blob: 344dfdc6804d70a79a038a31bbf0e015f0c22719 [file] [log] [blame]
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
* Copyright (C) 2008 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file slang_codegen.c
* Generate IR tree from AST.
* \author Brian Paul
*/
/***
*** NOTES:
*** The new_() functions return a new instance of a simple IR node.
*** The gen_() functions generate larger IR trees from the simple nodes.
***/
#include "main/imports.h"
#include "main/macros.h"
#include "main/mtypes.h"
#include "shader/program.h"
#include "shader/prog_instruction.h"
#include "shader/prog_parameter.h"
#include "shader/prog_print.h"
#include "shader/prog_statevars.h"
#include "slang_typeinfo.h"
#include "slang_builtin.h"
#include "slang_codegen.h"
#include "slang_compile.h"
#include "slang_label.h"
#include "slang_mem.h"
#include "slang_simplify.h"
#include "slang_emit.h"
#include "slang_vartable.h"
#include "slang_ir.h"
#include "slang_print.h"
/** Max iterations to unroll */
const GLuint MAX_FOR_LOOP_UNROLL_ITERATIONS = 32;
/** Max for-loop body size (in slang operations) to unroll */
const GLuint MAX_FOR_LOOP_UNROLL_BODY_SIZE = 50;
/** Max for-loop body complexity to unroll.
* We'll compute complexity as the product of the number of iterations
* and the size of the body. So long-ish loops with very simple bodies
* can be unrolled, as well as short loops with larger bodies.
*/
const GLuint MAX_FOR_LOOP_UNROLL_COMPLEXITY = 256;
static slang_ir_node *
_slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
static void
slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
GLuint substCount, slang_variable **substOld,
slang_operation **substNew, GLboolean isLHS);
/**
* Retrieves type information about an operation.
* Returns GL_TRUE on success.
* Returns GL_FALSE otherwise.
*/
static GLboolean
typeof_operation(const struct slang_assemble_ctx_ *A,
slang_operation *op,
slang_typeinfo *ti)
{
return _slang_typeof_operation(op, &A->space, ti, A->atoms, A->log);
}
static GLboolean
is_sampler_type(const slang_fully_specified_type *t)
{
switch (t->specifier.type) {
case SLANG_SPEC_SAMPLER1D:
case SLANG_SPEC_SAMPLER2D:
case SLANG_SPEC_SAMPLER3D:
case SLANG_SPEC_SAMPLERCUBE:
case SLANG_SPEC_SAMPLER1DSHADOW:
case SLANG_SPEC_SAMPLER2DSHADOW:
case SLANG_SPEC_SAMPLER2DRECT:
case SLANG_SPEC_SAMPLER2DRECTSHADOW:
return GL_TRUE;
default:
return GL_FALSE;
}
}
/**
* Return the offset (in floats or ints) of the named field within
* the given struct. Return -1 if field not found.
* If field is NULL, return the size of the struct instead.
*/
static GLint
_slang_field_offset(const slang_type_specifier *spec, slang_atom field)
{
GLint offset = 0;
GLuint i;
for (i = 0; i < spec->_struct->fields->num_variables; i++) {
const slang_variable *v = spec->_struct->fields->variables[i];
const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
if (sz > 1) {
/* types larger than 1 float are register (4-float) aligned */
offset = (offset + 3) & ~3;
}
if (field && v->a_name == field) {
return offset;
}
offset += sz;
}
if (field)
return -1; /* field not found */
else
return offset; /* struct size */
}
/**
* Return the size (in floats) of the given type specifier.
* If the size is greater than 4, the size should be a multiple of 4
* so that the correct number of 4-float registers are allocated.
* For example, a mat3x2 is size 12 because we want to store the
* 3 columns in 3 float[4] registers.
*/
GLuint
_slang_sizeof_type_specifier(const slang_type_specifier *spec)
{
GLuint sz;
switch (spec->type) {
case SLANG_SPEC_VOID:
sz = 0;
break;
case SLANG_SPEC_BOOL:
sz = 1;
break;
case SLANG_SPEC_BVEC2:
sz = 2;
break;
case SLANG_SPEC_BVEC3:
sz = 3;
break;
case SLANG_SPEC_BVEC4:
sz = 4;
break;
case SLANG_SPEC_INT:
sz = 1;
break;
case SLANG_SPEC_IVEC2:
sz = 2;
break;
case SLANG_SPEC_IVEC3:
sz = 3;
break;
case SLANG_SPEC_IVEC4:
sz = 4;
break;
case SLANG_SPEC_FLOAT:
sz = 1;
break;
case SLANG_SPEC_VEC2:
sz = 2;
break;
case SLANG_SPEC_VEC3:
sz = 3;
break;
case SLANG_SPEC_VEC4:
sz = 4;
break;
case SLANG_SPEC_MAT2:
sz = 2 * 4; /* 2 columns (regs) */
break;
case SLANG_SPEC_MAT3:
sz = 3 * 4;
break;
case SLANG_SPEC_MAT4:
sz = 4 * 4;
break;
case SLANG_SPEC_MAT23:
sz = 2 * 4; /* 2 columns (regs) */
break;
case SLANG_SPEC_MAT32:
sz = 3 * 4; /* 3 columns (regs) */
break;
case SLANG_SPEC_MAT24:
sz = 2 * 4;
break;
case SLANG_SPEC_MAT42:
sz = 4 * 4; /* 4 columns (regs) */
break;
case SLANG_SPEC_MAT34:
sz = 3 * 4;
break;
case SLANG_SPEC_MAT43:
sz = 4 * 4; /* 4 columns (regs) */
break;
case SLANG_SPEC_SAMPLER1D:
case SLANG_SPEC_SAMPLER2D:
case SLANG_SPEC_SAMPLER3D:
case SLANG_SPEC_SAMPLERCUBE:
case SLANG_SPEC_SAMPLER1DSHADOW:
case SLANG_SPEC_SAMPLER2DSHADOW:
case SLANG_SPEC_SAMPLER2DRECT:
case SLANG_SPEC_SAMPLER2DRECTSHADOW:
sz = 1; /* a sampler is basically just an integer index */
break;
case SLANG_SPEC_STRUCT:
sz = _slang_field_offset(spec, 0); /* special use */
if (sz == 1) {
/* 1-float structs are actually troublesome to deal with since they
* might get placed at R.x, R.y, R.z or R.z. Return size=2 to
* ensure the object is placed at R.x
*/
sz = 2;
}
else if (sz > 4) {
sz = (sz + 3) & ~0x3; /* round up to multiple of four */
}
break;
case SLANG_SPEC_ARRAY:
sz = _slang_sizeof_type_specifier(spec->_array);
break;
default:
_mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
sz = 0;
}
if (sz > 4) {
/* if size is > 4, it should be a multiple of four */
assert((sz & 0x3) == 0);
}
return sz;
}
/**
* Query variable/array length (number of elements).
* This is slightly non-trivial because there are two ways to express
* arrays: "float x[3]" vs. "float[3] x".
* \return the length of the array for the given variable, or 0 if not an array
*/
static GLint
_slang_array_length(const slang_variable *var)
{
if (var->type.array_len > 0) {
/* Ex: float[4] x; */
return var->type.array_len;
}
if (var->array_len > 0) {
/* Ex: float x[4]; */
return var->array_len;
}
return 0;
}
/**
* Compute total size of array give size of element, number of elements.
* \return size in floats
*/
static GLint
_slang_array_size(GLint elemSize, GLint arrayLen)
{
GLint total;
assert(elemSize > 0);
if (arrayLen > 1) {
/* round up base type to multiple of 4 */
total = ((elemSize + 3) & ~0x3) * MAX2(arrayLen, 1);
}
else {
total = elemSize;
}
return total;
}
/**
* Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
* or -1 if the type is not a sampler.
*/
static GLint
sampler_to_texture_index(const slang_type_specifier_type type)
{
switch (type) {
case SLANG_SPEC_SAMPLER1D:
return TEXTURE_1D_INDEX;
case SLANG_SPEC_SAMPLER2D:
return TEXTURE_2D_INDEX;
case SLANG_SPEC_SAMPLER3D:
return TEXTURE_3D_INDEX;
case SLANG_SPEC_SAMPLERCUBE:
return TEXTURE_CUBE_INDEX;
case SLANG_SPEC_SAMPLER1DSHADOW:
return TEXTURE_1D_INDEX; /* XXX fix */
case SLANG_SPEC_SAMPLER2DSHADOW:
return TEXTURE_2D_INDEX; /* XXX fix */
case SLANG_SPEC_SAMPLER2DRECT:
return TEXTURE_RECT_INDEX;
case SLANG_SPEC_SAMPLER2DRECTSHADOW:
return TEXTURE_RECT_INDEX; /* XXX fix */
default:
return -1;
}
}
/** helper to build a SLANG_OPER_IDENTIFIER node */
static void
slang_operation_identifier(slang_operation *oper,
slang_assemble_ctx *A,
const char *name)
{
oper->type = SLANG_OPER_IDENTIFIER;
oper->a_id = slang_atom_pool_atom(A->atoms, name);
}
/**
* Called when we begin code/IR generation for a new while/do/for loop.
*/
static void
push_loop(slang_assemble_ctx *A, slang_operation *loopOper, slang_ir_node *loopIR)
{
A->LoopOperStack[A->LoopDepth] = loopOper;
A->LoopIRStack[A->LoopDepth] = loopIR;
A->LoopDepth++;
}
/**
* Called when we end code/IR generation for a new while/do/for loop.
*/
static void
pop_loop(slang_assemble_ctx *A)
{
assert(A->LoopDepth > 0);
A->LoopDepth--;
}
/**
* Return pointer to slang_operation for the loop we're currently inside,
* or NULL if not in a loop.
*/
static const slang_operation *
current_loop_oper(const slang_assemble_ctx *A)
{
if (A->LoopDepth > 0)
return A->LoopOperStack[A->LoopDepth - 1];
else
return NULL;
}
/**
* Return pointer to slang_ir_node for the loop we're currently inside,
* or NULL if not in a loop.
*/
static slang_ir_node *
current_loop_ir(const slang_assemble_ctx *A)
{
if (A->LoopDepth > 0)
return A->LoopIRStack[A->LoopDepth - 1];
else
return NULL;
}
/**********************************************************************/
/**
* Map "_asm foo" to IR_FOO, etc.
