blob: 0122b1c2cdbd70eeefb3b05635f58dd117204e53 [file] [log] [blame]
#include "nv20_context.h"
#include "nv20_state.h"
#include "draw/draw_context.h"
static void nv20_state_emit_blend(struct nv20_context* nv20)
{
struct nv20_blend_state *b = nv20->blend;
BEGIN_RING(kelvin, NV20TCL_DITHER_ENABLE, 1);
OUT_RING (b->d_enable);
BEGIN_RING(kelvin, NV20TCL_BLEND_FUNC_ENABLE, 1);
OUT_RING (b->b_enable);
BEGIN_RING(kelvin, NV20TCL_BLEND_FUNC_SRC, 2);
OUT_RING (b->b_srcfunc);
OUT_RING (b->b_dstfunc);
BEGIN_RING(kelvin, NV20TCL_COLOR_MASK, 1);
OUT_RING (b->c_mask);
}
static void nv20_state_emit_blend_color(struct nv20_context* nv20)
{
struct pipe_blend_color *c = nv20->blend_color;
BEGIN_RING(kelvin, NV20TCL_BLEND_COLOR, 1);
OUT_RING ((float_to_ubyte(c->color[3]) << 24)|
(float_to_ubyte(c->color[0]) << 16)|
(float_to_ubyte(c->color[1]) << 8) |
(float_to_ubyte(c->color[2]) << 0));
}
static void nv20_state_emit_rast(struct nv20_context* nv20)
{
struct nv20_rasterizer_state *r = nv20->rast;
BEGIN_RING(kelvin, NV20TCL_SHADE_MODEL, 2);
OUT_RING (r->shade_model);
OUT_RING (r->line_width);
BEGIN_RING(kelvin, NV20TCL_POINT_SIZE, 1);
OUT_RING (r->point_size);
BEGIN_RING(kelvin, NV20TCL_POLYGON_MODE_FRONT, 2);
OUT_RING (r->poly_mode_front);
OUT_RING (r->poly_mode_back);
BEGIN_RING(kelvin, NV20TCL_CULL_FACE, 2);
OUT_RING (r->cull_face);
OUT_RING (r->front_face);
BEGIN_RING(kelvin, NV20TCL_LINE_SMOOTH_ENABLE, 2);
OUT_RING (r->line_smooth_en);
OUT_RING (r->poly_smooth_en);
BEGIN_RING(kelvin, NV20TCL_CULL_FACE_ENABLE, 1);
OUT_RING (r->cull_face_en);
}
static void nv20_state_emit_dsa(struct nv20_context* nv20)
{
struct nv20_depth_stencil_alpha_state *d = nv20->dsa;
BEGIN_RING(kelvin, NV20TCL_DEPTH_FUNC, 1);
OUT_RING (d->depth.func);
BEGIN_RING(kelvin, NV20TCL_DEPTH_WRITE_ENABLE, 1);
OUT_RING (d->depth.write_enable);
BEGIN_RING(kelvin, NV20TCL_DEPTH_TEST_ENABLE, 1);
OUT_RING (d->depth.test_enable);
BEGIN_RING(kelvin, NV20TCL_DEPTH_UNK17D8, 1);
OUT_RING (1);
#if 0
BEGIN_RING(kelvin, NV20TCL_STENCIL_ENABLE, 1);
OUT_RING (d->stencil.enable);
BEGIN_RING(kelvin, NV20TCL_STENCIL_MASK, 7);
OUT_RINGp ((uint32_t *)&(d->stencil.wmask), 7);
#endif
BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_ENABLE, 1);
OUT_RING (d->alpha.enabled);
BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_FUNC, 1);
OUT_RING (d->alpha.func);
BEGIN_RING(kelvin, NV20TCL_ALPHA_FUNC_REF, 1);
OUT_RING (d->alpha.ref);
}
static void nv20_state_emit_viewport(struct nv20_context* nv20)
{
}
