blob: 6497813a826835867b64c203aee22210e8b1f8e5 [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.3
*
* Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "bufferobj.h"
#include "colormac.h"
#include "context.h"
#include "image.h"
#include "macros.h"
#include "pixel.h"
#include "mtypes.h"
/**********************************************************************/
/***** glPixelZoom *****/
/**********************************************************************/
void GLAPIENTRY
_mesa_PixelZoom( GLfloat xfactor, GLfloat yfactor )
{
GET_CURRENT_CONTEXT(ctx);
if (ctx->Pixel.ZoomX == xfactor &&
ctx->Pixel.ZoomY == yfactor)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.ZoomX = xfactor;
ctx->Pixel.ZoomY = yfactor;
}
/**********************************************************************/
/***** glPixelStore *****/
/**********************************************************************/
void GLAPIENTRY
_mesa_PixelStorei( GLenum pname, GLint param )
{
/* NOTE: this call can't be compiled into the display list */
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
switch (pname) {
case GL_PACK_SWAP_BYTES:
if (param == (GLint)ctx->Pack.SwapBytes)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.SwapBytes = param ? GL_TRUE : GL_FALSE;
break;
case GL_PACK_LSB_FIRST:
if (param == (GLint)ctx->Pack.LsbFirst)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.LsbFirst = param ? GL_TRUE : GL_FALSE;
break;
case GL_PACK_ROW_LENGTH:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.RowLength == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.RowLength = param;
break;
case GL_PACK_IMAGE_HEIGHT:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.ImageHeight == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.ImageHeight = param;
break;
case GL_PACK_SKIP_PIXELS:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.SkipPixels == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.SkipPixels = param;
break;
case GL_PACK_SKIP_ROWS:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.SkipRows == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.SkipRows = param;
break;
case GL_PACK_SKIP_IMAGES:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.SkipImages == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.SkipImages = param;
break;
case GL_PACK_ALIGNMENT:
if (param!=1 && param!=2 && param!=4 && param!=8) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Pack.Alignment == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.Alignment = param;
break;
case GL_PACK_INVERT_MESA:
if (!ctx->Extensions.MESA_pack_invert) {
_mesa_error( ctx, GL_INVALID_ENUM, "glPixelstore(pname)" );
return;
}
if (ctx->Pack.Invert == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Pack.Invert = param;
break;
case GL_UNPACK_SWAP_BYTES:
if (param == (GLint)ctx->Unpack.SwapBytes)
return;
if ((GLint)ctx->Unpack.SwapBytes == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.SwapBytes = param ? GL_TRUE : GL_FALSE;
break;
case GL_UNPACK_LSB_FIRST:
if (param == (GLint)ctx->Unpack.LsbFirst)
return;
if ((GLint)ctx->Unpack.LsbFirst == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.LsbFirst = param ? GL_TRUE : GL_FALSE;
break;
case GL_UNPACK_ROW_LENGTH:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Unpack.RowLength == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.RowLength = param;
break;
case GL_UNPACK_IMAGE_HEIGHT:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Unpack.ImageHeight == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.ImageHeight = param;
break;
case GL_UNPACK_SKIP_PIXELS:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Unpack.SkipPixels == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.SkipPixels = param;
break;
case GL_UNPACK_SKIP_ROWS:
if (param<0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Unpack.SkipRows == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.SkipRows = param;
break;
case GL_UNPACK_SKIP_IMAGES:
if (param < 0) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore(param)" );
return;
}
if (ctx->Unpack.SkipImages == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.SkipImages = param;
break;
case GL_UNPACK_ALIGNMENT:
if (param!=1 && param!=2 && param!=4 && param!=8) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelStore" );
return;
}
if (ctx->Unpack.Alignment == param)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.Alignment = param;
break;
case GL_UNPACK_CLIENT_STORAGE_APPLE:
if (param == (GLint)ctx->Unpack.ClientStorage)
return;
FLUSH_VERTICES(ctx, _NEW_PACKUNPACK);
ctx->Unpack.ClientStorage = param ? GL_TRUE : GL_FALSE;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glPixelStore" );
return;
}
}
void GLAPIENTRY
_mesa_PixelStoref( GLenum pname, GLfloat param )
{
_mesa_PixelStorei( pname, (GLint) param );
}
/**********************************************************************/
/***** glPixelMap *****/
/**********************************************************************/
/**
* Helper routine used by the other _mesa_PixelMap() functions.
*/
static void
pixelmap(GLcontext *ctx, GLenum map, GLsizei mapsize, const GLfloat *values)
{
GLint i;
switch (map) {
case GL_PIXEL_MAP_S_TO_S:
ctx->Pixel.MapStoSsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapStoS[i] = (GLint) values[i];
}
break;
case GL_PIXEL_MAP_I_TO_I:
ctx->Pixel.MapItoIsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapItoI[i] = (GLint) values[i];
}
break;
case GL_PIXEL_MAP_I_TO_R:
ctx->Pixel.MapItoRsize = mapsize;
for (i = 0; i < mapsize; i++) {
GLfloat val = CLAMP( values[i], 0.0F, 1.0F );
ctx->Pixel.MapItoR[i] = val;
ctx->Pixel.MapItoR8[i] = (GLint) (val * 255.0F);
}
break;
case GL_PIXEL_MAP_I_TO_G:
ctx->Pixel.MapItoGsize = mapsize;
for (i = 0; i < mapsize; i++) {
GLfloat val = CLAMP( values[i], 0.0F, 1.0F );
ctx->Pixel.MapItoG[i] = val;
ctx->Pixel.MapItoG8[i] = (GLint) (val * 255.0F);
}
break;
case GL_PIXEL_MAP_I_TO_B:
ctx->Pixel.MapItoBsize = mapsize;
for (i = 0; i < mapsize; i++) {
GLfloat val = CLAMP( values[i], 0.0F, 1.0F );
ctx->Pixel.MapItoB[i] = val;
ctx->Pixel.MapItoB8[i] = (GLint) (val * 255.0F);
}
break;
case GL_PIXEL_MAP_I_TO_A:
ctx->Pixel.MapItoAsize = mapsize;
for (i = 0; i < mapsize; i++) {
GLfloat val = CLAMP( values[i], 0.0F, 1.0F );
ctx->Pixel.MapItoA[i] = val;
ctx->Pixel.MapItoA8[i] = (GLint) (val * 255.0F);
}
break;
case GL_PIXEL_MAP_R_TO_R:
ctx->Pixel.MapRtoRsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapRtoR[i] = CLAMP( values[i], 0.0F, 1.0F );
}
break;
case GL_PIXEL_MAP_G_TO_G:
ctx->Pixel.MapGtoGsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapGtoG[i] = CLAMP( values[i], 0.0F, 1.0F );
}
break;
case GL_PIXEL_MAP_B_TO_B:
ctx->Pixel.MapBtoBsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapBtoB[i] = CLAMP( values[i], 0.0F, 1.0F );
}
break;
case GL_PIXEL_MAP_A_TO_A:
ctx->Pixel.MapAtoAsize = mapsize;
for (i = 0; i < mapsize; i++) {
ctx->Pixel.MapAtoA[i] = CLAMP( values[i], 0.0F, 1.0F );
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glPixelMap(map)" );
}
}
void GLAPIENTRY
_mesa_PixelMapfv( GLenum map, GLsizei mapsize, const GLfloat *values )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
/* XXX someday, test against ctx->Const.MaxPixelMapTableSize */
if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapfv(mapsize)" );
return;
}
if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) {
/* test that mapsize is a power of two */
if (_mesa_bitcount((GLuint) mapsize) != 1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapfv(mapsize)" );
return;
}
}
FLUSH_VERTICES(ctx, _NEW_PIXEL);