*/
typedef struct
{
const char *Name;
slang_ir_opcode Opcode;
GLuint HaveRetValue, NumParams;
} slang_asm_info;
static slang_asm_info AsmInfo[] = {
/* vec4 binary op */
{ "vec4_add", IR_ADD, 1, 2 },
{ "vec4_subtract", IR_SUB, 1, 2 },
{ "vec4_multiply", IR_MUL, 1, 2 },
{ "vec4_dot", IR_DOT4, 1, 2 },
{ "vec3_dot", IR_DOT3, 1, 2 },
{ "vec2_dot", IR_DOT2, 1, 2 },
{ "vec3_nrm", IR_NRM3, 1, 1 },
{ "vec4_nrm", IR_NRM4, 1, 1 },
{ "vec3_cross", IR_CROSS, 1, 2 },
{ "vec4_lrp", IR_LRP, 1, 3 },
{ "vec4_min", IR_MIN, 1, 2 },
{ "vec4_max", IR_MAX, 1, 2 },
{ "vec4_cmp", IR_CMP, 1, 3 },
{ "vec4_clamp", IR_CLAMP, 1, 3 },
{ "vec4_seq", IR_SEQUAL, 1, 2 },
{ "vec4_sne", IR_SNEQUAL, 1, 2 },
{ "vec4_sge", IR_SGE, 1, 2 },
{ "vec4_sgt", IR_SGT, 1, 2 },
{ "vec4_sle", IR_SLE, 1, 2 },
{ "vec4_slt", IR_SLT, 1, 2 },
/* vec4 unary */
{ "vec4_move", IR_MOVE, 1, 1 },
{ "vec4_floor", IR_FLOOR, 1, 1 },
{ "vec4_frac", IR_FRAC, 1, 1 },
{ "vec4_abs", IR_ABS, 1, 1 },
{ "vec4_negate", IR_NEG, 1, 1 },
{ "vec4_ddx", IR_DDX, 1, 1 },
{ "vec4_ddy", IR_DDY, 1, 1 },
/* float binary op */
{ "float_power", IR_POW, 1, 2 },
/* texture / sampler */
{ "vec4_tex_1d", IR_TEX, 1, 2 },
{ "vec4_tex_1d_bias", IR_TEXB, 1, 2 }, /* 1d w/ bias */
{ "vec4_tex_1d_proj", IR_TEXP, 1, 2 }, /* 1d w/ projection */
{ "vec4_tex_2d", IR_TEX, 1, 2 },
{ "vec4_tex_2d_bias", IR_TEXB, 1, 2 }, /* 2d w/ bias */
{ "vec4_tex_2d_proj", IR_TEXP, 1, 2 }, /* 2d w/ projection */
{ "vec4_tex_3d", IR_TEX, 1, 2 },
{ "vec4_tex_3d_bias", IR_TEXB, 1, 2 }, /* 3d w/ bias */
{ "vec4_tex_3d_proj", IR_TEXP, 1, 2 }, /* 3d w/ projection */
{ "vec4_tex_cube", IR_TEX, 1, 2 }, /* cubemap */
{ "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
{ "vec4_tex_rect_bias", IR_TEX, 1, 2 }, /* rectangle w/ projection */
/* texture / sampler but with shadow comparison */
{ "vec4_tex_1d_shadow", IR_TEX_SH, 1, 2 },
{ "vec4_tex_1d_bias_shadow", IR_TEXB_SH, 1, 2 },
{ "vec4_tex_1d_proj_shadow", IR_TEXP_SH, 1, 2 },
{ "vec4_tex_2d_shadow", IR_TEX_SH, 1, 2 },
{ "vec4_tex_2d_bias_shadow", IR_TEXB_SH, 1, 2 },
{ "vec4_tex_2d_proj_shadow", IR_TEXP_SH, 1, 2 },
{ "vec4_tex_rect_shadow", IR_TEX_SH, 1, 2 },
{ "vec4_tex_rect_proj_shadow", IR_TEXP_SH, 1, 2 },
/* unary op */
{ "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
{ "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
{ "float_exp", IR_EXP, 1, 1 },
{ "float_exp2", IR_EXP2, 1, 1 },
{ "float_log2", IR_LOG2, 1, 1 },
{ "float_rsq", IR_RSQ, 1, 1 },
{ "float_rcp", IR_RCP, 1, 1 },
{ "float_sine", IR_SIN, 1, 1 },
{ "float_cosine", IR_COS, 1, 1 },
{ "float_noise1", IR_NOISE1, 1, 1},
{ "float_noise2", IR_NOISE2, 1, 1},
{ "float_noise3", IR_NOISE3, 1, 1},
{ "float_noise4", IR_NOISE4, 1, 1},
{ NULL, IR_NOP, 0, 0 }
};
static slang_ir_node *
new_node3(slang_ir_opcode op,
slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
{
slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
if (n) {
n->Opcode = op;
n->Children[0] = c0;
n->Children[1] = c1;
n->Children[2] = c2;
n->InstLocation = -1;
}
return n;
}
static slang_ir_node *
new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
{
return new_node3(op, c0, c1, NULL);
}
static slang_ir_node *
new_node1(slang_ir_opcode op, slang_ir_node *c0)
{
return new_node3(op, c0, NULL, NULL);
}
static slang_ir_node *
new_node0(slang_ir_opcode op)
{
return new_node3(op, NULL, NULL, NULL);
}
/**
* Create sequence of two nodes.
*/
static slang_ir_node *
new_seq(slang_ir_node *left, slang_ir_node *right)
{
if (!left)
return right;
if (!right)
return left;
return new_node2(IR_SEQ, left, right);
}
static slang_ir_node *
new_label(slang_label *label)
{
slang_ir_node *n = new_node0(IR_LABEL);
assert(label);
if (n)
n->Label = label;
return n;
}
static slang_ir_node *
new_float_literal(const float v[4], GLuint size)
{
slang_ir_node *n = new_node0(IR_FLOAT);
assert(size <= 4);
COPY_4V(n->Value, v);
/* allocate a storage object, but compute actual location (Index) later */
n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
return n;
}
static slang_ir_node *
new_not(slang_ir_node *n)
{
return new_node1(IR_NOT, n);
}
/**
* Non-inlined function call.
*/
static slang_ir_node *
new_function_call(slang_ir_node *code, slang_label *name)
{
slang_ir_node *n = new_node1(IR_CALL, code);
assert(name);
if (n)
n->Label = name;
return n;
}
/**
* Unconditional jump.
*/
static slang_ir_node *
new_return(slang_label *dest)
{
slang_ir_node *n = new_node0(IR_RETURN);
assert(dest);
if (n)
n->Label = dest;
return n;
}
static slang_ir_node *
new_loop(slang_ir_node *body)
{
return new_node1(IR_LOOP, body);
}
static slang_ir_node *
new_break(slang_ir_node *loopNode)
{
slang_ir_node *n = new_node0(IR_BREAK);
assert(loopNode);
assert(loopNode->Opcode == IR_LOOP);
if (n) {
/* insert this node at head of linked list of cont/break instructions */
n->List = loopNode->List;
loopNode->List = n;
}
return n;
}
/**
* Make new IR_BREAK_IF_TRUE.
*/
static slang_ir_node *
new_break_if_true(slang_assemble_ctx *A, slang_ir_node *cond)
{
slang_ir_node *loopNode = current_loop_ir(A);
slang_ir_node *n;
assert(loopNode);
assert(loopNode->Opcode == IR_LOOP);
n = new_node1(IR_BREAK_IF_TRUE, cond);
if (n) {
/* insert this node at head of linked list of cont/break instructions */
n->List = loopNode->List;
loopNode->List = n;
}
return n;
}
/**
* Make new IR_CONT_IF_TRUE node.
*/
static slang_ir_node *
new_cont_if_true(slang_assemble_ctx *A, slang_ir_node *cond)
{
slang_ir_node *loopNode = current_loop_ir(A);
slang_ir_node *n;
assert(loopNode);
assert(loopNode->Opcode == IR_LOOP);
n = new_node1(IR_CONT_IF_TRUE, cond);
if (n) {
n->Parent = loopNode; /* pointer to containing loop */
/* insert this node at head of linked list of cont/break instructions */
n->List = loopNode->List;
loopNode->List = n;
}
return n;
}
static slang_ir_node *
new_cond(slang_ir_node *n)
{
slang_ir_node *c = new_node1(IR_COND, n);
return c;
}
static slang_ir_node *
new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
{
return new_node3(IR_IF, cond, ifPart, elsePart);
}
/**
* New IR_VAR node - a reference to a previously declared variable.
*/
static slang_ir_node *
new_var(slang_assemble_ctx *A, slang_variable *var)
{
slang_ir_node *n = new_node0(IR_VAR);
if (n) {
ASSERT(var);
ASSERT(var->store);
ASSERT(!n->Store);
ASSERT(!n->Var);
/* Set IR node's Var and Store pointers */
n->Var = var;
n->Store = var->store;
}
return n;
}
/**
* Check if the given function is really just a wrapper for a
* basic assembly instruction.
*/
static GLboolean
slang_is_asm_function(const slang_function *fun)
{
if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
fun->body->num_children == 1 &&
fun->body->children[0].type == SLANG_OPER_ASM) {
return GL_TRUE;
}
return GL_FALSE;
}
static GLboolean
_slang_is_noop(const slang_operation *oper)
{
if (!oper ||
oper->type == SLANG_OPER_VOID ||
(oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
return GL_TRUE;
else
return GL_FALSE;
}
/**
* Recursively search tree for a node of the given type.
*/
#if 0
static slang_operation *
_slang_find_node_type(slang_operation *oper, slang_operation_type type)
{
GLuint i;
if (oper->type == type)
return oper;
for (i = 0; i < oper->num_children; i++) {
slang_operation *p = _slang_find_node_type(&oper->children[i], type);
if (p)
return p;
}
return NULL;
}
#endif
/**
* Count the number of operations of the given time rooted at 'oper'.
*/
static GLuint
_slang_count_node_type(const slang_operation *oper, slang_operation_type type)
{
GLuint i, count = 0;
if (oper->type == type) {
return 1;
}
for (i = 0; i < oper->num_children; i++) {
count += _slang_count_node_type(&oper->children[i], type);
}
return count;
}
/**
* Check if the 'return' statement found under 'oper' is a "tail return"
* that can be no-op'd. For example:
*
* void func(void)
* {
* .. do something ..
* return; // this is a no-op
* }
*
* This is used when determining if a function can be inlined. If the
* 'return' is not the last statement, we can't inline the function since
* we still need the semantic behaviour of the 'return' but we don't want
* to accidentally return from the _calling_ function. We'd need to use an
* unconditional branch, but we don't have such a GPU instruction (not
* always, at least).
*/
static GLboolean
_slang_is_tail_return(const slang_operation *oper)
{
GLuint k = oper->num_children;
while (k > 0) {
const slang_operation *last = &oper->children[k - 1];
if (last->type == SLANG_OPER_RETURN)
return GL_TRUE;
else if (last->type == SLANG_OPER_IDENTIFIER ||
last->type == SLANG_OPER_LABEL)
k--; /* try prev child */
else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
/* try sub-children */
return _slang_is_tail_return(last);
else
break;
}
return GL_FALSE;
}
/**
* Generate a variable declaration opeartion.