static void nv20_state_emit_scissor(struct nv20_context* nv20)
{
/* NV20TCL_SCISSOR_* is probably a software method */
/* struct pipe_scissor_state *s = nv20->scissor;
BEGIN_RING(kelvin, NV20TCL_SCISSOR_HORIZ, 2);
OUT_RING (((s->maxx - s->minx) << 16) | s->minx);
OUT_RING (((s->maxy - s->miny) << 16) | s->miny);*/
}
static void nv20_state_emit_framebuffer(struct nv20_context* nv20)
{
struct pipe_framebuffer_state* fb = nv20->framebuffer;
struct nv04_surface *rt, *zeta = NULL;
uint32_t rt_format, w, h;
int colour_format = 0, zeta_format = 0;
struct nv20_miptree *nv20mt = 0;
w = fb->cbufs[0]->width;
h = fb->cbufs[0]->height;
colour_format = fb->cbufs[0]->format;
rt = (struct nv04_surface *)fb->cbufs[0];
if (fb->zsbuf) {
if (colour_format) {
assert(w == fb->zsbuf->width);
assert(h == fb->zsbuf->height);
} else {
w = fb->zsbuf->width;
h = fb->zsbuf->height;
}
zeta_format = fb->zsbuf->format;
zeta = (struct nv04_surface *)fb->zsbuf;
}
rt_format = NV20TCL_RT_FORMAT_TYPE_LINEAR | 0x20;
switch (colour_format) {
case PIPE_FORMAT_X8R8G8B8_UNORM:
rt_format |= NV20TCL_RT_FORMAT_COLOR_X8R8G8B8;
break;
case PIPE_FORMAT_A8R8G8B8_UNORM:
case 0:
rt_format |= NV20TCL_RT_FORMAT_COLOR_A8R8G8B8;
break;
case PIPE_FORMAT_R5G6B5_UNORM:
rt_format |= NV20TCL_RT_FORMAT_COLOR_R5G6B5;
break;
default:
assert(0);
}
if (zeta) {
BEGIN_RING(kelvin, NV20TCL_RT_PITCH, 1);
OUT_RING (rt->pitch | (zeta->pitch << 16));
} else {
BEGIN_RING(kelvin, NV20TCL_RT_PITCH, 1);
OUT_RING (rt->pitch | (rt->pitch << 16));
}
nv20mt = (struct nv20_miptree *)rt->base.texture;
nv20->rt[0] = nv20mt->buffer;
if (zeta_format)
{
nv20mt = (struct nv20_miptree *)zeta->base.texture;
nv20->zeta = nv20mt->buffer;
}
BEGIN_RING(kelvin, NV20TCL_RT_HORIZ, 3);
OUT_RING ((w << 16) | 0);
OUT_RING ((h << 16) | 0); /*NV20TCL_RT_VERT */
OUT_RING (rt_format); /* NV20TCL_RT_FORMAT */
BEGIN_RING(kelvin, NV20TCL_VIEWPORT_CLIP_HORIZ(0), 2);
OUT_RING (((w - 1) << 16) | 0);
OUT_RING (((h - 1) << 16) | 0);
}
static void nv20_vertex_layout(struct nv20_context *nv20)
{
struct nv20_fragment_program *fp = nv20->fragprog.current;
struct draw_context *dc = nv20->draw;
int src;
int i;
struct vertex_info *vinfo = &nv20->vertex_info;
const enum interp_mode colorInterp = INTERP_LINEAR;
boolean colors[2] = { FALSE };
boolean generics[12] = { FALSE };
boolean fog = FALSE;
memset(vinfo, 0, sizeof(*vinfo));
/*
* Assumed NV20 hardware vertex attribute order:
* 0 position, 1 ?, 2 ?, 3 col0,
* 4 col1?, 5 ?, 6 ?, 7 ?,
* 8 ?, 9 tex0, 10 tex1, 11 tex2,
* 12 tex3, 13 ?, 14 ?, 15 ?