if (ctx->Unpack.BufferObj->Name) {
/* unpack pixelmap from PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Unpack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_FLOAT, values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapfv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
GL_READ_ONLY_ARB,
ctx->Unpack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapfv(PBO is mapped)");
return;
}
values = (const GLfloat *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
pixelmap(ctx, map, mapsize, values);
if (ctx->Unpack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
ctx->Unpack.BufferObj);
}
}
void GLAPIENTRY
_mesa_PixelMapuiv(GLenum map, GLsizei mapsize, const GLuint *values )
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" );
return;
}
if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) {
/* test that mapsize is a power of two */
if (_mesa_bitcount((GLuint) mapsize) != 1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" );
return;
}
}
FLUSH_VERTICES(ctx, _NEW_PIXEL);
if (ctx->Unpack.BufferObj->Name) {
/* unpack pixelmap from PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Unpack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_UNSIGNED_INT, values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapuiv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
GL_READ_ONLY_ARB,
ctx->Unpack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapuiv(PBO is mapped)");
return;
}
values = (const GLuint *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
/* convert to floats */
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
GLint i;
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
GLint i;
for (i = 0; i < mapsize; i++) {
fvalues[i] = UINT_TO_FLOAT( values[i] );
}
}
if (ctx->Unpack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
ctx->Unpack.BufferObj);
}
pixelmap(ctx, map, mapsize, fvalues);
}
void GLAPIENTRY
_mesa_PixelMapusv(GLenum map, GLsizei mapsize, const GLushort *values )
{
GLfloat fvalues[MAX_PIXEL_MAP_TABLE];
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapusv(mapsize)" );
return;
}
if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) {
/* test that mapsize is a power of two */
if (_mesa_bitcount((GLuint) mapsize) != 1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" );
return;
}
}
FLUSH_VERTICES(ctx, _NEW_PIXEL);
if (ctx->Unpack.BufferObj->Name) {
/* unpack pixelmap from PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Unpack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_UNSIGNED_SHORT,
values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapusv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
GL_READ_ONLY_ARB,
ctx->Unpack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glPixelMapusv(PBO is mapped)");
return;
}
values = (const GLushort *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
/* convert to floats */
if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) {
GLint i;
for (i = 0; i < mapsize; i++) {
fvalues[i] = (GLfloat) values[i];
}
}
else {
GLint i;
for (i = 0; i < mapsize; i++) {
fvalues[i] = USHORT_TO_FLOAT( values[i] );
}
}
if (ctx->Unpack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT,
ctx->Unpack.BufferObj);
}
pixelmap(ctx, map, mapsize, fvalues);
}
/**
* Return size of the named map.
*/
static GLuint
get_map_size(GLcontext *ctx, GLenum map)
{
switch (map) {
case GL_PIXEL_MAP_I_TO_I:
return ctx->Pixel.MapItoIsize;
case GL_PIXEL_MAP_S_TO_S:
return ctx->Pixel.MapStoSsize;
case GL_PIXEL_MAP_I_TO_R:
return ctx->Pixel.MapItoRsize;
case GL_PIXEL_MAP_I_TO_G:
return ctx->Pixel.MapItoGsize;
case GL_PIXEL_MAP_I_TO_B:
return ctx->Pixel.MapItoBsize;
case GL_PIXEL_MAP_I_TO_A:
return ctx->Pixel.MapItoAsize;
case GL_PIXEL_MAP_R_TO_R:
return ctx->Pixel.MapRtoRsize;
case GL_PIXEL_MAP_G_TO_G:
return ctx->Pixel.MapGtoGsize;
case GL_PIXEL_MAP_B_TO_B:
return ctx->Pixel.MapBtoBsize;
case GL_PIXEL_MAP_A_TO_A:
return ctx->Pixel.MapAtoAsize;
default:
return 0;
}
}
void GLAPIENTRY
_mesa_GetPixelMapfv( GLenum map, GLfloat *values )
{
GET_CURRENT_CONTEXT(ctx);
GLuint mapsize, i;
ASSERT_OUTSIDE_BEGIN_END(ctx);
mapsize = get_map_size(ctx, map);
if (ctx->Pack.BufferObj->Name) {
/* pack pixelmap into PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Pack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_FLOAT, values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapfv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
GL_WRITE_ONLY_ARB,
ctx->Pack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapfv(PBO is mapped)");
return;
}
values = (GLfloat *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
switch (map) {
case GL_PIXEL_MAP_I_TO_I:
for (i = 0; i < mapsize; i++) {
values[i] = (GLfloat) ctx->Pixel.MapItoI[i];
}
break;
case GL_PIXEL_MAP_S_TO_S:
for (i = 0; i < mapsize; i++) {
values[i] = (GLfloat) ctx->Pixel.MapStoS[i];
}
break;
case GL_PIXEL_MAP_I_TO_R:
MEMCPY(values, ctx->Pixel.MapItoR, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_I_TO_G:
MEMCPY(values, ctx->Pixel.MapItoG, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_I_TO_B:
MEMCPY(values, ctx->Pixel.MapItoB, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_I_TO_A:
MEMCPY(values, ctx->Pixel.MapItoA, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_R_TO_R:
MEMCPY(values, ctx->Pixel.MapRtoR, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_G_TO_G:
MEMCPY(values, ctx->Pixel.MapGtoG, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_B_TO_B:
MEMCPY(values, ctx->Pixel.MapBtoB, mapsize * sizeof(GLfloat));
break;
case GL_PIXEL_MAP_A_TO_A:
MEMCPY(values, ctx->Pixel.MapAtoA, mapsize * sizeof(GLfloat));
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetPixelMapfv" );
}
if (ctx->Pack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
ctx->Pack.BufferObj);
}
}
void GLAPIENTRY
_mesa_GetPixelMapuiv( GLenum map, GLuint *values )
{
GET_CURRENT_CONTEXT(ctx);
GLint mapsize, i;
ASSERT_OUTSIDE_BEGIN_END(ctx);
mapsize = get_map_size(ctx, map);
if (ctx->Pack.BufferObj->Name) {
/* pack pixelmap into PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Pack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_UNSIGNED_INT, values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapuiv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
GL_WRITE_ONLY_ARB,
ctx->Pack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapuiv(PBO is mapped)");
return;
}
values = (GLuint *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
switch (map) {
case GL_PIXEL_MAP_I_TO_I:
MEMCPY(values, ctx->Pixel.MapItoI, mapsize * sizeof(GLint));
break;
case GL_PIXEL_MAP_S_TO_S:
MEMCPY(values, ctx->Pixel.MapStoS, mapsize * sizeof(GLint));
break;
case GL_PIXEL_MAP_I_TO_R:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapItoR[i] );
}
break;
case GL_PIXEL_MAP_I_TO_G:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapItoG[i] );
}
break;
case GL_PIXEL_MAP_I_TO_B:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapItoB[i] );
}
break;
case GL_PIXEL_MAP_I_TO_A:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapItoA[i] );
}
break;
case GL_PIXEL_MAP_R_TO_R:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapRtoR[i] );
}
break;
case GL_PIXEL_MAP_G_TO_G:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapGtoG[i] );
}
break;
case GL_PIXEL_MAP_B_TO_B:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapBtoB[i] );
}
break;
case GL_PIXEL_MAP_A_TO_A:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_UINT( ctx->Pixel.MapAtoA[i] );
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetPixelMapfv" );
}