* I.e.: generate AST code for "bool flag = false;"
*/
static void
slang_generate_declaration(slang_assemble_ctx *A,
slang_variable_scope *scope,
slang_operation *decl,
slang_type_specifier_type type,
const char *name,
GLint initValue)
{
slang_variable *var;
assert(type == SLANG_SPEC_BOOL ||
type == SLANG_SPEC_INT);
decl->type = SLANG_OPER_VARIABLE_DECL;
var = slang_variable_scope_grow(scope);
slang_fully_specified_type_construct(&var->type);
var->type.specifier.type = type;
var->a_name = slang_atom_pool_atom(A->atoms, name);
decl->a_id = var->a_name;
var->initializer = slang_operation_new(1);
slang_operation_literal_bool(var->initializer, initValue);
}
static void
slang_resolve_variable(slang_operation *oper)
{
if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
oper->var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
}
}
/**
* Rewrite AST code for "return expression;".
*
* We return values from functions by assinging the returned value to
* the hidden __retVal variable which is an extra 'out' parameter we add
* to the function signature.
* This code basically converts "return expr;" into "__retVal = expr; return;"
*
* \return the new AST code.
*/
static slang_operation *
gen_return_with_expression(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *blockOper, *assignOper;
assert(oper->type == SLANG_OPER_RETURN);
if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
slang_info_log_error(A->log, "illegal return expression");
return NULL;
}
blockOper = slang_operation_new(1);
blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
blockOper->locals->outer_scope = oper->locals->outer_scope;
slang_operation_add_children(blockOper, 2);
if (A->UseReturnFlag) {
/* Emit:
* {
* if (__notRetFlag)
* __retVal = expr;
* __notRetFlag = 0;
* }
*/
{
slang_operation *ifOper = slang_oper_child(blockOper, 0);
ifOper->type = SLANG_OPER_IF;
slang_operation_add_children(ifOper, 3);
{
slang_operation *cond = slang_oper_child(ifOper, 0);
cond->type = SLANG_OPER_IDENTIFIER;
cond->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
}
{
slang_operation *elseOper = slang_oper_child(ifOper, 2);
elseOper->type = SLANG_OPER_VOID;
}
assignOper = slang_oper_child(ifOper, 1);
}
{
slang_operation *setOper = slang_oper_child(blockOper, 1);
setOper->type = SLANG_OPER_ASSIGN;
slang_operation_add_children(setOper, 2);
{
slang_operation *lhs = slang_oper_child(setOper, 0);
lhs->type = SLANG_OPER_IDENTIFIER;
lhs->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
}
{
slang_operation *rhs = slang_oper_child(setOper, 1);
slang_operation_literal_bool(rhs, GL_FALSE);
}
}
}
else {
/* Emit:
* {
* __retVal = expr;
* return_inlined;
* }
*/
assignOper = slang_oper_child(blockOper, 0);
{
slang_operation *returnOper = slang_oper_child(blockOper, 1);
returnOper->type = SLANG_OPER_RETURN_INLINED;
assert(returnOper->num_children == 0);
}
}
/* __retVal = expression; */
assignOper->type = SLANG_OPER_ASSIGN;
slang_operation_add_children(assignOper, 2);
{
slang_operation *lhs = slang_oper_child(assignOper, 0);
lhs->type = SLANG_OPER_IDENTIFIER;
lhs->a_id = slang_atom_pool_atom(A->atoms, "__retVal");
}
{
slang_operation *rhs = slang_oper_child(assignOper, 1);
slang_operation_copy(rhs, &oper->children[0]);
}
///blockOper->locals->outer_scope = oper->locals->outer_scope;
/*slang_print_tree(blockOper, 0);*/
return blockOper;
}
/**
* Rewrite AST code for "return;" (no expression).
*/
static slang_operation *
gen_return_without_expression(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *newRet;
assert(oper->type == SLANG_OPER_RETURN);
if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
slang_info_log_error(A->log, "return statement requires an expression");
return NULL;
}
if (A->UseReturnFlag) {
/* Emit:
* __notRetFlag = 0;
*/
{
newRet = slang_operation_new(1);
newRet->locals->outer_scope = oper->locals->outer_scope;
newRet->type = SLANG_OPER_ASSIGN;
slang_operation_add_children(newRet, 2);
{
slang_operation *lhs = slang_oper_child(newRet, 0);
lhs->type = SLANG_OPER_IDENTIFIER;
lhs->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
}
{
slang_operation *rhs = slang_oper_child(newRet, 1);
slang_operation_literal_bool(rhs, GL_FALSE);
}
}
}
else {
/* Emit:
* return_inlined;
*/
newRet = slang_operation_new(1);
newRet->locals->outer_scope = oper->locals->outer_scope;
newRet->type = SLANG_OPER_RETURN_INLINED;
}
/*slang_print_tree(newRet, 0);*/
return newRet;
}
/**
* Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
*/
static void
slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
GLuint substCount, slang_variable **substOld,
slang_operation **substNew, GLboolean isLHS)
{
switch (oper->type) {
case SLANG_OPER_VARIABLE_DECL:
{
slang_variable *v = _slang_variable_locate(oper->locals,
oper->a_id, GL_TRUE);
assert(v);
if (v->initializer && oper->num_children == 0) {
/* set child of oper to copy of initializer */
oper->num_children = 1;
oper->children = slang_operation_new(1);
slang_operation_copy(&oper->children[0], v->initializer);
}
if (oper->num_children == 1) {
/* the initializer */
slang_substitute(A, &oper->children[0], substCount,
substOld, substNew, GL_FALSE);
}
}
break;
case SLANG_OPER_IDENTIFIER:
assert(oper->num_children == 0);
if (1/**!isLHS XXX FIX */) {
slang_atom id = oper->a_id;
slang_variable *v;
GLuint i;
v = _slang_variable_locate(oper->locals, id, GL_TRUE);
if (!v) {
if (_mesa_strcmp((char *) oper->a_id, "__notRetFlag"))
_mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
return;
}
/* look for a substitution */
for (i = 0; i < substCount; i++) {
if (v == substOld[i]) {
/* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
#if 0 /* DEBUG only */
if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
assert(substNew[i]->var);
assert(substNew[i]->var->a_name);
printf("Substitute %s with %s in id node %p\n",
(char*)v->a_name, (char*) substNew[i]->var->a_name,
(void*) oper);
}
else {
printf("Substitute %s with %f in id node %p\n",
(char*)v->a_name, substNew[i]->literal[0],
(void*) oper);
}
#endif
slang_operation_copy(oper, substNew[i]);
break;
}
}
}
break;
case SLANG_OPER_RETURN:
{
slang_operation *newReturn;
/* generate new 'return' code' */
if (slang_oper_child(oper, 0)->type == SLANG_OPER_VOID)
newReturn = gen_return_without_expression(A, oper);
else
newReturn = gen_return_with_expression(A, oper);
if (!newReturn)
return;
/* do substitutions on the new 'return' code */
slang_substitute(A, newReturn,
substCount, substOld, substNew, GL_FALSE);
/* install new 'return' code */
slang_operation_copy(oper, newReturn);
slang_operation_destruct(newReturn);
}
break;
case SLANG_OPER_ASSIGN:
case SLANG_OPER_SUBSCRIPT:
/* special case:
* child[0] can't have substitutions but child[1] can.
*/
slang_substitute(A, &oper->children[0],
substCount, substOld, substNew, GL_TRUE);
slang_substitute(A, &oper->children[1],
substCount, substOld, substNew, GL_FALSE);
break;
case SLANG_OPER_FIELD:
/* XXX NEW - test */
slang_substitute(A, &oper->children[0],
substCount, substOld, substNew, GL_TRUE);
break;
default:
{
GLuint i;
for (i = 0; i < oper->num_children; i++)
slang_substitute(A, &oper->children[i],
substCount, substOld, substNew, GL_FALSE);
}
}
}
/**
* Produce inline code for a call to an assembly instruction.
* This is typically used to compile a call to a built-in function like this:
*
* vec4 mix(const vec4 x, const vec4 y, const vec4 a)
* {
* __asm vec4_lrp __retVal, a, y, x;
* }
*
*
* A call to
* r = mix(p1, p2, p3);
*
* Becomes:
*
* mov
* / \
* r vec4_lrp
* / | \
* p3 p2 p1
*
* We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
*/
static slang_operation *
slang_inline_asm_function(slang_assemble_ctx *A,
slang_function *fun, slang_operation *oper)
{
const GLuint numArgs = oper->num_children;
GLuint i;
slang_operation *inlined;
const GLboolean haveRetValue = _slang_function_has_return_value(fun);
slang_variable **substOld;
slang_operation **substNew;
ASSERT(slang_is_asm_function(fun));
ASSERT(fun->param_count == numArgs + haveRetValue);
/*
printf("Inline %s as %s\n",
(char*) fun->header.a_name,
(char*) fun->body->children[0].a_id);
*/
/*
* We'll substitute formal params with actual args in the asm call.
*/
substOld = (slang_variable **)
_slang_alloc(numArgs * sizeof(slang_variable *));
substNew = (slang_operation **)
_slang_alloc(numArgs * sizeof(slang_operation *));
for (i = 0; i < numArgs; i++) {
substOld[i] = fun->parameters->variables[i];
substNew[i] = oper->children + i;
}
/* make a copy of the code to inline */
inlined = slang_operation_new(1);
slang_operation_copy(inlined, &fun->body->children[0]);
if (haveRetValue) {
/* get rid of the __retVal child */
inlined->num_children--;
for (i = 0; i < inlined->num_children; i++) {
inlined->children[i] = inlined->children[i + 1];
}
}
/* now do formal->actual substitutions */
slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
_slang_free(substOld);
_slang_free(substNew);
#if 0
printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
(char *) fun->header.a_name);
slang_print_tree(inlined, 3);
printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
#endif
return inlined;
}
/**
* Inline the given function call operation.
* Return a new slang_operation that corresponds to the inlined code.
