = clampedValue;
}
if (dest->CondMask != COND_TR) {
condWriteMask[0] = GET_BIT(writeMask, 0)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 0)], dest->CondMask);
condWriteMask[1] = GET_BIT(writeMask, 1)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 1)], dest->CondMask);
condWriteMask[2] = GET_BIT(writeMask, 2)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 2)], dest->CondMask);
condWriteMask[3] = GET_BIT(writeMask, 3)
&& test_cc(machine->CondCodes[GET_SWZ(dest->CondSwizzle, 3)], dest->CondMask);
writeMask = ((condWriteMask[0] << 0) |
(condWriteMask[1] << 1) |
(condWriteMask[2] << 2) |
(condWriteMask[3] << 3));
}
if (GET_BIT(writeMask, 0)) {
dstReg[0] = value[0];
if (updateCC)
machine->CondCodes[0] = generate_cc(value[0]);
}
if (GET_BIT(writeMask, 1)) {
dstReg[1] = value[1];
if (updateCC)
machine->CondCodes[1] = generate_cc(value[1]);
}
if (GET_BIT(writeMask, 2)) {
dstReg[2] = value[2];
if (updateCC)
machine->CondCodes[2] = generate_cc(value[2]);
}
if (GET_BIT(writeMask, 3)) {
dstReg[3] = value[3];
if (updateCC)
machine->CondCodes[3] = generate_cc(value[3]);
}
}
/**
* Initialize a new machine state instance from an existing one, adding
* the partial derivatives onto the input registers.
* Used to implement DDX and DDY instructions in non-trivial cases.
*/
static void
init_machine_deriv( GLcontext *ctx,
const struct fp_machine *machine,
const struct fragment_program *program,
const struct sw_span *span, char xOrY,
struct fp_machine *dMachine )
{
GLuint u;
ASSERT(xOrY == 'X' || xOrY == 'Y');
/* copy existing machine */
_mesa_memcpy(dMachine, machine, sizeof(struct fp_machine));
if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
/* Clear temporary registers (undefined for ARB_f_p) */
_mesa_bzero( (void*) machine->Temporaries,
MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
}
/* Add derivatives */
if (program->Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) {
GLfloat *wpos = (GLfloat*) machine->Inputs[FRAG_ATTRIB_WPOS];
if (xOrY == 'X') {
wpos[0] += 1.0F;
wpos[1] += 0.0F;
wpos[2] += span->dzdx;
wpos[3] += span->dwdx;
}
else {
wpos[0] += 0.0F;
wpos[1] += 1.0F;
wpos[2] += span->dzdy;
wpos[3] += span->dwdy;
}
}
if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL0)) {
GLfloat *col0 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL0];
if (xOrY == 'X') {
col0[0] += span->drdx * (1.0F / CHAN_MAXF);
col0[1] += span->dgdx * (1.0F / CHAN_MAXF);
col0[2] += span->dbdx * (1.0F / CHAN_MAXF);
col0[3] += span->dadx * (1.0F / CHAN_MAXF);
}
else {
col0[0] += span->drdy * (1.0F / CHAN_MAXF);
col0[1] += span->dgdy * (1.0F / CHAN_MAXF);
col0[2] += span->dbdy * (1.0F / CHAN_MAXF);
col0[3] += span->dady * (1.0F / CHAN_MAXF);
}
}
if (program->Base.InputsRead & (1 << FRAG_ATTRIB_COL1)) {
GLfloat *col1 = (GLfloat*) machine->Inputs[FRAG_ATTRIB_COL1];
if (xOrY == 'X') {
col1[0] += span->dsrdx * (1.0F / CHAN_MAXF);
col1[1] += span->dsgdx * (1.0F / CHAN_MAXF);
col1[2] += span->dsbdx * (1.0F / CHAN_MAXF);
col1[3] += 0.0; /*XXX fix */
}
else {
col1[0] += span->dsrdy * (1.0F / CHAN_MAXF);
col1[1] += span->dsgdy * (1.0F / CHAN_MAXF);
col1[2] += span->dsbdy * (1.0F / CHAN_MAXF);
col1[3] += 0.0; /*XXX fix */
}
}
if (program->Base.InputsRead & (1 << FRAG_ATTRIB_FOGC)) {
GLfloat *fogc = (GLfloat*) machine->Inputs[FRAG_ATTRIB_FOGC];
if (xOrY == 'X') {
fogc[0] += span->dfogdx;
}
else {
fogc[0] += span->dfogdy;
}
}
for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
if (program->Base.InputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
GLfloat *tex = (GLfloat*) machine->Inputs[FRAG_ATTRIB_TEX0 + u];
/* XXX perspective-correct interpolation */
if (xOrY == 'X') {
tex[0] += span->texStepX[u][0];
tex[1] += span->texStepX[u][1];
tex[2] += span->texStepX[u][2];
tex[3] += span->texStepX[u][3];
}
else {
tex[0] += span->texStepY[u][0];
tex[1] += span->texStepY[u][1];
tex[2] += span->texStepY[u][2];
tex[3] += span->texStepY[u][3];
}
}
}
/* init condition codes */
dMachine->CondCodes[0] = COND_EQ;
dMachine->CondCodes[1] = COND_EQ;
dMachine->CondCodes[2] = COND_EQ;
dMachine->CondCodes[3] = COND_EQ;
}
/**
* Execute the given vertex program.