if (ctx->Pack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
ctx->Pack.BufferObj);
}
}
void GLAPIENTRY
_mesa_GetPixelMapusv( GLenum map, GLushort *values )
{
GET_CURRENT_CONTEXT(ctx);
GLint mapsize, i;
ASSERT_OUTSIDE_BEGIN_END(ctx);
mapsize = get_map_size(ctx, map);
if (ctx->Pack.BufferObj->Name) {
/* pack pixelmap into PBO */
GLubyte *buf;
/* Note, need to use DefaultPacking and Pack's buffer object */
ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj;
if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1,
GL_INTENSITY, GL_UNSIGNED_SHORT,
values)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapusv(invalid PBO access)");
return;
}
/* restore */
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
GL_WRITE_ONLY_ARB,
ctx->Pack.BufferObj);
if (!buf) {
/* buffer is already mapped - that's an error */
_mesa_error(ctx, GL_INVALID_OPERATION,
"glGetPixelMapusv(PBO is mapped)");
return;
}
values = (GLushort *) ADD_POINTERS(buf, values);
}
else if (!values) {
return;
}
switch (map) {
case GL_PIXEL_MAP_I_TO_I:
for (i = 0; i < mapsize; i++) {
values[i] = (GLushort) ctx->Pixel.MapItoI[i];
}
break;
case GL_PIXEL_MAP_S_TO_S:
for (i = 0; i < mapsize; i++) {
values[i] = (GLushort) ctx->Pixel.MapStoS[i];
}
break;
case GL_PIXEL_MAP_I_TO_R:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapItoR[i] );
}
break;
case GL_PIXEL_MAP_I_TO_G:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapItoG[i] );
}
break;
case GL_PIXEL_MAP_I_TO_B:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapItoB[i] );
}
break;
case GL_PIXEL_MAP_I_TO_A:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapItoA[i] );
}
break;
case GL_PIXEL_MAP_R_TO_R:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapRtoR[i] );
}
break;
case GL_PIXEL_MAP_G_TO_G:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapGtoG[i] );
}
break;
case GL_PIXEL_MAP_B_TO_B:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapBtoB[i] );
}
break;
case GL_PIXEL_MAP_A_TO_A:
for (i = 0; i < mapsize; i++) {
values[i] = FLOAT_TO_USHORT( ctx->Pixel.MapAtoA[i] );
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetPixelMapfv" );
}
if (ctx->Pack.BufferObj->Name) {
ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT,
ctx->Pack.BufferObj);
}
}
/**********************************************************************/
/***** glPixelTransfer *****/
/**********************************************************************/
/*
* Implements glPixelTransfer[fi] whether called immediately or from a
* display list.
*/
void GLAPIENTRY
_mesa_PixelTransferf( GLenum pname, GLfloat param )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
switch (pname) {
case GL_MAP_COLOR:
if (ctx->Pixel.MapColorFlag == (param ? GL_TRUE : GL_FALSE))
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.MapColorFlag = param ? GL_TRUE : GL_FALSE;
break;
case GL_MAP_STENCIL:
if (ctx->Pixel.MapStencilFlag == (param ? GL_TRUE : GL_FALSE))
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.MapStencilFlag = param ? GL_TRUE : GL_FALSE;
break;
case GL_INDEX_SHIFT:
if (ctx->Pixel.IndexShift == (GLint) param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.IndexShift = (GLint) param;
break;
case GL_INDEX_OFFSET:
if (ctx->Pixel.IndexOffset == (GLint) param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.IndexOffset = (GLint) param;
break;
case GL_RED_SCALE:
if (ctx->Pixel.RedScale == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.RedScale = param;
break;
case GL_RED_BIAS:
if (ctx->Pixel.RedBias == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.RedBias = param;
break;
case GL_GREEN_SCALE:
if (ctx->Pixel.GreenScale == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.GreenScale = param;
break;
case GL_GREEN_BIAS:
if (ctx->Pixel.GreenBias == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.GreenBias = param;
break;
case GL_BLUE_SCALE:
if (ctx->Pixel.BlueScale == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.BlueScale = param;
break;
case GL_BLUE_BIAS:
if (ctx->Pixel.BlueBias == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.BlueBias = param;
break;
case GL_ALPHA_SCALE:
if (ctx->Pixel.AlphaScale == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.AlphaScale = param;
break;
case GL_ALPHA_BIAS:
if (ctx->Pixel.AlphaBias == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.AlphaBias = param;
break;
case GL_DEPTH_SCALE:
if (ctx->Pixel.DepthScale == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.DepthScale = param;
break;
case GL_DEPTH_BIAS:
if (ctx->Pixel.DepthBias == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.DepthBias = param;
break;
case GL_POST_COLOR_MATRIX_RED_SCALE:
if (ctx->Pixel.PostColorMatrixScale[0] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixScale[0] = param;
break;
case GL_POST_COLOR_MATRIX_RED_BIAS:
if (ctx->Pixel.PostColorMatrixBias[0] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixBias[0] = param;
break;
case GL_POST_COLOR_MATRIX_GREEN_SCALE:
if (ctx->Pixel.PostColorMatrixScale[1] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixScale[1] = param;
break;
case GL_POST_COLOR_MATRIX_GREEN_BIAS:
if (ctx->Pixel.PostColorMatrixBias[1] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixBias[1] = param;
break;
case GL_POST_COLOR_MATRIX_BLUE_SCALE:
if (ctx->Pixel.PostColorMatrixScale[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixScale[2] = param;
break;
case GL_POST_COLOR_MATRIX_BLUE_BIAS:
if (ctx->Pixel.PostColorMatrixBias[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixBias[2] = param;
break;
case GL_POST_COLOR_MATRIX_ALPHA_SCALE:
if (ctx->Pixel.PostColorMatrixScale[3] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixScale[3] = param;
break;
case GL_POST_COLOR_MATRIX_ALPHA_BIAS:
if (ctx->Pixel.PostColorMatrixBias[3] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostColorMatrixBias[3] = param;
break;
case GL_POST_CONVOLUTION_RED_SCALE:
if (ctx->Pixel.PostConvolutionScale[0] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionScale[0] = param;
break;
case GL_POST_CONVOLUTION_RED_BIAS:
if (ctx->Pixel.PostConvolutionBias[0] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionBias[0] = param;
break;
case GL_POST_CONVOLUTION_GREEN_SCALE:
if (ctx->Pixel.PostConvolutionScale[1] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionScale[1] = param;
break;
case GL_POST_CONVOLUTION_GREEN_BIAS:
if (ctx->Pixel.PostConvolutionBias[1] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionBias[1] = param;
break;
case GL_POST_CONVOLUTION_BLUE_SCALE:
if (ctx->Pixel.PostConvolutionScale[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionScale[2] = param;
break;
case GL_POST_CONVOLUTION_BLUE_BIAS:
if (ctx->Pixel.PostConvolutionBias[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionBias[2] = param;
break;
case GL_POST_CONVOLUTION_ALPHA_SCALE:
if (ctx->Pixel.PostConvolutionScale[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionScale[2] = param;
break;
case GL_POST_CONVOLUTION_ALPHA_BIAS:
if (ctx->Pixel.PostConvolutionBias[2] == param)
return;
FLUSH_VERTICES(ctx, _NEW_PIXEL);
ctx->Pixel.PostConvolutionBias[2] = param;
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glPixelTransfer(pname)" );
return;
}
}
void GLAPIENTRY
_mesa_PixelTransferi( GLenum pname, GLint param )
{
_mesa_PixelTransferf( pname, (GLfloat) param );
}
/**********************************************************************/
/***** Pixel processing functions ******/
/**********************************************************************/
/*
* Apply scale and bias factors to an array of RGBA pixels.