*/
static slang_operation *
slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
slang_operation *oper, slang_operation *returnOper)
{
typedef enum {
SUBST = 1,
COPY_IN,
COPY_OUT
} ParamMode;
ParamMode *paramMode;
const GLboolean haveRetValue = _slang_function_has_return_value(fun);
const GLuint numArgs = oper->num_children;
const GLuint totalArgs = numArgs + haveRetValue;
slang_operation *args = oper->children;
slang_operation *inlined, *top;
slang_variable **substOld;
slang_operation **substNew;
GLuint substCount, numCopyIn, i;
slang_function *prevFunction;
slang_variable_scope *newScope = NULL;
/* save / push */
prevFunction = A->CurFunction;
A->CurFunction = fun;
/*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
assert(fun->param_count == totalArgs);
/* allocate temporary arrays */
paramMode = (ParamMode *)
_slang_alloc(totalArgs * sizeof(ParamMode));
substOld = (slang_variable **)
_slang_alloc(totalArgs * sizeof(slang_variable *));
substNew = (slang_operation **)
_slang_alloc(totalArgs * sizeof(slang_operation *));
#if 0
printf("\nInline call to %s (total vars=%d nparams=%d)\n",
(char *) fun->header.a_name,
fun->parameters->num_variables, numArgs);
#endif
if (haveRetValue && !returnOper) {
/* Create 3-child comma sequence for inlined code:
* child[0]: declare __resultTmp
* child[1]: inlined function body
* child[2]: __resultTmp
*/
slang_operation *commaSeq;
slang_operation *declOper = NULL;
slang_variable *resultVar;
commaSeq = slang_operation_new(1);
commaSeq->type = SLANG_OPER_SEQUENCE;
assert(commaSeq->locals);
commaSeq->locals->outer_scope = oper->locals->outer_scope;
commaSeq->num_children = 3;
commaSeq->children = slang_operation_new(3);
/* allocate the return var */
resultVar = slang_variable_scope_grow(commaSeq->locals);
/*
printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
(void*)commaSeq->locals, (char *) fun->header.a_name);
*/
resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
resultVar->type = fun->header.type; /* XXX copy? */
resultVar->isTemp = GL_TRUE;
/* child[0] = __resultTmp declaration */
declOper = &commaSeq->children[0];
declOper->type = SLANG_OPER_VARIABLE_DECL;
declOper->a_id = resultVar->a_name;
declOper->locals->outer_scope = commaSeq->locals;
/* child[1] = function body */
inlined = &commaSeq->children[1];
inlined->locals->outer_scope = commaSeq->locals;
/* child[2] = __resultTmp reference */
returnOper = &commaSeq->children[2];
returnOper->type = SLANG_OPER_IDENTIFIER;
returnOper->a_id = resultVar->a_name;
returnOper->locals->outer_scope = commaSeq->locals;
top = commaSeq;
}
else {
top = inlined = slang_operation_new(1);
/* XXXX this may be inappropriate!!!! */
inlined->locals->outer_scope = oper->locals->outer_scope;
}
assert(inlined->locals);
/* Examine the parameters, look for inout/out params, look for possible
* substitutions, etc:
* param type behaviour
* in copy actual to local
* const in substitute param with actual
* out copy out
*/
substCount = 0;
for (i = 0; i < totalArgs; i++) {
slang_variable *p = fun->parameters->variables[i];
/*
printf("Param %d: %s %s \n", i,
slang_type_qual_string(p->type.qualifier),
(char *) p->a_name);
*/
if (p->type.qualifier == SLANG_QUAL_INOUT ||
p->type.qualifier == SLANG_QUAL_OUT) {
/* an output param */
slang_operation *arg;
if (i < numArgs)
arg = &args[i];
else
arg = returnOper;
paramMode[i] = SUBST;
if (arg->type == SLANG_OPER_IDENTIFIER)
slang_resolve_variable(arg);
/* replace parameter 'p' with argument 'arg' */
substOld[substCount] = p;
substNew[substCount] = arg; /* will get copied */
substCount++;
}
else if (p->type.qualifier == SLANG_QUAL_CONST) {
/* a constant input param */
if (args[i].type == SLANG_OPER_IDENTIFIER ||
args[i].type == SLANG_OPER_LITERAL_FLOAT ||
args[i].type == SLANG_OPER_SUBSCRIPT) {
/* replace all occurances of this parameter variable with the
* actual argument variable or a literal.
*/
paramMode[i] = SUBST;
slang_resolve_variable(&args[i]);
substOld[substCount] = p;
substNew[substCount] = &args[i]; /* will get copied */
substCount++;
}
else {
paramMode[i] = COPY_IN;
}
}
else {
paramMode[i] = COPY_IN;
}
assert(paramMode[i]);
}
/* actual code inlining: */
slang_operation_copy(inlined, fun->body);
/*** XXX review this */
assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
#if 0
printf("======================= orig body code ======================\n");
printf("=== params scope = %p\n", (void*) fun->parameters);
slang_print_tree(fun->body, 8);
printf("======================= copied code =========================\n");
slang_print_tree(inlined, 8);
#endif
/* do parameter substitution in inlined code: */
slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
#if 0
printf("======================= subst code ==========================\n");
slang_print_tree(inlined, 8);
printf("=============================================================\n");
#endif
/* New prolog statements: (inserted before the inlined code)
* Copy the 'in' arguments.
*/
numCopyIn = 0;
for (i = 0; i < numArgs; i++) {
if (paramMode[i] == COPY_IN) {
slang_variable *p = fun->parameters->variables[i];
/* declare parameter 'p' */
slang_operation *decl = slang_operation_insert(&inlined->num_children,
&inlined->children,
numCopyIn);
decl->type = SLANG_OPER_VARIABLE_DECL;
assert(decl->locals);
decl->locals->outer_scope = inlined->locals;
decl->a_id = p->a_name;
decl->num_children = 1;
decl->children = slang_operation_new(1);
/* child[0] is the var's initializer */
slang_operation_copy(&decl->children[0], args + i);
/* add parameter 'p' to the local variable scope here */
{
slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
pCopy->type = p->type;
pCopy->a_name = p->a_name;
pCopy->array_len = p->array_len;
}
newScope = inlined->locals;
numCopyIn++;
}
}
/* Now add copies of the function's local vars to the new variable scope */
for (i = totalArgs; i < fun->parameters->num_variables; i++) {
slang_variable *p = fun->parameters->variables[i];
slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
pCopy->type = p->type;
pCopy->a_name = p->a_name;
pCopy->array_len = p->array_len;
}
/* New epilog statements:
* 1. Create end of function label to jump to from return statements.
* 2. Copy the 'out' parameter vars
*/
{
slang_operation *lab = slang_operation_insert(&inlined->num_children,
&inlined->children,
inlined->num_children);
lab->type = SLANG_OPER_LABEL;
lab->label = A->curFuncEndLabel;
}
for (i = 0; i < totalArgs; i++) {
if (paramMode[i] == COPY_OUT) {
const slang_variable *p = fun->parameters->variables[i];
/* actualCallVar = outParam */
/*if (i > 0 || !haveRetValue)*/
slang_operation *ass = slang_operation_insert(&inlined->num_children,
&inlined->children,
inlined->num_children);
ass->type = SLANG_OPER_ASSIGN;
ass->num_children = 2;
ass->locals->outer_scope = inlined->locals;
ass->children = slang_operation_new(2);
ass->children[0] = args[i]; /*XXX copy */
ass->children[1].type = SLANG_OPER_IDENTIFIER;
ass->children[1].a_id = p->a_name;
ass->children[1].locals->outer_scope = ass->locals;
}
}
_slang_free(paramMode);
_slang_free(substOld);
_slang_free(substNew);
/* Update scoping to use the new local vars instead of the
* original function's vars. This is especially important
* for nested inlining.
*/
if (newScope)
slang_replace_scope(inlined, fun->parameters, newScope);
#if 0
printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
(char *) fun->header.a_name,
fun->parameters->num_variables, numArgs);
slang_print_tree(top, 0);
#endif
/* pop */
A->CurFunction = prevFunction;
return top;
}
/**
* Insert declaration for "bool __notRetFlag" in given block operation.
* This is used when we can't emit "early" return statements in subroutines.
*/
static void
declare_return_flag(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *decl;
assert(oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
oper->type == SLANG_OPER_SEQUENCE);
decl = slang_operation_insert_child(oper, 1);
slang_generate_declaration(A, oper->locals, decl,
SLANG_SPEC_BOOL, "__notRetFlag", GL_TRUE);
/*slang_print_tree(oper, 0);*/
}
/**
* Recursively replace instances of the old node type with the new type.
*/
static void
replace_node_type(slang_operation *oper, slang_operation_type oldType,
slang_operation_type newType)
{
GLuint i;
if (oper->type == oldType)
oper->type = newType;
for (i = 0; i < slang_oper_num_children(oper); i++) {
replace_node_type(slang_oper_child(oper, i), oldType, newType);
}
}
/**
* Test if the given function body has an "early return". That is, there's
* a 'return' statement that's not the very last instruction in the body.
*/
static GLboolean
has_early_return(const slang_operation *funcBody)
{
GLuint retCount = _slang_count_node_type(funcBody, SLANG_OPER_RETURN);
if (retCount == 0)
return GL_FALSE;
else if (retCount == 1 && _slang_is_tail_return(funcBody))
return GL_FALSE;
else
return GL_TRUE;
}
/**
* Emit IR code for a function call. This does one of two things:
* 1. Inline the function's code
* 2. Create an IR for the function's body and create a real call to it.
*/
static slang_ir_node *
_slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
slang_operation *oper, slang_operation *dest)
{
slang_ir_node *n;
slang_operation *instance;
slang_label *prevFuncEndLabel;
char name[200];
prevFuncEndLabel = A->curFuncEndLabel;
sprintf(name, "__endOfFunc_%s_", (char *) fun->header.a_name);
A->curFuncEndLabel = _slang_label_new(name);
assert(A->curFuncEndLabel);
/*
* 'instance' is basically a copy of the function's body with various
* transformations.
*/
if (slang_is_asm_function(fun) && !dest) {
/* assemble assembly function - tree style */
instance = slang_inline_asm_function(A, fun, oper);
}
else {
/* non-assembly function */
/* We always generate an "inline-able" block of code here.
* We may either:
* 1. insert the inline code
* 2. Generate a call to the "inline" code as a subroutine
*/
const GLboolean earlyReturn = has_early_return(fun->body);
if (earlyReturn && !A->EmitContReturn) {
A->UseReturnFlag = GL_TRUE;
}
instance = slang_inline_function_call(A, fun, oper, dest);
if (!instance)
return NULL;
if (earlyReturn) {
/* The function we're calling has one or more 'return' statements
* that prevent us from inlining the function's code.
*
* In this case, change the function's body type from
* SLANG_OPER_BLOCK_NEW_SCOPE to SLANG_OPER_NON_INLINED_CALL.
* During code emit this will result in a true subroutine call.
*
* Also, convert SLANG_OPER_RETURN_INLINED nodes to SLANG_OPER_RETURN.
*/
slang_operation *callOper;
assert(instance->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
instance->type == SLANG_OPER_SEQUENCE);
if (_slang_function_has_return_value(fun) && !dest) {
assert(instance->children[0].type == SLANG_OPER_VARIABLE_DECL);
assert(instance->children[2].type == SLANG_OPER_IDENTIFIER);
callOper = &instance->children[1];
}
else {
callOper = instance;
}
if (A->UseReturnFlag) {
/* Early returns not supported. Create a _returnFlag variable
* that's set upon 'return' and tested elsewhere to no-op any
* remaining instructions in the subroutine.