* NOTE: we do everything in single-precision floating point; we don't
* currently observe the single/half/fixed-precision qualifiers.
* \param ctx - rendering context
* \param program - the fragment program to execute
* \param machine - machine state (register file)
* \param maxInst - max number of instructions to execute
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
*/
static GLboolean
execute_program( GLcontext *ctx,
const struct fragment_program *program, GLuint maxInst,
struct fp_machine *machine, const struct sw_span *span,
GLuint column )
{
GLuint pc;
#if DEBUG_FRAG
printf("execute fragment program --------------------\n");
#endif
for (pc = 0; pc < maxInst; pc++) {
const struct prog_instruction *inst = program->Base.Instructions + pc;
if (ctx->FragmentProgram.CallbackEnabled &&
ctx->FragmentProgram.Callback) {
ctx->FragmentProgram.CurrentPosition = inst->StringPos;
ctx->FragmentProgram.Callback(program->Base.Target,
ctx->FragmentProgram.CallbackData);
}
switch (inst->Opcode) {
case OPCODE_ABS:
{
GLfloat a[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = FABSF(a[0]);
result[1] = FABSF(a[1]);
result[2] = FABSF(a[2]);
result[3] = FABSF(a[3]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_ADD:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = a[0] + b[0];
result[1] = a[1] + b[1];
result[2] = a[2] + b[2];
result[3] = a[3] + b[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_CMP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
result[0] = a[0] < 0.0F ? b[0] : c[0];
result[1] = a[1] < 0.0F ? b[1] : c[1];
result[2] = a[2] < 0.0F ? b[2] : c[2];
result[3] = a[3] < 0.0F ? b[3] : c[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_COS:
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = result[1] = result[2] = result[3] = (GLfloat)_mesa_cos(a[0]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_DDX: /* Partial derivative with respect to X */
{
GLfloat a[4], aNext[4], result[4];
struct fp_machine dMachine;
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'X',
column, result)) {
/* This is tricky. Make a copy of the current machine state,
* increment the input registers by the dx or dy partial
* derivatives, then re-execute the program up to the
* preceeding instruction, then fetch the source register.
* Finally, find the difference in the register values for
* the original and derivative runs.
*/
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
init_machine_deriv(ctx, machine, program, span,
'X', &dMachine);
execute_program(ctx, program, pc, &dMachine, span, column);
fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
result[0] = aNext[0] - a[0];
result[1] = aNext[1] - a[1];
result[2] = aNext[2] - a[2];
result[3] = aNext[3] - a[3];
}
store_vector4( inst, machine, result );
}
break;
case OPCODE_DDY: /* Partial derivative with respect to Y */
{
GLfloat a[4], aNext[4], result[4];
struct fp_machine dMachine;
if (!fetch_vector4_deriv(ctx, &inst->SrcReg[0], span, 'Y',
column, result)) {
init_machine_deriv(ctx, machine, program, span,
'Y', &dMachine);
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
execute_program(ctx, program, pc, &dMachine, span, column);
fetch_vector4( ctx, &inst->SrcReg[0], &dMachine, program, aNext );
result[0] = aNext[0] - a[0];
result[1] = aNext[1] - a[1];
result[2] = aNext[2] - a[2];
result[3] = aNext[3] - a[3];
}
store_vector4( inst, machine, result );
}
break;
case OPCODE_DP3:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
#endif
}
break;
case OPCODE_DP4:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
#endif
}
break;
case OPCODE_DPH:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3] =
a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + b[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_DST: /* Distance vector */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = 1.0F;
result[1] = a[1] * b[1];
result[2] = a[2];
result[3] = b[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_EX2: /* Exponential base 2 */
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = result[1] = result[2] = result[3] =
(GLfloat) _mesa_pow(2.0, a[0]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_FLR:
{
GLfloat a[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = FLOORF(a[0]);
result[1] = FLOORF(a[1]);