*/
void
_mesa_scale_and_bias_rgba(GLuint n, GLfloat rgba[][4],
GLfloat rScale, GLfloat gScale,
GLfloat bScale, GLfloat aScale,
GLfloat rBias, GLfloat gBias,
GLfloat bBias, GLfloat aBias)
{
if (rScale != 1.0 || rBias != 0.0) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = rgba[i][RCOMP] * rScale + rBias;
}
}
if (gScale != 1.0 || gBias != 0.0) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][GCOMP] = rgba[i][GCOMP] * gScale + gBias;
}
}
if (bScale != 1.0 || bBias != 0.0) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][BCOMP] = rgba[i][BCOMP] * bScale + bBias;
}
}
if (aScale != 1.0 || aBias != 0.0) {
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][ACOMP] = rgba[i][ACOMP] * aScale + aBias;
}
}
}
/*
* Apply pixel mapping to an array of floating point RGBA pixels.
*/
void
_mesa_map_rgba( const GLcontext *ctx, GLuint n, GLfloat rgba[][4] )
{
const GLfloat rscale = (GLfloat) (ctx->Pixel.MapRtoRsize - 1);
const GLfloat gscale = (GLfloat) (ctx->Pixel.MapGtoGsize - 1);
const GLfloat bscale = (GLfloat) (ctx->Pixel.MapBtoBsize - 1);
const GLfloat ascale = (GLfloat) (ctx->Pixel.MapAtoAsize - 1);
const GLfloat *rMap = ctx->Pixel.MapRtoR;
const GLfloat *gMap = ctx->Pixel.MapGtoG;
const GLfloat *bMap = ctx->Pixel.MapBtoB;
const GLfloat *aMap = ctx->Pixel.MapAtoA;
GLuint i;
for (i=0;i<n;i++) {
GLfloat r = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
GLfloat g = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
GLfloat b = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
GLfloat a = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
rgba[i][RCOMP] = rMap[IROUND(r * rscale)];
rgba[i][GCOMP] = gMap[IROUND(g * gscale)];
rgba[i][BCOMP] = bMap[IROUND(b * bscale)];
rgba[i][ACOMP] = aMap[IROUND(a * ascale)];
}
}
/*
* Apply the color matrix and post color matrix scaling and biasing.
*/
void
_mesa_transform_rgba(const GLcontext *ctx, GLuint n, GLfloat rgba[][4])
{
const GLfloat rs = ctx->Pixel.PostColorMatrixScale[0];
const GLfloat rb = ctx->Pixel.PostColorMatrixBias[0];
const GLfloat gs = ctx->Pixel.PostColorMatrixScale[1];
const GLfloat gb = ctx->Pixel.PostColorMatrixBias[1];
const GLfloat bs = ctx->Pixel.PostColorMatrixScale[2];
const GLfloat bb = ctx->Pixel.PostColorMatrixBias[2];
const GLfloat as = ctx->Pixel.PostColorMatrixScale[3];
const GLfloat ab = ctx->Pixel.PostColorMatrixBias[3];
const GLfloat *m = ctx->ColorMatrixStack.Top->m;
GLuint i;
for (i = 0; i < n; i++) {
const GLfloat r = rgba[i][RCOMP];
const GLfloat g = rgba[i][GCOMP];
const GLfloat b = rgba[i][BCOMP];
const GLfloat a = rgba[i][ACOMP];
rgba[i][RCOMP] = (m[0] * r + m[4] * g + m[ 8] * b + m[12] * a) * rs + rb;
rgba[i][GCOMP] = (m[1] * r + m[5] * g + m[ 9] * b + m[13] * a) * gs + gb;
rgba[i][BCOMP] = (m[2] * r + m[6] * g + m[10] * b + m[14] * a) * bs + bb;
rgba[i][ACOMP] = (m[3] * r + m[7] * g + m[11] * b + m[15] * a) * as + ab;
}
}
/**
* Apply a color table lookup to an array of floating point RGBA colors.