*/
assert(callOper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
callOper->type == SLANG_OPER_SEQUENCE);
declare_return_flag(A, callOper);
}
else {
/* We can emit real 'return' statements. If we generated any
* 'inline return' statements during function instantiation,
* change them back to regular 'return' statements.
*/
replace_node_type(instance, SLANG_OPER_RETURN_INLINED,
SLANG_OPER_RETURN);
}
callOper->type = SLANG_OPER_NON_INLINED_CALL;
callOper->fun = fun;
callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
}
else {
/* If there are any 'return' statements remaining, they're at the
* very end of the function and can effectively become no-ops.
*/
replace_node_type(instance, SLANG_OPER_RETURN_INLINED,
SLANG_OPER_VOID);
}
}
if (!instance)
return NULL;
/* Replace the function call with the instance block (or new CALL stmt) */
slang_operation_destruct(oper);
*oper = *instance;
_slang_free(instance);
#if 0
assert(instance->locals);
printf("*** Inlined code for call to %s:\n", (char*) fun->header.a_name);
slang_print_tree(oper, 10);
printf("\n");
#endif
n = _slang_gen_operation(A, oper);
/*_slang_label_delete(A->curFuncEndLabel);*/
A->curFuncEndLabel = prevFuncEndLabel;
if (A->pragmas->Debug) {
char s[1000];
_mesa_snprintf(s, sizeof(s), "Call/inline %s()", (char *) fun->header.a_name);
n->Comment = _slang_strdup(s);
}
A->UseReturnFlag = GL_FALSE;
return n;
}
static slang_asm_info *
slang_find_asm_info(const char *name)
{
GLuint i;
for (i = 0; AsmInfo[i].Name; i++) {
if (_mesa_strcmp(AsmInfo[i].Name, name) == 0) {
return AsmInfo + i;
}
}
return NULL;
}
/**
* Some write-masked assignments are simple, but others are hard.
* Simple example:
* vec3 v;
* v.xy = vec2(a, b);
* Hard example:
* vec3 v;
* v.zy = vec2(a, b);
* this gets transformed/swizzled into:
* v.zy = vec2(a, b).*yx* (* = don't care)
* This function helps to determine simple vs. non-simple.
*/
static GLboolean
_slang_simple_writemask(GLuint writemask, GLuint swizzle)
{
switch (writemask) {
case WRITEMASK_X:
return GET_SWZ(swizzle, 0) == SWIZZLE_X;
case WRITEMASK_Y:
return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
case WRITEMASK_Z:
return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
case WRITEMASK_W:
return GET_SWZ(swizzle, 3) == SWIZZLE_W;
case WRITEMASK_XY:
return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
&& (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
case WRITEMASK_XYZ:
return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
&& (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
&& (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
case WRITEMASK_XYZW:
return swizzle == SWIZZLE_NOOP;
default:
return GL_FALSE;
}
}
/**
* Convert the given swizzle into a writemask. In some cases this
* is trivial, in other cases, we'll need to also swizzle the right
* hand side to put components in the right places.
* See comment above for more info.
* XXX this function could be simplified and should probably be renamed.
* \param swizzle the incoming swizzle
* \param writemaskOut returns the writemask
* \param swizzleOut swizzle to apply to the right-hand-side
* \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
*/
static GLboolean
swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
GLuint *writemaskOut, GLuint *swizzleOut)
{
GLuint mask = 0x0, newSwizzle[4];
GLint i, size;
/* make new dst writemask, compute size */
for (i = 0; i < 4; i++) {
const GLuint swz = GET_SWZ(swizzle, i);
if (swz == SWIZZLE_NIL) {
/* end */
break;
}
assert(swz >= 0 && swz <= 3);
if (swizzle != SWIZZLE_XXXX &&
swizzle != SWIZZLE_YYYY &&
swizzle != SWIZZLE_ZZZZ &&
swizzle != SWIZZLE_WWWW &&
(mask & (1 << swz))) {
/* a channel can't be specified twice (ex: ".xyyz") */
slang_info_log_error(A->log, "Invalid writemask '%s'",
_mesa_swizzle_string(swizzle, 0, 0));
return GL_FALSE;
}
mask |= (1 << swz);
}
assert(mask <= 0xf);
size = i; /* number of components in mask/swizzle */
*writemaskOut = mask;
/* make new src swizzle, by inversion */
for (i = 0; i < 4; i++) {
newSwizzle[i] = i; /*identity*/
}
for (i = 0; i < size; i++) {
const GLuint swz = GET_SWZ(swizzle, i);
newSwizzle[swz] = i;
}
*swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
newSwizzle[1],
newSwizzle[2],
newSwizzle[3]);
if (_slang_simple_writemask(mask, *swizzleOut)) {
if (size >= 1)
assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
if (size >= 2)
assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
if (size >= 3)
assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
if (size >= 4)
assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
return GL_TRUE;
}
else
return GL_FALSE;
}
#if 0 /* not used, but don't remove just yet */
/**
* Recursively traverse 'oper' to produce a swizzle mask in the event
* of any vector subscripts and swizzle suffixes.
* Ex: for "vec4 v", "v[2].x" resolves to v.z
*/
static GLuint
resolve_swizzle(const slang_operation *oper)
{
if (oper->type == SLANG_OPER_FIELD) {
/* writemask from .xyzw suffix */
slang_swizzle swz;
if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
swz.swizzle[1],
swz.swizzle[2],
swz.swizzle[3]);
GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
return s;
}
else
return SWIZZLE_XYZW;
}
else if (oper->type == SLANG_OPER_SUBSCRIPT &&
oper->children[1].type == SLANG_OPER_LITERAL_INT) {
/* writemask from [index] */
GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
GLuint i = (GLuint) oper->children[1].literal[0];
GLuint swizzle;
GLuint s;
switch (i) {
case 0:
swizzle = SWIZZLE_XXXX;
break;
case 1:
swizzle = SWIZZLE_YYYY;
break;
case 2:
swizzle = SWIZZLE_ZZZZ;
break;
case 3:
swizzle = SWIZZLE_WWWW;
break;
default:
swizzle = SWIZZLE_XYZW;
}
s = _slang_swizzle_swizzle(child_swizzle, swizzle);
return s;
}
else {
return SWIZZLE_XYZW;
}
}
#endif
#if 0
/**
* Recursively descend through swizzle nodes to find the node's storage info.
*/
static slang_ir_storage *
get_store(const slang_ir_node *n)
{
if (n->Opcode == IR_SWIZZLE) {
return get_store(n->Children[0]);
}
return n->Store;
}
#endif
/**
* Generate IR tree for an asm instruction/operation such as:
* __asm vec4_dot __retVal.x, v1, v2;
*/
static slang_ir_node *
_slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
slang_operation *dest)
{
const slang_asm_info *info;
slang_ir_node *kids[3], *n;
GLuint j, firstOperand;
assert(oper->type == SLANG_OPER_ASM);
info = slang_find_asm_info((char *) oper->a_id);
if (!info) {
_mesa_problem(NULL, "undefined __asm function %s\n",
(char *) oper->a_id);
assert(info);
}
assert(info->NumParams <= 3);
if (info->NumParams == oper->num_children) {
/* Storage for result is not specified.
* Children[0], [1], [2] are the operands.
*/
firstOperand = 0;
}
else {
/* Storage for result (child[0]) is specified.
* Children[1], [2], [3] are the operands.
*/
firstOperand = 1;
}
/* assemble child(ren) */
kids[0] = kids[1] = kids[2] = NULL;
for (j = 0; j < info->NumParams; j++) {
kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
if (!kids[j])
return NULL;
}
n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
if (firstOperand) {
/* Setup n->Store to be a particular location. Otherwise, storage
* for the result (a temporary) will be allocated later.
*/
slang_operation *dest_oper;
slang_ir_node *n0;
dest_oper = &oper->children[0];
n0 = _slang_gen_operation(A, dest_oper);
if (!n0)
return NULL;
assert(!n->Store);
n->Store = n0->Store;
assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
_slang_free(n0);
}
return n;
}
#if 0
static void
print_funcs(struct slang_function_scope_ *scope, const char *name)
{
GLuint i;
for (i = 0; i < scope->num_functions; i++) {
slang_function *f = &scope->functions[i];
if (!name || strcmp(name, (char*) f->header.a_name) == 0)
printf(" %s (%d args)\n", name, f->param_count);
}
if (scope->outer_scope)
print_funcs(scope->outer_scope, name);
}
#endif
/**
* Find a function of the given name, taking 'numArgs' arguments.
* This is the function we'll try to call when there is no exact match
* between function parameters and call arguments.
*
* XXX we should really create a list of candidate functions and try
* all of them...
*/
static slang_function *
_slang_find_function_by_argc(slang_function_scope *scope,
const char *name, int numArgs)
{
while (scope) {
GLuint i;
for (i = 0; i < scope->num_functions; i++) {
slang_function *f = &scope->functions[i];
if (strcmp(name, (char*) f->header.a_name) == 0) {
int haveRetValue = _slang_function_has_return_value(f);
if (numArgs == f->param_count - haveRetValue)
return f;
}
}
scope = scope->outer_scope;
}
return NULL;
}
static slang_function *
_slang_find_function_by_max_argc(slang_function_scope *scope,
const char *name)
{
slang_function *maxFunc = NULL;
GLuint maxArgs = 0;
while (scope) {
GLuint i;
for (i = 0; i < scope->num_functions; i++) {
slang_function *f = &scope->functions[i];
if (strcmp(name, (char*) f->header.a_name) == 0) {
if (f->param_count > maxArgs) {
maxArgs = f->param_count;
maxFunc = f;
}
}
}
scope = scope->outer_scope;
}
return maxFunc;
}
/**
* Generate a new slang_function which is a constructor for a user-defined
* struct type.
*/
static slang_function *
_slang_make_struct_constructor(slang_assemble_ctx *A, slang_struct *str)
{
const GLint numFields = str->fields->num_variables;
slang_function *fun = slang_function_new(SLANG_FUNC_CONSTRUCTOR);
/* function header (name, return type) */
fun->header.a_name = str->a_name;
fun->header.type.qualifier = SLANG_QUAL_NONE;
fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
fun->header.type.specifier._struct = str;
/* function parameters (= struct's fields) */
{
GLint i;
for (i = 0; i < numFields; i++) {
/*
printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
*/
slang_variable *p = slang_variable_scope_grow(fun->parameters);
*p = *str->fields->variables[i]; /* copy the variable and type */
p->type.qualifier = SLANG_QUAL_CONST;
}
fun->param_count = fun->parameters->num_variables;
}
/* Add __retVal to params */
{
slang_variable *p = slang_variable_scope_grow(fun->parameters);
slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
assert(a_retVal);
p->a_name = a_retVal;
p->type = fun->header.type;
p->type.qualifier = SLANG_QUAL_OUT;
fun->param_count++;
}
/* function body is:
* block:
* declare T;
* T.f1 = p1;
* T.f2 = p2;
* ...