result[2] = FLOORF(a[2]);
result[3] = FLOORF(a[3]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_FRC:
{
GLfloat a[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = a[0] - FLOORF(a[0]);
result[1] = a[1] - FLOORF(a[1]);
result[2] = a[2] - FLOORF(a[2]);
result[3] = a[3] - FLOORF(a[3]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_KIL_NV: /* NV_f_p only */
{
const GLuint swizzle = inst->DstReg.CondSwizzle;
const GLuint condMask = inst->DstReg.CondMask;
if (test_cc(machine->CondCodes[GET_SWZ(swizzle, 0)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 1)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 2)], condMask) ||
test_cc(machine->CondCodes[GET_SWZ(swizzle, 3)], condMask)) {
return GL_FALSE;
}
}
break;
case OPCODE_KIL: /* ARB_f_p only */
{
GLfloat a[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
return GL_FALSE;
}
}
break;
case OPCODE_LG2: /* log base 2 */
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = result[1] = result[2] = result[3]
= LOG2(a[0]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_LIT:
{
const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
GLfloat a[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
a[0] = MAX2(a[0], 0.0F);
a[1] = MAX2(a[1], 0.0F);
/* XXX ARB version clamps a[3], NV version doesn't */
a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
result[0] = 1.0F;
result[1] = a[0];
/* XXX we could probably just use pow() here */
if (a[0] > 0.0F) {
if (a[1] == 0.0 && a[3] == 0.0)
result[2] = 1.0;
else
result[2] = EXPF(a[3] * LOGF(a[1]));
}
else {
result[2] = 0.0;
}
result[3] = 1.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_LRP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_MAD:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
result[0] = a[0] * b[0] + c[0];
result[1] = a[1] * b[1] + c[1];
result[2] = a[2] * b[2] + c[2];
result[3] = a[3] * b[3] + c[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_MAX:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = MAX2(a[0], b[0]);
result[1] = MAX2(a[1], b[1]);
result[2] = MAX2(a[2], b[2]);
result[3] = MAX2(a[3], b[3]);
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
#endif
}
break;
case OPCODE_MIN:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = MIN2(a[0], b[0]);
result[1] = MIN2(a[1], b[1]);
result[2] = MIN2(a[2], b[2]);
result[3] = MIN2(a[3], b[3]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_MOV:
{
GLfloat result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, result );
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("MOV (%g %g %g %g)\n",
result[0], result[1], result[2], result[3]);
#endif
}
break;
case OPCODE_MUL:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = a[0] * b[0];
result[1] = a[1] * b[1];
result[2] = a[2] * b[2];
result[3] = a[3] * b[3];
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
result[0], result[1], result[2], result[3],
a[0], a[1], a[2], a[3],
b[0], b[1], b[2], b[3]);
#endif
}
break;
case OPCODE_PK2H: /* pack two 16-bit floats in one 32-bit float */
{
GLfloat a[4], result[4];
GLhalfNV hx, hy;
GLuint *rawResult = (GLuint *) result;
GLuint twoHalves;
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
hx = _mesa_float_to_half(a[0]);
hy = _mesa_float_to_half(a[1]);
twoHalves = hx | (hy << 16);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= twoHalves;
store_vector4( inst, machine, result );
}
break;
case OPCODE_PK2US: /* pack two GLushorts into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint usx, usy, *rawResult = (GLuint *) result;
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
usx = IROUND(a[0] * 65535.0F);
usy = IROUND(a[1] * 65535.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= usx | (usy << 16);
store_vector4( inst, machine, result );
}
break;
case OPCODE_PK4B: /* pack four GLbytes into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
ubx = IROUND(127.0F * a[0] + 128.0F);
uby = IROUND(127.0F * a[1] + 128.0F);
ubz = IROUND(127.0F * a[2] + 128.0F);
ubw = IROUND(127.0F * a[3] + 128.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4( inst, machine, result );
}
break;
case OPCODE_PK4UB: /* pack four GLubytes into one 32-bit float */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
a[2] = CLAMP(a[2], 0.0F, 1.0F);
a[3] = CLAMP(a[3], 0.0F, 1.0F);
ubx = IROUND(255.0F * a[0]);