* unaccounted: wgh, nor, fog
* There are total 16 attrs.
* vinfo->hwfmt[0] has a used-bit corresponding to each of these.
* relation to TGSI_SEMANTIC_*:
* - POSITION: position (always used)
* - COLOR: col1, col0
* - GENERIC: tex3, tex2, tex1, tex0, normal, weight
* - FOG: fog
*/
for (i = 0; i < fp->info.num_inputs; i++) {
int isn = fp->info.input_semantic_name[i];
int isi = fp->info.input_semantic_index[i];
switch (isn) {
case TGSI_SEMANTIC_POSITION:
break;
case TGSI_SEMANTIC_COLOR:
assert(isi < 2);
colors[isi] = TRUE;
break;
case TGSI_SEMANTIC_GENERIC:
assert(isi < 12);
generics[isi] = TRUE;
break;
case TGSI_SEMANTIC_FOG:
fog = TRUE;
break;
default:
assert(0 && "unknown input_semantic_name");
}
}
/* always do position */ {
src = draw_find_vs_output(dc, TGSI_SEMANTIC_POSITION, 0);
draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_LINEAR, src);
vinfo->hwfmt[0] |= (1 << 0);
}
/* two unnamed generics */
for (i = 4; i < 6; i++) {
if (!generics[i])
continue;
src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
vinfo->hwfmt[0] |= (1 << (i - 3));
}
if (colors[0]) {
src = draw_find_vs_output(dc, TGSI_SEMANTIC_COLOR, 0);
draw_emit_vertex_attr(vinfo, EMIT_4F, colorInterp, src);
vinfo->hwfmt[0] |= (1 << 3);
}
if (colors[1]) {
src = draw_find_vs_output(dc, TGSI_SEMANTIC_COLOR, 1);
draw_emit_vertex_attr(vinfo, EMIT_4F, colorInterp, src);
vinfo->hwfmt[0] |= (1 << 4);
}
/* four unnamed generics */
for (i = 6; i < 10; i++) {
if (!generics[i])
continue;
src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
vinfo->hwfmt[0] |= (1 << (i - 1));
}
/* tex0, tex1, tex2, tex3 */
for (i = 0; i < 4; i++) {
if (!generics[i])
continue;
src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
vinfo->hwfmt[0] |= (1 << (i + 9));
}
/* two unnamed generics */
for (i = 10; i < 12; i++) {
if (!generics[i])
continue;
src = draw_find_vs_output(dc, TGSI_SEMANTIC_GENERIC, i);
draw_emit_vertex_attr(vinfo, EMIT_4F, INTERP_PERSPECTIVE, src);
vinfo->hwfmt[0] |= (1 << (i + 3));
}
if (fog) {
src = draw_find_vs_output(dc, TGSI_SEMANTIC_FOG, 0);
draw_emit_vertex_attr(vinfo, EMIT_1F, INTERP_PERSPECTIVE, src);
vinfo->hwfmt[0] |= (1 << 15);
}
draw_compute_vertex_size(vinfo);
}
void
nv20_emit_hw_state(struct nv20_context *nv20)
{
int i;
if (nv20->dirty & NV20_NEW_VERTPROG) {
//nv20_vertprog_bind(nv20, nv20->vertprog.current);
nv20->dirty &= ~NV20_NEW_VERTPROG;
}
if (nv20->dirty & NV20_NEW_FRAGPROG) {
nv20_fragprog_bind(nv20, nv20->fragprog.current);
/*XXX: clear NV20_NEW_FRAGPROG if no new program uploaded */
nv20->dirty_samplers |= (1<<10);
nv20->dirty_samplers = 0;
}
if (nv20->dirty_samplers || (nv20->dirty & NV20_NEW_FRAGPROG)) {