* T.fn = pn;
* return T;
*/
{
slang_variable_scope *scope;
slang_variable *var;
GLint i;
fun->body = slang_operation_new(1);
fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
fun->body->num_children = numFields + 2;
fun->body->children = slang_operation_new(numFields + 2);
scope = fun->body->locals;
scope->outer_scope = fun->parameters;
/* create local var 't' */
var = slang_variable_scope_grow(scope);
var->a_name = slang_atom_pool_atom(A->atoms, "t");
var->type = fun->header.type;
/* declare t */
{
slang_operation *decl;
decl = &fun->body->children[0];
decl->type = SLANG_OPER_VARIABLE_DECL;
decl->locals = _slang_variable_scope_new(scope);
decl->a_id = var->a_name;
}
/* assign params to fields of t */
for (i = 0; i < numFields; i++) {
slang_operation *assign = &fun->body->children[1 + i];
assign->type = SLANG_OPER_ASSIGN;
assign->locals = _slang_variable_scope_new(scope);
assign->num_children = 2;
assign->children = slang_operation_new(2);
{
slang_operation *lhs = &assign->children[0];
lhs->type = SLANG_OPER_FIELD;
lhs->locals = _slang_variable_scope_new(scope);
lhs->num_children = 1;
lhs->children = slang_operation_new(1);
lhs->a_id = str->fields->variables[i]->a_name;
lhs->children[0].type = SLANG_OPER_IDENTIFIER;
lhs->children[0].a_id = var->a_name;
lhs->children[0].locals = _slang_variable_scope_new(scope);
#if 0
lhs->children[1].num_children = 1;
lhs->children[1].children = slang_operation_new(1);
lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
lhs->children[1].children->locals = _slang_variable_scope_new(scope);
#endif
}
{
slang_operation *rhs = &assign->children[1];
rhs->type = SLANG_OPER_IDENTIFIER;
rhs->locals = _slang_variable_scope_new(scope);
rhs->a_id = str->fields->variables[i]->a_name;
}
}
/* return t; */
{
slang_operation *ret = &fun->body->children[numFields + 1];
ret->type = SLANG_OPER_RETURN;
ret->locals = _slang_variable_scope_new(scope);
ret->num_children = 1;
ret->children = slang_operation_new(1);
ret->children[0].type = SLANG_OPER_IDENTIFIER;
ret->children[0].a_id = var->a_name;
ret->children[0].locals = _slang_variable_scope_new(scope);
}
}
/*
slang_print_function(fun, 1);
*/
return fun;
}
/**
* Find/create a function (constructor) for the given structure name.
*/
static slang_function *
_slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
{
unsigned int i;
for (i = 0; i < A->space.structs->num_structs; i++) {
slang_struct *str = &A->space.structs->structs[i];
if (strcmp(name, (const char *) str->a_name) == 0) {
/* found a structure type that matches the function name */
if (!str->constructor) {
/* create the constructor function now */
str->constructor = _slang_make_struct_constructor(A, str);
}
return str->constructor;
}
}
return NULL;
}
/**
* Generate a new slang_function to satisfy a call to an array constructor.
* Ex: float[3](1., 2., 3.)
*/
static slang_function *
_slang_make_array_constructor(slang_assemble_ctx *A, slang_operation *oper)
{
slang_type_specifier_type baseType;
slang_function *fun;
int num_elements;
fun = slang_function_new(SLANG_FUNC_CONSTRUCTOR);
if (!fun)
return NULL;
baseType = slang_type_specifier_type_from_string((char *) oper->a_id);
num_elements = oper->num_children;
/* function header, return type */
{
fun->header.a_name = oper->a_id;
fun->header.type.qualifier = SLANG_QUAL_NONE;
fun->header.type.specifier.type = SLANG_SPEC_ARRAY;
fun->header.type.specifier._array =
slang_type_specifier_new(baseType, NULL, NULL);
fun->header.type.array_len = num_elements;
}
/* function parameters (= number of elements) */
{
GLint i;
for (i = 0; i < num_elements; i++) {
/*
printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
*/
slang_variable *p = slang_variable_scope_grow(fun->parameters);
char name[10];
_mesa_snprintf(name, sizeof(name), "p%d", i);
p->a_name = slang_atom_pool_atom(A->atoms, name);
p->type.qualifier = SLANG_QUAL_CONST;
p->type.specifier.type = baseType;
}
fun->param_count = fun->parameters->num_variables;
}
/* Add __retVal to params */
{
slang_variable *p = slang_variable_scope_grow(fun->parameters);
slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
assert(a_retVal);
p->a_name = a_retVal;
p->type = fun->header.type;
p->type.qualifier = SLANG_QUAL_OUT;
p->type.specifier.type = baseType;
fun->param_count++;
}
/* function body is:
* block:
* declare T;
* T[0] = p0;
* T[1] = p1;
* ...
* T[n] = pn;
* return T;
*/
{
slang_variable_scope *scope;
slang_variable *var;
GLint i;
fun->body = slang_operation_new(1);
fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
fun->body->num_children = num_elements + 2;
fun->body->children = slang_operation_new(num_elements + 2);
scope = fun->body->locals;
scope->outer_scope = fun->parameters;
/* create local var 't' */
var = slang_variable_scope_grow(scope);
var->a_name = slang_atom_pool_atom(A->atoms, "ttt");
var->type = fun->header.type;/*XXX copy*/
/* declare t */
{
slang_operation *decl;
decl = &fun->body->children[0];
decl->type = SLANG_OPER_VARIABLE_DECL;
decl->locals = _slang_variable_scope_new(scope);
decl->a_id = var->a_name;
}
/* assign params to elements of t */
for (i = 0; i < num_elements; i++) {
slang_operation *assign = &fun->body->children[1 + i];
assign->type = SLANG_OPER_ASSIGN;
assign->locals = _slang_variable_scope_new(scope);
assign->num_children = 2;
assign->children = slang_operation_new(2);
{
slang_operation *lhs = &assign->children[0];
lhs->type = SLANG_OPER_SUBSCRIPT;
lhs->locals = _slang_variable_scope_new(scope);
lhs->num_children = 2;
lhs->children = slang_operation_new(2);
lhs->children[0].type = SLANG_OPER_IDENTIFIER;
lhs->children[0].a_id = var->a_name;
lhs->children[0].locals = _slang_variable_scope_new(scope);
lhs->children[1].type = SLANG_OPER_LITERAL_INT;
lhs->children[1].literal[0] = (GLfloat) i;
}
{
slang_operation *rhs = &assign->children[1];
rhs->type = SLANG_OPER_IDENTIFIER;
rhs->locals = _slang_variable_scope_new(scope);
rhs->a_id = fun->parameters->variables[i]->a_name;
}
}
/* return t; */
{
slang_operation *ret = &fun->body->children[num_elements + 1];
ret->type = SLANG_OPER_RETURN;
ret->locals = _slang_variable_scope_new(scope);
ret->num_children = 1;
ret->children = slang_operation_new(1);
ret->children[0].type = SLANG_OPER_IDENTIFIER;
ret->children[0].a_id = var->a_name;
ret->children[0].locals = _slang_variable_scope_new(scope);
}
}
/*
slang_print_function(fun, 1);
*/
return fun;
}
static GLboolean
_slang_is_vec_mat_type(const char *name)
{
static const char *vecmat_types[] = {
"float", "int", "bool",
"vec2", "vec3", "vec4",
"ivec2", "ivec3", "ivec4",
"bvec2", "bvec3", "bvec4",
"mat2", "mat3", "mat4",
"mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
NULL
};
int i;
for (i = 0; vecmat_types[i]; i++)
if (_mesa_strcmp(name, vecmat_types[i]) == 0)
return GL_TRUE;
return GL_FALSE;
}
/**
* Assemble a function call, given a particular function name.
* \param name the function's name (operators like '*' are possible).
*/
static slang_ir_node *
_slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
slang_operation *oper, slang_operation *dest)
{
slang_operation *params = oper->children;
const GLuint param_count = oper->num_children;
slang_atom atom;
slang_function *fun;
slang_ir_node *n;
atom = slang_atom_pool_atom(A->atoms, name);
if (atom == SLANG_ATOM_NULL)
return NULL;
if (oper->array_constructor) {
/* this needs special handling */
fun = _slang_make_array_constructor(A, oper);
}
else {
/* Try to find function by name and exact argument type matching */
GLboolean error = GL_FALSE;
fun = _slang_function_locate(A->space.funcs, atom, params, param_count,
&A->space, A->atoms, A->log, &error);
if (error) {
slang_info_log_error(A->log,
"Function '%s' not found (check argument types)",
name);
return NULL;
}
}
if (!fun) {
/* Next, try locating a constructor function for a user-defined type */
fun = _slang_locate_struct_constructor(A, name);
}
/*
* At this point, some heuristics are used to try to find a function
* that matches the calling signature by means of casting or "unrolling"
* of constructors.
*/
if (!fun && _slang_is_vec_mat_type(name)) {
/* Next, if this call looks like a vec() or mat() constructor call,
* try "unwinding" the args to satisfy a constructor.
*/
fun = _slang_find_function_by_max_argc(A->space.funcs, name);
if (fun) {
if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
slang_info_log_error(A->log,
"Function '%s' not found (check argument types)",
name);
return NULL;
}
}
}
if (!fun && _slang_is_vec_mat_type(name)) {
/* Next, try casting args to the types of the formal parameters */
int numArgs = oper->num_children;
fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
slang_info_log_error(A->log,
"Function '%s' not found (check argument types)",
name);
return NULL;
}
assert(fun);
}
if (!fun) {
slang_info_log_error(A->log,
"Function '%s' not found (check argument types)",
name);
return NULL;
}
if (!fun->body) {
/* The function body may be in another compilation unit.
* We'll try concatenating the shaders and recompile at link time.
*/
A->UnresolvedRefs = GL_TRUE;
return new_node1(IR_NOP, NULL);
}
/* type checking to be sure function's return type matches 'dest' type */
if (dest) {
slang_typeinfo t0;
slang_typeinfo_construct(&t0);
typeof_operation(A, dest, &t0);
if (!slang_type_specifier_equal(&t0.spec, &fun->header.type.specifier)) {
slang_info_log_error(A->log,
"Incompatible type returned by call to '%s'",
name);
return NULL;
}
}
n = _slang_gen_function_call(A, fun, oper, dest);
if (n && !n->Store && !dest
&& fun->header.type.specifier.type != SLANG_SPEC_VOID) {
/* setup n->Store for the result of the function call */
GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
/*printf("Alloc storage for function result, size %d \n", size);*/
}
if (oper->array_constructor) {
/* free the temporary array constructor function now */
slang_function_destruct(fun);
}
return n;
}
static slang_ir_node *
_slang_gen_method_call(slang_assemble_ctx *A, slang_operation *oper)
{
slang_atom *a_length = slang_atom_pool_atom(A->atoms, "length");
slang_ir_node *n;
slang_variable *var;
/* NOTE: In GLSL 1.20, there's only one kind of method
* call: array.length(). Anything else is an error.