uby = IROUND(255.0F * a[1]);
ubz = IROUND(255.0F * a[2]);
ubw = IROUND(255.0F * a[3]);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4( inst, machine, result );
}
break;
case OPCODE_POW:
{
GLfloat a[4], b[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector1( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = result[1] = result[2] = result[3]
= (GLfloat)_mesa_pow(a[0], b[0]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_RCP:
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
#if DEBUG_FRAG
if (a[0] == 0)
printf("RCP(0)\n");
else if (IS_INF_OR_NAN(a[0]))
printf("RCP(inf)\n");
#endif
result[0] = result[1] = result[2] = result[3]
= 1.0F / a[0];
store_vector4( inst, machine, result );
}
break;
case OPCODE_RFL:
{
GLfloat axis[4], dir[4], result[4], tmp[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, axis );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dir );
tmp[3] = axis[0] * axis[0]
+ axis[1] * axis[1]
+ axis[2] * axis[2];
tmp[0] = (2.0F * (axis[0] * dir[0] +
axis[1] * dir[1] +
axis[2] * dir[2])) / tmp[3];
result[0] = tmp[0] * axis[0] - dir[0];
result[1] = tmp[0] * axis[1] - dir[1];
result[2] = tmp[0] * axis[2] - dir[2];
/* result[3] is never written! XXX enforce in parser! */
store_vector4( inst, machine, result );
}
break;
case OPCODE_RSQ: /* 1 / sqrt() */
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
a[0] = FABSF(a[0]);
result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
store_vector4( inst, machine, result );
#if DEBUG_FRAG
printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
#endif
}
break;
case OPCODE_SCS: /* sine and cos */
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = (GLfloat)_mesa_cos(a[0]);
result[1] = (GLfloat)_mesa_sin(a[0]);
result[2] = 0.0; /* undefined! */
result[3] = 0.0; /* undefined! */
store_vector4( inst, machine, result );
}
break;
case OPCODE_SEQ: /* set on equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_SFL: /* set false, operands ignored */
{
static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
store_vector4( inst, machine, result );
}
break;
case OPCODE_SGE: /* set on greater or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_SGT: /* set on greater */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_SIN:
{
GLfloat a[4], result[4];
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = result[1] = result[2] =
result[3] = (GLfloat)_mesa_sin(a[0]);
store_vector4( inst, machine, result );
}
break;
case OPCODE_SLE: /* set on less or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_SLT: /* set on less */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_SNE: /* set on not equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_STR: /* set true, operands ignored */
{
static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
store_vector4( inst, machine, result );
}
break;
case OPCODE_SUB:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = a[0] - b[0];
result[1] = a[1] - b[1];
result[2] = a[2] - b[2];
result[3] = a[3] - b[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_SWZ:
{
const struct prog_src_register *source = &inst->SrcReg[0];
const GLfloat *src = get_register_pointer(ctx, source,
machine, program);
GLfloat result[4];
GLuint i;
/* do extended swizzling here */
for (i = 0; i < 4; i++) {
if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ZERO)
result[i] = 0.0;
else if (GET_SWZ(source->Swizzle, i) == SWIZZLE_ONE)
result[i] = 1.0;
else
result[i] = src[GET_SWZ(source->Swizzle, i)];
if (source->NegateBase & (1 << i))
result[i] = -result[i];
}
store_vector4( inst, machine, result );
}
break;
case OPCODE_TEX: /* Both ARB and NV frag prog */
/* Texel lookup */
{
GLfloat texcoord[4], color[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
/* Note: we pass 0 for LOD. The ARB extension requires it
* while the NV extension says it's implementation dependant.
*/
/* KW: Previously lambda was passed as zero, but I
* believe this is incorrect, the spec seems to
* indicate rather that lambda should not be
* changed/biased, unlike TXB where texcoord[3] is
* added to the lambda calculations. The lambda should
* still be calculated normally for TEX & TXP though,
* not set to zero. Otherwise it's very difficult to
* implement normal GL semantics through the fragment
* shader.