*/
void
_mesa_lookup_rgba_float(const struct gl_color_table *table,
GLuint n, GLfloat rgba[][4])
{
if (!table->Table || table->Size == 0)
return;
switch (table->Format) {
case GL_INTENSITY:
/* replace RGBA with I */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][RCOMP] * scale);
GLfloat c = lut[CLAMP(j, 0, max)];
rgba[i][RCOMP] = rgba[i][GCOMP] =
rgba[i][BCOMP] = rgba[i][ACOMP] = c;
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][RCOMP] * scale);
GLfloat c = CHAN_TO_FLOAT(lut[CLAMP(j, 0, max)]);
rgba[i][RCOMP] = rgba[i][GCOMP] =
rgba[i][BCOMP] = rgba[i][ACOMP] = c;
}
}
break;
case GL_LUMINANCE:
/* replace RGB with L */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][RCOMP] * scale);
GLfloat c = lut[CLAMP(j, 0, max)];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c;
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][RCOMP] * scale);
GLfloat c = CHAN_TO_FLOAT(lut[CLAMP(j, 0, max)]);
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c;
}
}
break;
case GL_ALPHA:
/* replace A with A */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][ACOMP] * scale);
rgba[i][ACOMP] = lut[CLAMP(j, 0, max)];
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND(rgba[i][ACOMP] * scale);
rgba[i][ACOMP] = CHAN_TO_FLOAT(lut[CLAMP(j, 0, max)]);
}
}
break;
case GL_LUMINANCE_ALPHA:
/* replace RGBA with LLLA */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jL = IROUND(rgba[i][RCOMP] * scale);
GLint jA = IROUND(rgba[i][ACOMP] * scale);
GLfloat luminance, alpha;
jL = CLAMP(jL, 0, max);
jA = CLAMP(jA, 0, max);
luminance = lut[jL * 2 + 0];
alpha = lut[jA * 2 + 1];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance;
rgba[i][ACOMP] = alpha;;
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jL = IROUND(rgba[i][RCOMP] * scale);
GLint jA = IROUND(rgba[i][ACOMP] * scale);
GLfloat luminance, alpha;
jL = CLAMP(jL, 0, max);
jA = CLAMP(jA, 0, max);
luminance = CHAN_TO_FLOAT(lut[jL * 2 + 0]);
alpha = CHAN_TO_FLOAT(lut[jA * 2 + 1]);
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance;
rgba[i][ACOMP] = alpha;;
}
}
break;
case GL_RGB:
/* replace RGB with RGB */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND(rgba[i][RCOMP] * scale);
GLint jG = IROUND(rgba[i][GCOMP] * scale);
GLint jB = IROUND(rgba[i][BCOMP] * scale);
jR = CLAMP(jR, 0, max);
jG = CLAMP(jG, 0, max);
jB = CLAMP(jB, 0, max);
rgba[i][RCOMP] = lut[jR * 3 + 0];
rgba[i][GCOMP] = lut[jG * 3 + 1];
rgba[i][BCOMP] = lut[jB * 3 + 2];
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND(rgba[i][RCOMP] * scale);
GLint jG = IROUND(rgba[i][GCOMP] * scale);
GLint jB = IROUND(rgba[i][BCOMP] * scale);
jR = CLAMP(jR, 0, max);
jG = CLAMP(jG, 0, max);
jB = CLAMP(jB, 0, max);
rgba[i][RCOMP] = CHAN_TO_FLOAT(lut[jR * 3 + 0]);
rgba[i][GCOMP] = CHAN_TO_FLOAT(lut[jG * 3 + 1]);
rgba[i][BCOMP] = CHAN_TO_FLOAT(lut[jB * 3 + 2]);
}
}
break;
case GL_RGBA:
/* replace RGBA with RGBA */
if (table->Type == GL_FLOAT) {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND(rgba[i][RCOMP] * scale);
GLint jG = IROUND(rgba[i][GCOMP] * scale);
GLint jB = IROUND(rgba[i][BCOMP] * scale);
GLint jA = IROUND(rgba[i][ACOMP] * scale);
jR = CLAMP(jR, 0, max);
jG = CLAMP(jG, 0, max);
jB = CLAMP(jB, 0, max);
jA = CLAMP(jA, 0, max);
rgba[i][RCOMP] = lut[jR * 4 + 0];
rgba[i][GCOMP] = lut[jG * 4 + 1];
rgba[i][BCOMP] = lut[jB * 4 + 2];
rgba[i][ACOMP] = lut[jA * 4 + 3];
}
}
else {
const GLint max = table->Size - 1;
const GLfloat scale = (GLfloat) max;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND(rgba[i][RCOMP] * scale);
GLint jG = IROUND(rgba[i][GCOMP] * scale);
GLint jB = IROUND(rgba[i][BCOMP] * scale);
GLint jA = IROUND(rgba[i][ACOMP] * scale);
jR = CLAMP(jR, 0, max);
jG = CLAMP(jG, 0, max);
jB = CLAMP(jB, 0, max);
jA = CLAMP(jA, 0, max);
rgba[i][RCOMP] = CHAN_TO_FLOAT(lut[jR * 4 + 0]);
rgba[i][GCOMP] = CHAN_TO_FLOAT(lut[jG * 4 + 1]);
rgba[i][BCOMP] = CHAN_TO_FLOAT(lut[jB * 4 + 2]);
rgba[i][ACOMP] = CHAN_TO_FLOAT(lut[jA * 4 + 3]);
}
}
break;
default:
_mesa_problem(NULL, "Bad format in _mesa_lookup_rgba_float");
return;
}
}
/**
* Apply a color table lookup to an array of GLchan RGBA colors.
*/
void
_mesa_lookup_rgba_chan(const struct gl_color_table *table,
GLuint n, GLchan rgba[][4])
{
if (!table->Table || table->Size == 0)
return;
switch (table->Format) {
case GL_INTENSITY:
/* replace RGBA with I */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLchan c;
CLAMPED_FLOAT_TO_CHAN(c, lut[j]);
rgba[i][RCOMP] = rgba[i][GCOMP] =
rgba[i][BCOMP] = rgba[i][ACOMP] = c;
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
const GLchan c = lut[rgba[i][RCOMP]];
rgba[i][RCOMP] = rgba[i][GCOMP] =
rgba[i][BCOMP] = rgba[i][ACOMP] = c;
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale);
rgba[i][RCOMP] = rgba[i][GCOMP] =
rgba[i][BCOMP] = rgba[i][ACOMP] = lut[j];
}
}
}
break;
case GL_LUMINANCE:
/* replace RGB with L */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLchan c;
CLAMPED_FLOAT_TO_CHAN(c, lut[j]);
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c;
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
const GLchan c = lut[rgba[i][RCOMP]];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c;
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale);
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = lut[j];
}
}
}
break;
case GL_ALPHA:
/* replace A with A */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][ACOMP] * scale);
GLchan c;
CLAMPED_FLOAT_TO_CHAN(c, lut[j]);
rgba[i][ACOMP] = c;
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][ACOMP] = lut[rgba[i][ACOMP]];
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint j = IROUND((GLfloat) rgba[i][ACOMP] * scale);
rgba[i][ACOMP] = lut[j];
}
}
}
break;
case GL_LUMINANCE_ALPHA:
/* replace RGBA with LLLA */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jL = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale);
GLchan luminance, alpha;
CLAMPED_FLOAT_TO_CHAN(luminance, lut[jL * 2 + 0]);
CLAMPED_FLOAT_TO_CHAN(alpha, lut[jA * 2 + 1]);
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance;
rgba[i][ACOMP] = alpha;;
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLchan l = lut[rgba[i][RCOMP] * 2 + 0];
GLchan a = lut[rgba[i][ACOMP] * 2 + 1];;
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = l;
rgba[i][ACOMP] = a;
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jL = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale);
GLchan luminance = lut[jL * 2 + 0];
GLchan alpha = lut[jA * 2 + 1];
rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance;
rgba[i][ACOMP] = alpha;
}
}
}
break;
case GL_RGB:
/* replace RGB with RGB */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale);
GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale);
CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], lut[jR * 3 + 0]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], lut[jG * 3 + 1]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], lut[jB * 3 + 2]);
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = lut[rgba[i][RCOMP] * 3 + 0];
rgba[i][GCOMP] = lut[rgba[i][GCOMP] * 3 + 1];
rgba[i][BCOMP] = lut[rgba[i][BCOMP] * 3 + 2];
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale);
GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale);
rgba[i][RCOMP] = lut[jR * 3 + 0];
rgba[i][GCOMP] = lut[jG * 3 + 1];
rgba[i][BCOMP] = lut[jB * 3 + 2];
}
}
}
break;
case GL_RGBA:
/* replace RGBA with RGBA */
if (table->Type == GL_FLOAT) {
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale);
GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale);
GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale);
CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], lut[jR * 4 + 0]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], lut[jG * 4 + 1]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], lut[jB * 4 + 2]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][ACOMP], lut[jA * 4 + 3]);
}
}
else {
#if CHAN_TYPE == GL_UNSIGNED_BYTE
if (table->Size == 256) {
/* common case */
const GLchan *lut = (const GLchan *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
rgba[i][RCOMP] = lut[rgba[i][RCOMP] * 4 + 0];
rgba[i][GCOMP] = lut[rgba[i][GCOMP] * 4 + 1];
rgba[i][BCOMP] = lut[rgba[i][BCOMP] * 4 + 2];
rgba[i][ACOMP] = lut[rgba[i][ACOMP] * 4 + 3];
}
}
else
#endif
{
const GLfloat scale = (GLfloat) (table->Size - 1) / CHAN_MAXF;
const GLfloat *lut = (const GLfloat *) table->Table;
GLuint i;
for (i = 0; i < n; i++) {
GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale);
GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale);
GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale);
GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale);
CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], lut[jR * 4 + 0]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], lut[jG * 4 + 1]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], lut[jB * 4 + 2]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][ACOMP], lut[jA * 4 + 3]);
}
}
}
break;
default:
_mesa_problem(NULL, "Bad format in _mesa_lookup_rgba_chan");
return;
}
}
/*
* Apply color index shift and offset to an array of pixels.