*/
if (oper->a_id != a_length) {
slang_info_log_error(A->log,
"Undefined method call '%s'", (char *) oper->a_id);
return NULL;
}
/* length() takes no arguments */
if (oper->num_children > 0) {
slang_info_log_error(A->log, "Invalid arguments to length() method");
return NULL;
}
/* lookup the object/variable */
var = _slang_variable_locate(oper->locals, oper->a_obj, GL_TRUE);
if (!var || var->type.specifier.type != SLANG_SPEC_ARRAY) {
slang_info_log_error(A->log,
"Undefined object '%s'", (char *) oper->a_obj);
return NULL;
}
/* Create a float/literal IR node encoding the array length */
n = new_node0(IR_FLOAT);
if (n) {
n->Value[0] = (float) _slang_array_length(var);
n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, 1);
}
return n;
}
static GLboolean
_slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
{
if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
oper->type == SLANG_OPER_LITERAL_INT ||
oper->type == SLANG_OPER_LITERAL_BOOL) {
if (oper->literal[0])
*value = GL_TRUE;
else
*value = GL_FALSE;
return GL_TRUE;
}
else if (oper->type == SLANG_OPER_EXPRESSION &&
oper->num_children == 1) {
return _slang_is_constant_cond(&oper->children[0], value);
}
return GL_FALSE;
}
/**
* Test if an operation is a scalar or boolean.
*/
static GLboolean
_slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
{
slang_typeinfo type;
GLint size;
slang_typeinfo_construct(&type);
typeof_operation(A, oper, &type);
size = _slang_sizeof_type_specifier(&type.spec);
slang_typeinfo_destruct(&type);
return size == 1;
}
/**
* Test if an operation is boolean.
*/
static GLboolean
_slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
{
slang_typeinfo type;
GLboolean isBool;
slang_typeinfo_construct(&type);
typeof_operation(A, oper, &type);
isBool = (type.spec.type == SLANG_SPEC_BOOL);
slang_typeinfo_destruct(&type);
return isBool;
}
/**
* Check if a loop contains a 'continue' statement.
* Stop looking if we find a nested loop.
*/
static GLboolean
_slang_loop_contains_continue(const slang_operation *oper)
{
switch (oper->type) {
case SLANG_OPER_CONTINUE:
return GL_TRUE;
case SLANG_OPER_FOR:
case SLANG_OPER_DO:
case SLANG_OPER_WHILE:
/* stop upon finding a nested loop */
return GL_FALSE;
default:
/* recurse */
{
GLuint i;
for (i = 0; i < oper->num_children; i++) {
const slang_operation *child = slang_oper_child_const(oper, i);
if (_slang_loop_contains_continue(child))
return GL_TRUE;
}
}
return GL_FALSE;
}
}
/**
* Check if a loop contains a 'continue' or 'break' statement.
* Stop looking if we find a nested loop.
*/
static GLboolean
_slang_loop_contains_continue_or_break(const slang_operation *oper)
{
switch (oper->type) {
case SLANG_OPER_CONTINUE:
case SLANG_OPER_BREAK:
return GL_TRUE;
case SLANG_OPER_FOR:
case SLANG_OPER_DO:
case SLANG_OPER_WHILE:
/* stop upon finding a nested loop */
return GL_FALSE;
default:
/* recurse */
{
GLuint i;
for (i = 0; i < oper->num_children; i++) {
const slang_operation *child = slang_oper_child_const(oper, i);
if (_slang_loop_contains_continue_or_break(child))
return GL_TRUE;
}
}
return GL_FALSE;
}
}
/**
* Replace 'break' and 'continue' statements inside a do and while loops.
* This is a recursive helper function used by
* _slang_gen_do/while_without_continue().
*/
static void
replace_break_and_cont(slang_assemble_ctx *A, slang_operation *oper)
{
switch (oper->type) {
case SLANG_OPER_BREAK:
/* replace 'break' with "_notBreakFlag = false; break" */
{
slang_operation *block = oper;
block->type = SLANG_OPER_BLOCK_NEW_SCOPE;
slang_operation_add_children(block, 2);
{
slang_operation *assign = slang_oper_child(block, 0);
assign->type = SLANG_OPER_ASSIGN;
slang_operation_add_children(assign, 2);
{
slang_operation *lhs = slang_oper_child(assign, 0);
slang_operation_identifier(lhs, A, "_notBreakFlag");
}
{
slang_operation *rhs = slang_oper_child(assign, 1);
slang_operation_literal_bool(rhs, GL_FALSE);
}
}
{
slang_operation *brk = slang_oper_child(block, 1);
brk->type = SLANG_OPER_BREAK;
assert(!brk->children);
}
}
break;
case SLANG_OPER_CONTINUE:
/* convert continue into a break */
oper->type = SLANG_OPER_BREAK;
break;
case SLANG_OPER_FOR:
case SLANG_OPER_DO:
case SLANG_OPER_WHILE:
/* stop upon finding a nested loop */
break;
default:
/* recurse */
{
GLuint i;
for (i = 0; i < oper->num_children; i++) {
replace_break_and_cont(A, slang_oper_child(oper, i));
}
}
}
}
/**
* Transform a while-loop so that continue statements are converted to breaks.
* Then do normal IR code generation.
*
* Before:
*
* while (LOOPCOND) {
* A;
* if (IFCOND)
* continue;
* B;
* break;
* C;
* }
*
* After:
*
* {
* bool _notBreakFlag = 1;
* while (_notBreakFlag && LOOPCOND) {
* do {
* A;
* if (IFCOND) {
* break; // was continue
* }
* B;
* _notBreakFlag = 0; // was
* break; // break
* C;
* } while (0)
* }
* }
*/
static slang_ir_node *
_slang_gen_while_without_continue(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *top;
slang_operation *innerBody;
assert(oper->type == SLANG_OPER_WHILE);
top = slang_operation_new(1);
top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
top->locals->outer_scope = oper->locals->outer_scope;
slang_operation_add_children(top, 2);
/* declare: bool _notBreakFlag = true */
{
slang_operation *condDecl = slang_oper_child(top, 0);
slang_generate_declaration(A, top->locals, condDecl,
SLANG_SPEC_BOOL, "_notBreakFlag", GL_TRUE);
}
/* build outer while-loop: while (_notBreakFlag && LOOPCOND) { ... } */
{
slang_operation *outerWhile = slang_oper_child(top, 1);
outerWhile->type = SLANG_OPER_WHILE;
slang_operation_add_children(outerWhile, 2);
/* _notBreakFlag && LOOPCOND */
{
slang_operation *cond = slang_oper_child(outerWhile, 0);
cond->type = SLANG_OPER_LOGICALAND;
slang_operation_add_children(cond, 2);
{
slang_operation *notBreak = slang_oper_child(cond, 0);
slang_operation_identifier(notBreak, A, "_notBreakFlag");
}
{
slang_operation *origCond = slang_oper_child(cond, 1);
slang_operation_copy(origCond, slang_oper_child(oper, 0));
}
}
/* inner loop */
{
slang_operation *innerDo = slang_oper_child(outerWhile, 1);
innerDo->type = SLANG_OPER_DO;
slang_operation_add_children(innerDo, 2);
/* copy original do-loop body into inner do-loop's body */
innerBody = slang_oper_child(innerDo, 0);
slang_operation_copy(innerBody, slang_oper_child(oper, 1));
innerBody->locals->outer_scope = innerDo->locals;
/* inner do-loop's condition is constant/false */
{
slang_operation *constFalse = slang_oper_child(innerDo, 1);
slang_operation_literal_bool(constFalse, GL_FALSE);
}
}
}
/* Finally, in innerBody,
* replace "break" with "_notBreakFlag = 0; break"
* replace "continue" with "break"
*/
replace_break_and_cont(A, innerBody);
/*slang_print_tree(top, 0);*/
return _slang_gen_operation(A, top);
return NULL;
}
/**
* Generate loop code using high-level IR_LOOP instruction
*/
static slang_ir_node *
_slang_gen_while(slang_assemble_ctx * A, slang_operation *oper)
{
/*
* LOOP:
* BREAK if !expr (child[0])
* body code (child[1])
*/
slang_ir_node *loop, *breakIf, *body;
GLboolean isConst, constTrue = GL_FALSE;
if (!A->EmitContReturn) {
/* We don't want to emit CONT instructions. If this while-loop has
* a continue, translate it away.
*/
if (_slang_loop_contains_continue(slang_oper_child(oper, 1))) {
return _slang_gen_while_without_continue(A, oper);
}
}
/* type-check expression */
if (!_slang_is_boolean(A, &oper->children[0])) {
slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
return NULL;
}
/* Check if loop condition is a constant */
isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
if (isConst && !constTrue) {
/* loop is never executed! */
return new_node0(IR_NOP);
}
/* Begin new loop */
loop = new_loop(NULL);
/* save loop state */
push_loop(A, oper, loop);
if (isConst && constTrue) {
/* while(nonzero constant), no conditional break */
breakIf = NULL;
}
else {
slang_ir_node *cond
= new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
breakIf = new_break_if_true(A, cond);
}
body = _slang_gen_operation(A, &oper->children[1]);
loop->Children[0] = new_seq(breakIf, body);
/* Do infinite loop detection */
/* loop->List is head of linked list of break/continue nodes */
if (!loop->List && isConst && constTrue) {
/* infinite loop detected */
pop_loop(A);
slang_info_log_error(A->log, "Infinite loop detected!");
return NULL;
}
/* restore loop state */
pop_loop(A);
return loop;
}
/**
* Transform a do-while-loop so that continue statements are converted to breaks.
* Then do normal IR code generation.