*/
fetch_texel( ctx, texcoord,
span->array->lambda[inst->TexSrcUnit][column],
inst->TexSrcUnit, color );
#if DEBUG_FRAG
if (color[3])
printf("color[3] = %f\n", color[3]);
#endif
store_vector4( inst, machine, color );
}
break;
case OPCODE_TXB: /* GL_ARB_fragment_program only */
/* Texel lookup with LOD bias */
{
GLfloat texcoord[4], color[4], bias, lambda;
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
/* texcoord[3] is the bias to add to lambda */
bias = ctx->Texture.Unit[inst->TexSrcUnit].LodBias
+ ctx->Texture.Unit[inst->TexSrcUnit]._Current->LodBias
+ texcoord[3];
lambda = span->array->lambda[inst->TexSrcUnit][column] + bias;
fetch_texel( ctx, texcoord, lambda,
inst->TexSrcUnit, color );
store_vector4( inst, machine, color );
}
break;
case OPCODE_TXD: /* GL_NV_fragment_program only */
/* Texture lookup w/ partial derivatives for LOD */
{
GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, dtdx );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, dtdy );
fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit,
color );
store_vector4( inst, machine, color );
}
break;
case OPCODE_TXP: /* GL_ARB_fragment_program only */
/* Texture lookup w/ projective divide */
{
GLfloat texcoord[4], color[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
/* Not so sure about this test - if texcoord[3] is
* zero, we'd probably be fine except for an ASSERT in
* IROUND_POS() which gets triggered by the inf values created.
*/
if (texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
/* KW: Previously lambda was passed as zero, but I
* believe this is incorrect, the spec seems to
* indicate rather that lambda should not be
* changed/biased, unlike TXB where texcoord[3] is
* added to the lambda calculations. The lambda should
* still be calculated normally for TEX & TXP though,
* not set to zero.
*/
fetch_texel( ctx, texcoord,
span->array->lambda[inst->TexSrcUnit][column],
inst->TexSrcUnit, color );
store_vector4( inst, machine, color );
}
break;
case OPCODE_TXP_NV: /* GL_NV_fragment_program only */
/* Texture lookup w/ projective divide */
{
GLfloat texcoord[4], color[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, texcoord );
if (inst->TexSrcTarget != TEXTURE_CUBE_INDEX &&
texcoord[3] != 0.0) {
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
}
fetch_texel( ctx, texcoord,
span->array->lambda[inst->TexSrcUnit][column],
inst->TexSrcUnit, color );
store_vector4( inst, machine, color );
}
break;
case OPCODE_UP2H: /* unpack two 16-bit floats */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLhalfNV hx, hy;
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
hx = rawBits[0] & 0xffff;
hy = rawBits[0] >> 16;
result[0] = result[2] = _mesa_half_to_float(hx);
result[1] = result[3] = _mesa_half_to_float(hy);
store_vector4( inst, machine, result );
}
break;
case OPCODE_UP2US: /* unpack two GLushorts */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLushort usx, usy;
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
usx = rawBits[0] & 0xffff;
usy = rawBits[0] >> 16;
result[0] = result[2] = usx * (1.0f / 65535.0f);
result[1] = result[3] = usy * (1.0f / 65535.0f);
store_vector4( inst, machine, result );
}
break;
case OPCODE_UP4B: /* unpack four GLbytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
result[1] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
result[2] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
result[3] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_UP4UB: /* unpack four GLubytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1( ctx, &inst->SrcReg[0], machine, program, a );
result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
result[1] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
result[2] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
result[3] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
store_vector4( inst, machine, result );
}
break;
case OPCODE_XPD: /* cross product */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
result[3] = 1.0;
store_vector4( inst, machine, result );
}
break;
case OPCODE_X2D: /* 2-D matrix transform */
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a );