*/
void
_mesa_shift_and_offset_ci( const GLcontext *ctx, GLuint n, GLuint indexes[] )
{
GLint shift = ctx->Pixel.IndexShift;
GLint offset = ctx->Pixel.IndexOffset;
GLuint i;
if (shift > 0) {
for (i=0;i<n;i++) {
indexes[i] = (indexes[i] << shift) + offset;
}
}
else if (shift < 0) {
shift = -shift;
for (i=0;i<n;i++) {
indexes[i] = (indexes[i] >> shift) + offset;
}
}
else {
for (i=0;i<n;i++) {
indexes[i] = indexes[i] + offset;
}
}
}
/*
* Apply color index mapping to color indexes.
*/
void
_mesa_map_ci( const GLcontext *ctx, GLuint n, GLuint index[] )
{
GLuint mask = ctx->Pixel.MapItoIsize - 1;
GLuint i;
for (i=0;i<n;i++) {
index[i] = ctx->Pixel.MapItoI[ index[i] & mask ];
}
}
/*
* Map color indexes to rgba values.
*/
void
_mesa_map_ci_to_rgba_chan( const GLcontext *ctx, GLuint n,
const GLuint index[], GLchan rgba[][4] )
{
#if CHAN_BITS == 8
GLuint rmask = ctx->Pixel.MapItoRsize - 1;
GLuint gmask = ctx->Pixel.MapItoGsize - 1;
GLuint bmask = ctx->Pixel.MapItoBsize - 1;
GLuint amask = ctx->Pixel.MapItoAsize - 1;
const GLubyte *rMap = ctx->Pixel.MapItoR8;
const GLubyte *gMap = ctx->Pixel.MapItoG8;
const GLubyte *bMap = ctx->Pixel.MapItoB8;
const GLubyte *aMap = ctx->Pixel.MapItoA8;
GLuint i;
for (i=0;i<n;i++) {
rgba[i][RCOMP] = rMap[index[i] & rmask];
rgba[i][GCOMP] = gMap[index[i] & gmask];
rgba[i][BCOMP] = bMap[index[i] & bmask];
rgba[i][ACOMP] = aMap[index[i] & amask];
}
#else
GLuint rmask = ctx->Pixel.MapItoRsize - 1;
GLuint gmask = ctx->Pixel.MapItoGsize - 1;
GLuint bmask = ctx->Pixel.MapItoBsize - 1;
GLuint amask = ctx->Pixel.MapItoAsize - 1;
const GLfloat *rMap = ctx->Pixel.MapItoR;
const GLfloat *gMap = ctx->Pixel.MapItoG;
const GLfloat *bMap = ctx->Pixel.MapItoB;
const GLfloat *aMap = ctx->Pixel.MapItoA;
GLuint i;
for (i=0;i<n;i++) {
CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], rMap[index[i] & rmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], gMap[index[i] & gmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], bMap[index[i] & bmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][ACOMP], aMap[index[i] & amask]);
}
#endif
}
/*
* Map color indexes to float rgba values.
*/
void
_mesa_map_ci_to_rgba( const GLcontext *ctx, GLuint n,
const GLuint index[], GLfloat rgba[][4] )
{
GLuint rmask = ctx->Pixel.MapItoRsize - 1;
GLuint gmask = ctx->Pixel.MapItoGsize - 1;
GLuint bmask = ctx->Pixel.MapItoBsize - 1;
GLuint amask = ctx->Pixel.MapItoAsize - 1;
const GLfloat *rMap = ctx->Pixel.MapItoR;
const GLfloat *gMap = ctx->Pixel.MapItoG;
const GLfloat *bMap = ctx->Pixel.MapItoB;
const GLfloat *aMap = ctx->Pixel.MapItoA;
GLuint i;
for (i=0;i<n;i++) {
rgba[i][RCOMP] = rMap[index[i] & rmask];
rgba[i][GCOMP] = gMap[index[i] & gmask];
rgba[i][BCOMP] = bMap[index[i] & bmask];
rgba[i][ACOMP] = aMap[index[i] & amask];
}
}
/*
* Map 8-bit color indexes to rgb values.
*/
void
_mesa_map_ci8_to_rgba( const GLcontext *ctx, GLuint n, const GLubyte index[],
GLchan rgba[][4] )
{
#if CHAN_BITS == 8
GLuint rmask = ctx->Pixel.MapItoRsize - 1;
GLuint gmask = ctx->Pixel.MapItoGsize - 1;
GLuint bmask = ctx->Pixel.MapItoBsize - 1;
GLuint amask = ctx->Pixel.MapItoAsize - 1;
const GLubyte *rMap = ctx->Pixel.MapItoR8;
const GLubyte *gMap = ctx->Pixel.MapItoG8;
const GLubyte *bMap = ctx->Pixel.MapItoB8;
const GLubyte *aMap = ctx->Pixel.MapItoA8;
GLuint i;
for (i=0;i<n;i++) {
rgba[i][RCOMP] = rMap[index[i] & rmask];
rgba[i][GCOMP] = gMap[index[i] & gmask];
rgba[i][BCOMP] = bMap[index[i] & bmask];
rgba[i][ACOMP] = aMap[index[i] & amask];
}
#else
GLuint rmask = ctx->Pixel.MapItoRsize - 1;
GLuint gmask = ctx->Pixel.MapItoGsize - 1;
GLuint bmask = ctx->Pixel.MapItoBsize - 1;
GLuint amask = ctx->Pixel.MapItoAsize - 1;
const GLfloat *rMap = ctx->Pixel.MapItoR;
const GLfloat *gMap = ctx->Pixel.MapItoG;
const GLfloat *bMap = ctx->Pixel.MapItoB;
const GLfloat *aMap = ctx->Pixel.MapItoA;
GLuint i;
for (i=0;i<n;i++) {
CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], rMap[index[i] & rmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], gMap[index[i] & gmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], bMap[index[i] & bmask]);
CLAMPED_FLOAT_TO_CHAN(rgba[i][ACOMP], aMap[index[i] & amask]);
}
#endif
}
void
_mesa_shift_and_offset_stencil( const GLcontext *ctx, GLuint n,
GLstencil stencil[] )
{
GLuint i;
GLint shift = ctx->Pixel.IndexShift;
GLint offset = ctx->Pixel.IndexOffset;
if (shift > 0) {
for (i=0;i<n;i++) {
stencil[i] = (stencil[i] << shift) + offset;
}
}
else if (shift < 0) {
shift = -shift;
for (i=0;i<n;i++) {
stencil[i] = (stencil[i] >> shift) + offset;
}
}
else {
for (i=0;i<n;i++) {
stencil[i] = stencil[i] + offset;
}
}
}
void
_mesa_map_stencil( const GLcontext *ctx, GLuint n, GLstencil stencil[] )
{
GLuint mask = ctx->Pixel.MapStoSsize - 1;
GLuint i;
for (i=0;i<n;i++) {
stencil[i] = ctx->Pixel.MapStoS[ stencil[i] & mask ];
}
}
/*
* This function converts an array of GLchan colors to GLfloat colors.