nv20_fragtex_bind(nv20);
nv20->dirty &= ~NV20_NEW_FRAGPROG;
}
if (nv20->dirty & NV20_NEW_VTXARRAYS) {
nv20->dirty &= ~NV20_NEW_VTXARRAYS;
nv20_vertex_layout(nv20);
nv20_vtxbuf_bind(nv20);
}
if (nv20->dirty & NV20_NEW_BLEND) {
nv20->dirty &= ~NV20_NEW_BLEND;
nv20_state_emit_blend(nv20);
}
if (nv20->dirty & NV20_NEW_BLENDCOL) {
nv20->dirty &= ~NV20_NEW_BLENDCOL;
nv20_state_emit_blend_color(nv20);
}
if (nv20->dirty & NV20_NEW_RAST) {
nv20->dirty &= ~NV20_NEW_RAST;
nv20_state_emit_rast(nv20);
}
if (nv20->dirty & NV20_NEW_DSA) {
nv20->dirty &= ~NV20_NEW_DSA;
nv20_state_emit_dsa(nv20);
}
if (nv20->dirty & NV20_NEW_VIEWPORT) {
nv20->dirty &= ~NV20_NEW_VIEWPORT;
nv20_state_emit_viewport(nv20);
}
if (nv20->dirty & NV20_NEW_SCISSOR) {
nv20->dirty &= ~NV20_NEW_SCISSOR;
nv20_state_emit_scissor(nv20);
}
if (nv20->dirty & NV20_NEW_FRAMEBUFFER) {
nv20->dirty &= ~NV20_NEW_FRAMEBUFFER;
nv20_state_emit_framebuffer(nv20);
}
/* Emit relocs for every referenced buffer.
* This is to ensure the bufmgr has an accurate idea of how
* the buffer is used. This isn't very efficient, but we don't
* seem to take a significant performance hit. Will be improved
* at some point. Vertex arrays are emitted by nv20_vbo.c
*/
/* Render target */
BEGIN_RING(kelvin, NV20TCL_DMA_COLOR, 1);
OUT_RELOCo(nv20->rt[0], NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
BEGIN_RING(kelvin, NV20TCL_COLOR_OFFSET, 1);
OUT_RELOCl(nv20->rt[0], 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
if (nv20->zeta) {
BEGIN_RING(kelvin, NV20TCL_DMA_ZETA, 1);
OUT_RELOCo(nv20->zeta, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
BEGIN_RING(kelvin, NV20TCL_ZETA_OFFSET, 1);
OUT_RELOCl(nv20->zeta, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
/* XXX for when we allocate LMA on nv17 */
/* BEGIN_RING(kelvin, NV10TCL_LMA_DEPTH_BUFFER_OFFSET, 1);
OUT_RELOCl(nv20->zeta + lma_offset);*/
}
/* Vertex buffer */
BEGIN_RING(kelvin, NV20TCL_DMA_VTXBUF0, 1);
OUT_RELOCo(nv20->rt[0], NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
BEGIN_RING(kelvin, NV20TCL_COLOR_OFFSET, 1);
OUT_RELOCl(nv20->rt[0], 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_WR);
/* Texture images */
for (i = 0; i < 2; i++) {
if (!(nv20->fp_samplers & (1 << i)))
continue;
BEGIN_RING(kelvin, NV20TCL_TX_OFFSET(i), 1);
OUT_RELOCl(nv20->tex[i].buffer, 0, NOUVEAU_BO_VRAM |
NOUVEAU_BO_GART | NOUVEAU_BO_RD);
BEGIN_RING(kelvin, NV20TCL_TX_FORMAT(i), 1);
OUT_RELOCd(nv20->tex[i].buffer, nv20->tex[i].format,
NOUVEAU_BO_VRAM | NOUVEAU_BO_GART | NOUVEAU_BO_RD |
NOUVEAU_BO_OR, NV20TCL_TX_FORMAT_DMA0,
NV20TCL_TX_FORMAT_DMA1);
}
}