fetch_vector4( ctx, &inst->SrcReg[1], machine, program, b );
fetch_vector4( ctx, &inst->SrcReg[2], machine, program, c );
result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
store_vector4( inst, machine, result );
}
break;
case OPCODE_PRINT:
{
if (inst->SrcReg[0].File != -1) {
GLfloat a[4];
fetch_vector4( ctx, &inst->SrcReg[0], machine, program, a);
_mesa_printf("%s%g, %g, %g, %g\n", (const char *) inst->Data,
a[0], a[1], a[2], a[3]);
}
else {
_mesa_printf("%s\n", (const char *) inst->Data);
}
}
break;
case OPCODE_END:
return GL_TRUE;
default:
_mesa_problem(ctx, "Bad opcode %d in _mesa_exec_fragment_program",
inst->Opcode);
return GL_TRUE; /* return value doesn't matter */
}
}
return GL_TRUE;
}
static void
init_machine( GLcontext *ctx, struct fp_machine *machine,
const struct fragment_program *program,
const struct sw_span *span, GLuint col )
{
GLuint inputsRead = program->Base.InputsRead;
GLuint u;
if (ctx->FragmentProgram.CallbackEnabled)
inputsRead = ~0;
if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
/* Clear temporary registers (undefined for ARB_f_p) */
_mesa_bzero(machine->Temporaries,
MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
}
/* Load input registers */
if (inputsRead & (1 << FRAG_ATTRIB_WPOS)) {
GLfloat *wpos = machine->Inputs[FRAG_ATTRIB_WPOS];
ASSERT(span->arrayMask & SPAN_Z);
wpos[0] = (GLfloat) span->x + col;
wpos[1] = (GLfloat) span->y;
wpos[2] = (GLfloat) span->array->z[col] / ctx->DrawBuffer->_DepthMaxF;
wpos[3] = span->w + col * span->dwdx;
}
if (inputsRead & (1 << FRAG_ATTRIB_COL0)) {
GLfloat *col0 = machine->Inputs[FRAG_ATTRIB_COL0];
ASSERT(span->arrayMask & SPAN_RGBA);
col0[0] = CHAN_TO_FLOAT(span->array->rgba[col][RCOMP]);
col0[1] = CHAN_TO_FLOAT(span->array->rgba[col][GCOMP]);
col0[2] = CHAN_TO_FLOAT(span->array->rgba[col][BCOMP]);
col0[3] = CHAN_TO_FLOAT(span->array->rgba[col][ACOMP]);
}
if (inputsRead & (1 << FRAG_ATTRIB_COL1)) {
GLfloat *col1 = machine->Inputs[FRAG_ATTRIB_COL1];
col1[0] = CHAN_TO_FLOAT(span->array->spec[col][RCOMP]);
col1[1] = CHAN_TO_FLOAT(span->array->spec[col][GCOMP]);
col1[2] = CHAN_TO_FLOAT(span->array->spec[col][BCOMP]);
col1[3] = CHAN_TO_FLOAT(span->array->spec[col][ACOMP]);
}
if (inputsRead & (1 << FRAG_ATTRIB_FOGC)) {
GLfloat *fogc = machine->Inputs[FRAG_ATTRIB_FOGC];
ASSERT(span->arrayMask & SPAN_FOG);
fogc[0] = span->array->fog[col];
fogc[1] = 0.0F;
fogc[2] = 0.0F;
fogc[3] = 0.0F;
}
for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
if (inputsRead & (1 << (FRAG_ATTRIB_TEX0 + u))) {
GLfloat *tex = machine->Inputs[FRAG_ATTRIB_TEX0 + u];
/*ASSERT(ctx->Texture._EnabledCoordUnits & (1 << u));*/
COPY_4V(tex, span->array->texcoords[u][col]);
/*ASSERT(tex[0] != 0 || tex[1] != 0 || tex[2] != 0);*/
}
}
/* init condition codes */
machine->CondCodes[0] = COND_EQ;
machine->CondCodes[1] = COND_EQ;
machine->CondCodes[2] = COND_EQ;
machine->CondCodes[3] = COND_EQ;
}
/**
* Execute the current fragment program, operating on the given span.
*/
void
_swrast_exec_fragment_program( GLcontext *ctx, struct sw_span *span )
{
const struct fragment_program *program = ctx->FragmentProgram._Current;
GLuint i;
ctx->_CurrentProgram = GL_FRAGMENT_PROGRAM_ARB; /* or NV, doesn't matter */
if (program->Base.Parameters) {
_mesa_load_state_parameters(ctx, program->Base.Parameters);
}
for (i = 0; i < span->end; i++) {
if (span->array->mask[i]) {
init_machine(ctx, &ctx->FragmentProgram.Machine,
ctx->FragmentProgram._Current, span, i);
if (!execute_program(ctx, program, ~0,
&ctx->FragmentProgram.Machine, span, i)) {
span->array->mask[i] = GL_FALSE; /* killed fragment */
span->writeAll = GL_FALSE;
}
/* Store output registers */
{
const GLfloat *colOut
= ctx->FragmentProgram.Machine.Outputs[FRAG_RESULT_COLR];
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]);
}
/* depth value */
if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {
const GLfloat depth
= ctx->FragmentProgram.Machine.Outputs[FRAG_RESULT_DEPR][2];
span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);
}
}
}
if (program->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) {
span->interpMask &= ~SPAN_Z;
span->arrayMask |= SPAN_Z;
}
ctx->_CurrentProgram = 0;
}