* Most importantly, it undoes the non-uniform quantization of pixel
* values introduced when we convert shallow (< 8 bit) pixel values
* to GLubytes in the ctx->Driver.ReadRGBASpan() functions.
* This fixes a number of OpenGL conformance failures when running on
* 16bpp displays, for example.
*/
void
_mesa_chan_to_float_span(const GLcontext *ctx, GLuint n,
CONST GLchan rgba[][4], GLfloat rgbaf[][4])
{
#if CHAN_TYPE == GL_FLOAT
MEMCPY(rgbaf, rgba, n * 4 * sizeof(GLfloat));
#else
const GLuint rShift = CHAN_BITS - ctx->Visual.redBits;
const GLuint gShift = CHAN_BITS - ctx->Visual.greenBits;
const GLuint bShift = CHAN_BITS - ctx->Visual.blueBits;
GLuint aShift;
const GLfloat rScale = 1.0F / (GLfloat) ((1 << ctx->Visual.redBits ) - 1);
const GLfloat gScale = 1.0F / (GLfloat) ((1 << ctx->Visual.greenBits) - 1);
const GLfloat bScale = 1.0F / (GLfloat) ((1 << ctx->Visual.blueBits ) - 1);
GLfloat aScale;
GLuint i;
if (ctx->Visual.alphaBits > 0) {
aShift = CHAN_BITS - ctx->Visual.alphaBits;
aScale = 1.0F / (GLfloat) ((1 << ctx->Visual.alphaBits) - 1);
}
else {
aShift = 0;
aScale = 1.0F / CHAN_MAXF;
}
for (i = 0; i < n; i++) {
const GLint r = rgba[i][RCOMP] >> rShift;
const GLint g = rgba[i][GCOMP] >> gShift;
const GLint b = rgba[i][BCOMP] >> bShift;
const GLint a = rgba[i][ACOMP] >> aShift;
rgbaf[i][RCOMP] = (GLfloat) r * rScale;
rgbaf[i][GCOMP] = (GLfloat) g * gScale;
rgbaf[i][BCOMP] = (GLfloat) b * bScale;
rgbaf[i][ACOMP] = (GLfloat) a * aScale;
}
#endif
}
/**********************************************************************/
/***** State Management *****/
/**********************************************************************/
/*
* Return a bitmask of IMAGE_*_BIT flags which to indicate which
* pixel transfer operations are enabled.
*/
static void
update_image_transfer_state(GLcontext *ctx)
{
GLuint mask = 0;
if (ctx->Pixel.RedScale != 1.0F || ctx->Pixel.RedBias != 0.0F ||
ctx->Pixel.GreenScale != 1.0F || ctx->Pixel.GreenBias != 0.0F ||
ctx->Pixel.BlueScale != 1.0F || ctx->Pixel.BlueBias != 0.0F ||
ctx->Pixel.AlphaScale != 1.0F || ctx->Pixel.AlphaBias != 0.0F)
mask |= IMAGE_SCALE_BIAS_BIT;
if (ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset)
mask |= IMAGE_SHIFT_OFFSET_BIT;
if (ctx->Pixel.MapColorFlag)
mask |= IMAGE_MAP_COLOR_BIT;
if (ctx->Pixel.ColorTableEnabled)
mask |= IMAGE_COLOR_TABLE_BIT;
if (ctx->Pixel.Convolution1DEnabled ||
ctx->Pixel.Convolution2DEnabled ||
ctx->Pixel.Separable2DEnabled) {
mask |= IMAGE_CONVOLUTION_BIT;
if (ctx->Pixel.PostConvolutionScale[0] != 1.0F ||
ctx->Pixel.PostConvolutionScale[1] != 1.0F ||
ctx->Pixel.PostConvolutionScale[2] != 1.0F ||
ctx->Pixel.PostConvolutionScale[3] != 1.0F ||
ctx->Pixel.PostConvolutionBias[0] != 0.0F ||
ctx->Pixel.PostConvolutionBias[1] != 0.0F ||
ctx->Pixel.PostConvolutionBias[2] != 0.0F ||
ctx->Pixel.PostConvolutionBias[3] != 0.0F) {
mask |= IMAGE_POST_CONVOLUTION_SCALE_BIAS;
}
}
if (ctx->Pixel.PostConvolutionColorTableEnabled)
mask |= IMAGE_POST_CONVOLUTION_COLOR_TABLE_BIT;
if (ctx->ColorMatrixStack.Top->type != MATRIX_IDENTITY ||
ctx->Pixel.PostColorMatrixScale[0] != 1.0F ||
ctx->Pixel.PostColorMatrixBias[0] != 0.0F ||
ctx->Pixel.PostColorMatrixScale[1] != 1.0F ||
ctx->Pixel.PostColorMatrixBias[1] != 0.0F ||
ctx->Pixel.PostColorMatrixScale[2] != 1.0F ||
ctx->Pixel.PostColorMatrixBias[2] != 0.0F ||
ctx->Pixel.PostColorMatrixScale[3] != 1.0F ||
ctx->Pixel.PostColorMatrixBias[3] != 0.0F)
mask |= IMAGE_COLOR_MATRIX_BIT;
if (ctx->Pixel.PostColorMatrixColorTableEnabled)
mask |= IMAGE_POST_COLOR_MATRIX_COLOR_TABLE_BIT;
if (ctx->Pixel.HistogramEnabled)
mask |= IMAGE_HISTOGRAM_BIT;
if (ctx->Pixel.MinMaxEnabled)
mask |= IMAGE_MIN_MAX_BIT;
ctx->_ImageTransferState = mask;
}
void _mesa_update_pixel( GLcontext *ctx, GLuint new_state )
{
if (new_state & _NEW_COLOR_MATRIX)
_math_matrix_analyse( ctx->ColorMatrixStack.Top );
/* References ColorMatrix.type (derived above).
*/
if (new_state & _IMAGE_NEW_TRANSFER_STATE)
update_image_transfer_state(ctx);
}
/**********************************************************************/
/***** Initialization *****/
/**********************************************************************/
/**
* Initialize the context's PIXEL attribute group.
*/
void
_mesa_init_pixel( GLcontext *ctx )
{
int i;
/* Pixel group */
ctx->Pixel.RedBias = 0.0;
ctx->Pixel.RedScale = 1.0;
ctx->Pixel.GreenBias = 0.0;
ctx->Pixel.GreenScale = 1.0;
ctx->Pixel.BlueBias = 0.0;
ctx->Pixel.BlueScale = 1.0;
ctx->Pixel.AlphaBias = 0.0;
ctx->Pixel.AlphaScale = 1.0;
ctx->Pixel.DepthBias = 0.0;
ctx->Pixel.DepthScale = 1.0;
ctx->Pixel.IndexOffset = 0;
ctx->Pixel.IndexShift = 0;
ctx->Pixel.ZoomX = 1.0;
ctx->Pixel.ZoomY = 1.0;
ctx->Pixel.MapColorFlag = GL_FALSE;
ctx->Pixel.MapStencilFlag = GL_FALSE;
ctx->Pixel.MapStoSsize = 1;
ctx->Pixel.MapItoIsize = 1;
ctx->Pixel.MapItoRsize = 1;
ctx->Pixel.MapItoGsize = 1;
ctx->Pixel.MapItoBsize = 1;
ctx->Pixel.MapItoAsize = 1;
ctx->Pixel.MapRtoRsize = 1;
ctx->Pixel.MapGtoGsize = 1;
ctx->Pixel.MapBtoBsize = 1;
ctx->Pixel.MapAtoAsize = 1;
ctx->Pixel.MapStoS[0] = 0;
ctx->Pixel.MapItoI[0] = 0;
ctx->Pixel.MapItoR[0] = 0.0;
ctx->Pixel.MapItoG[0] = 0.0;
ctx->Pixel.MapItoB[0] = 0.0;
ctx->Pixel.MapItoA[0] = 0.0;
ctx->Pixel.MapItoR8[0] = 0;
ctx->Pixel.MapItoG8[0] = 0;
ctx->Pixel.MapItoB8[0] = 0;
ctx->Pixel.MapItoA8[0] = 0;
ctx->Pixel.MapRtoR[0] = 0.0;
ctx->Pixel.MapGtoG[0] = 0.0;
ctx->Pixel.MapBtoB[0] = 0.0;
ctx->Pixel.MapAtoA[0] = 0.0;
ctx->Pixel.HistogramEnabled = GL_FALSE;
ctx->Pixel.MinMaxEnabled = GL_FALSE;
ctx->Pixel.PixelTextureEnabled = GL_FALSE;
ctx->Pixel.FragmentRgbSource = GL_PIXEL_GROUP_COLOR_SGIS;
ctx->Pixel.FragmentAlphaSource = GL_PIXEL_GROUP_COLOR_SGIS;
ASSIGN_4V(ctx->Pixel.PostColorMatrixScale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.PostColorMatrixBias, 0.0, 0.0, 0.0, 0.0);
ASSIGN_4V(ctx->Pixel.ColorTableScale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.ColorTableBias, 0.0, 0.0, 0.0, 0.0);
ASSIGN_4V(ctx->Pixel.PCCTscale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.PCCTbias, 0.0, 0.0, 0.0, 0.0);
ASSIGN_4V(ctx->Pixel.PCMCTscale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.PCMCTbias, 0.0, 0.0, 0.0, 0.0);
ctx->Pixel.ColorTableEnabled = GL_FALSE;
ctx->Pixel.PostConvolutionColorTableEnabled = GL_FALSE;
ctx->Pixel.PostColorMatrixColorTableEnabled = GL_FALSE;
ctx->Pixel.Convolution1DEnabled = GL_FALSE;
ctx->Pixel.Convolution2DEnabled = GL_FALSE;
ctx->Pixel.Separable2DEnabled = GL_FALSE;
for (i = 0; i < 3; i++) {
ASSIGN_4V(ctx->Pixel.ConvolutionBorderColor[i], 0.0, 0.0, 0.0, 0.0);
ctx->Pixel.ConvolutionBorderMode[i] = GL_REDUCE;
ASSIGN_4V(ctx->Pixel.ConvolutionFilterScale[i], 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.ConvolutionFilterBias[i], 0.0, 0.0, 0.0, 0.0);
}
for (i = 0; i < MAX_CONVOLUTION_WIDTH * MAX_CONVOLUTION_WIDTH * 4; i++) {
ctx->Convolution1D.Filter[i] = 0.0;
ctx->Convolution2D.Filter[i] = 0.0;
ctx->Separable2D.Filter[i] = 0.0;
}
ASSIGN_4V(ctx->Pixel.PostConvolutionScale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.PostConvolutionBias, 0.0, 0.0, 0.0, 0.0);
/* GL_SGI_texture_color_table */
ASSIGN_4V(ctx->Pixel.TextureColorTableScale, 1.0, 1.0, 1.0, 1.0);
ASSIGN_4V(ctx->Pixel.TextureColorTableBias, 0.0, 0.0, 0.0, 0.0);
/* Pixel transfer */
ctx->Pack.Alignment = 4;
ctx->Pack.RowLength = 0;
ctx->Pack.ImageHeight = 0;
ctx->Pack.SkipPixels = 0;
ctx->Pack.SkipRows = 0;
ctx->Pack.SkipImages = 0;
ctx->Pack.SwapBytes = GL_FALSE;
ctx->Pack.LsbFirst = GL_FALSE;
ctx->Pack.ClientStorage = GL_FALSE;
ctx->Pack.Invert = GL_FALSE;
#if FEATURE_EXT_pixel_buffer_object
ctx->Pack.BufferObj = ctx->Array.NullBufferObj;
#endif
ctx->Unpack.Alignment = 4;
ctx->Unpack.RowLength = 0;
ctx->Unpack.ImageHeight = 0;
ctx->Unpack.SkipPixels = 0;
ctx->Unpack.SkipRows = 0;
ctx->Unpack.SkipImages = 0;
ctx->Unpack.SwapBytes = GL_FALSE;
ctx->Unpack.LsbFirst = GL_FALSE;
ctx->Unpack.ClientStorage = GL_FALSE;
ctx->Unpack.Invert = GL_FALSE;
#if FEATURE_EXT_pixel_buffer_object
ctx->Unpack.BufferObj = ctx->Array.NullBufferObj;
#endif
/*
* _mesa_unpack_image() returns image data in this format. When we
* execute image commands (glDrawPixels(), glTexImage(), etc) from
* within display lists we have to be sure to set the current
* unpacking parameters to these values!
*/
ctx->DefaultPacking.Alignment = 1;
ctx->DefaultPacking.RowLength = 0;
ctx->DefaultPacking.SkipPixels = 0;
ctx->DefaultPacking.SkipRows = 0;
ctx->DefaultPacking.ImageHeight = 0;
ctx->DefaultPacking.SkipImages = 0;
ctx->DefaultPacking.SwapBytes = GL_FALSE;
ctx->DefaultPacking.LsbFirst = GL_FALSE;
ctx->DefaultPacking.ClientStorage = GL_FALSE;
ctx->DefaultPacking.Invert = GL_FALSE;
#if FEATURE_EXT_pixel_buffer_object
ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj;
#endif
if (ctx->Visual.doubleBufferMode) {
ctx->Pixel.ReadBuffer = GL_BACK;
}
else {
ctx->Pixel.ReadBuffer = GL_FRONT;
}
/* Miscellaneous */
ctx->_ImageTransferState = 0;
}