*
* Before:
*
* do {
* A;
* if (IFCOND)
* continue;
* B;
* break;
* C;
* } while (LOOPCOND);
*
* After:
*
* {
* bool _notBreakFlag = 1;
* do {
* do {
* A;
* if (IFCOND) {
* break; // was continue
* }
* B;
* _notBreakFlag = 0; // was
* break; // break
* C;
* } while (0)
* } while (_notBreakFlag && LOOPCOND);
* }
*/
static slang_ir_node *
_slang_gen_do_without_continue(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *top;
slang_operation *innerBody;
assert(oper->type == SLANG_OPER_DO);
top = slang_operation_new(1);
top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
top->locals->outer_scope = oper->locals->outer_scope;
slang_operation_add_children(top, 2);
/* declare: bool _notBreakFlag = true */
{
slang_operation *condDecl = slang_oper_child(top, 0);
slang_generate_declaration(A, top->locals, condDecl,
SLANG_SPEC_BOOL, "_notBreakFlag", GL_TRUE);
}
/* build outer do-loop: do { ... } while (_notBreakFlag && LOOPCOND) */
{
slang_operation *outerDo = slang_oper_child(top, 1);
outerDo->type = SLANG_OPER_DO;
slang_operation_add_children(outerDo, 2);
/* inner do-loop */
{
slang_operation *innerDo = slang_oper_child(outerDo, 0);
innerDo->type = SLANG_OPER_DO;
slang_operation_add_children(innerDo, 2);
/* copy original do-loop body into inner do-loop's body */
innerBody = slang_oper_child(innerDo, 0);
slang_operation_copy(innerBody, slang_oper_child(oper, 0));
innerBody->locals->outer_scope = innerDo->locals;
/* inner do-loop's condition is constant/false */
{
slang_operation *constFalse = slang_oper_child(innerDo, 1);
slang_operation_literal_bool(constFalse, GL_FALSE);
}
}
/* _notBreakFlag && LOOPCOND */
{
slang_operation *cond = slang_oper_child(outerDo, 1);
cond->type = SLANG_OPER_LOGICALAND;
slang_operation_add_children(cond, 2);
{
slang_operation *notBreak = slang_oper_child(cond, 0);
slang_operation_identifier(notBreak, A, "_notBreakFlag");
}
{
slang_operation *origCond = slang_oper_child(cond, 1);
slang_operation_copy(origCond, slang_oper_child(oper, 1));
}
}
}
/* Finally, in innerBody,
* replace "break" with "_notBreakFlag = 0; break"
* replace "continue" with "break"
*/
replace_break_and_cont(A, innerBody);
/*slang_print_tree(top, 0);*/
return _slang_gen_operation(A, top);
}
/**
* Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
*/
static slang_ir_node *
_slang_gen_do(slang_assemble_ctx * A, slang_operation *oper)
{
/*
* LOOP:
* body code (child[0])
* tail code:
* BREAK if !expr (child[1])
*/
slang_ir_node *loop;
GLboolean isConst, constTrue;
if (!A->EmitContReturn) {
/* We don't want to emit CONT instructions. If this do-loop has
* a continue, translate it away.
*/
if (_slang_loop_contains_continue(slang_oper_child(oper, 0))) {
return _slang_gen_do_without_continue(A, oper);
}
}
/* type-check expression */
if (!_slang_is_boolean(A, &oper->children[1])) {
slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
return NULL;
}
loop = new_loop(NULL);
/* save loop state */
push_loop(A, oper, loop);
/* loop body: */
loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
/* Check if loop condition is a constant */
isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
if (isConst && constTrue) {
/* do { } while(1) ==> no conditional break */
loop->Children[1] = NULL; /* no tail code */
}
else {
slang_ir_node *cond
= new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
loop->Children[1] = new_break_if_true(A, cond);
}
/* XXX we should do infinite loop detection, as above */
/* restore loop state */
pop_loop(A);
return loop;
}
/**
* Recursively count the number of operations rooted at 'oper'.
* This gives some kind of indication of the size/complexity of an operation.
*/
static GLuint
sizeof_operation(const slang_operation *oper)
{
if (oper) {
GLuint count = 1; /* me */
GLuint i;
for (i = 0; i < oper->num_children; i++) {
count += sizeof_operation(&oper->children[i]);
}
return count;
}
else {
return 0;
}
}
/**
* Determine if a for-loop can be unrolled.
* At this time, only a rather narrow class of for loops can be unrolled.
* See code for details.
* When a loop can't be unrolled because it's too large we'll emit a
* message to the log.
*/
static GLboolean
_slang_can_unroll_for_loop(slang_assemble_ctx * A, const slang_operation *oper)
{
GLuint bodySize;
GLint start, end;
const char *varName;
slang_atom varId;
if (oper->type != SLANG_OPER_FOR)
return GL_FALSE;
assert(oper->num_children == 4);
if (_slang_loop_contains_continue_or_break(slang_oper_child_const(oper, 3)))
return GL_FALSE;
/* children[0] must be either "int i=constant" or "i=constant" */
if (oper->children[0].type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) {
slang_variable *var;
if (oper->children[0].children[0].type != SLANG_OPER_VARIABLE_DECL)
return GL_FALSE;
varId = oper->children[0].children[0].a_id;
var = _slang_variable_locate(oper->children[0].children[0].locals,
varId, GL_TRUE);
if (!var)
return GL_FALSE;
if (!var->initializer)
return GL_FALSE;
if (var->initializer->type != SLANG_OPER_LITERAL_INT)
return GL_FALSE;
start = (GLint) var->initializer->literal[0];
}
else if (oper->children[0].type == SLANG_OPER_EXPRESSION) {
if (oper->children[0].children[0].type != SLANG_OPER_ASSIGN)
return GL_FALSE;
if (oper->children[0].children[0].children[0].type != SLANG_OPER_IDENTIFIER)
return GL_FALSE;
if (oper->children[0].children[0].children[1].type != SLANG_OPER_LITERAL_INT)
return GL_FALSE;
varId = oper->children[0].children[0].children[0].a_id;
start = (GLint) oper->children[0].children[0].children[1].literal[0];
}
else {
return GL_FALSE;
}
/* children[1] must be "i<constant" */
if (oper->children[1].type != SLANG_OPER_EXPRESSION)
return GL_FALSE;
if (oper->children[1].children[0].type != SLANG_OPER_LESS)
return GL_FALSE;
if (oper->children[1].children[0].children[0].type != SLANG_OPER_IDENTIFIER)
return GL_FALSE;
if (oper->children[1].children[0].children[1].type != SLANG_OPER_LITERAL_INT)
return GL_FALSE;
end = (GLint) oper->children[1].children[0].children[1].literal[0];
/* children[2] must be "i++" or "++i" */
if (oper->children[2].type != SLANG_OPER_POSTINCREMENT &&
oper->children[2].type != SLANG_OPER_PREINCREMENT)
return GL_FALSE;
if (oper->children[2].children[0].type != SLANG_OPER_IDENTIFIER)
return GL_FALSE;
/* make sure the same variable name is used in all places */
if ((oper->children[1].children[0].children[0].a_id != varId) ||
(oper->children[2].children[0].a_id != varId))
return GL_FALSE;
varName = (const char *) varId;
/* children[3], the loop body, can't be too large */
bodySize = sizeof_operation(&oper->children[3]);
if (bodySize > MAX_FOR_LOOP_UNROLL_BODY_SIZE) {
slang_info_log_print(A->log,
"Note: 'for (%s ... )' body is too large/complex"
" to unroll",
varName);
return GL_FALSE;
}
if (start >= end)
return GL_FALSE; /* degenerate case */
if (end - start > MAX_FOR_LOOP_UNROLL_ITERATIONS) {
slang_info_log_print(A->log,
"Note: 'for (%s=%d; %s<%d; ++%s)' is too"
" many iterations to unroll",
varName, start, varName, end, varName);
return GL_FALSE;
}
if ((end - start) * bodySize > MAX_FOR_LOOP_UNROLL_COMPLEXITY) {
slang_info_log_print(A->log,
"Note: 'for (%s=%d; %s<%d; ++%s)' will generate"
" too much code to unroll",
varName, start, varName, end, varName);
return GL_FALSE;
}
return GL_TRUE; /* we can unroll the loop */
}
/**
* Unroll a for-loop.
* First we determine the number of iterations to unroll.
* Then for each iteration:
* make a copy of the loop body
* replace instances of the loop variable with the current iteration value
* generate IR code for the body
* \return pointer to generated IR code or NULL if error, out of memory, etc.
*/
static slang_ir_node *
_slang_unroll_for_loop(slang_assemble_ctx * A, const slang_operation *oper)
{
GLint start, end, iter;
slang_ir_node *n, *root = NULL;
slang_atom varId;
if (oper->children[0].type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) {
/* for (int i=0; ... */
slang_variable *var;
varId = oper->children[0].children[0].a_id;
var = _slang_variable_locate(oper->children[0].children[0].locals,
varId, GL_TRUE);
start = (GLint) var->initializer->literal[0];
}
else {
/* for (i=0; ... */
varId = oper->children[0].children[0].children[0].a_id;
start = (GLint) oper->children[0].children[0].children[1].literal[0];
}
end = (GLint) oper->children[1].children[0].children[1].literal[0];
for (iter = start; iter < end; iter++) {
slang_operation *body;
/* make a copy of the loop body */
body = slang_operation_new(1);
if (!body)
return NULL;
if (!slang_operation_copy(body, &oper->children[3]))
return NULL;
/* in body, replace instances of 'varId' with literal 'iter' */
{
slang_variable *oldVar;
slang_operation *newOper;
oldVar = _slang_variable_locate(oper->locals, varId, GL_TRUE);
if (!oldVar) {
/* undeclared loop variable */
slang_operation_delete(body);
return NULL;
}
newOper = slang_operation_new(1);
newOper->type = SLANG_OPER_LITERAL_INT;
newOper->literal_size = 1;
newOper->literal[0] = iter;
/* replace instances of the loop variable with newOper */
slang_substitute(A, body, 1, &oldVar, &newOper, GL_FALSE);
}
/* do IR codegen for body */
n = _slang_gen_operation(A, body);
if (!n)
return NULL;
root = new_seq(root, n);
slang_operation_delete(body);
}
return root;
}
/**
* Replace 'continue' statement with 'break' inside a for-loop.
* This is a recursive helper function used by _slang_gen_for_without_continue().
*/
static void
replace_continue_with_break(slang_assemble_ctx *A, slang_operation *oper)
{
switch (oper->type) {
case SLANG_OPER_CONTINUE:
oper->type = SLANG_OPER_BREAK;
break;
case SLANG_OPER_FOR:
case SLANG_OPER_DO:
case SLANG_OPER_WHILE:
/* stop upon finding a nested loop */
break;
default:
/* recurse */
{
GLuint i;
for (i = 0; i < oper->num_children; i++) {
replace_continue_with_break(A, slang_oper_child(oper, i));
}
}
}
}
/**
* Transform a for-loop so that continue statements are converted to breaks.
* Then do normal IR code generation.
*
* Before:
*
* for (INIT; LOOPCOND; INCR) {
* A;
* if (IFCOND) {
* continue;
* }
* B;
* }
*
* After:
*
* {
* bool _condFlag = 1;
* for (INIT; _condFlag; ) {
* for ( ; _condFlag = LOOPCOND; INCR) {
* A;
* if (IFCOND) {
* break;
* }
* B;
* }
* if (_condFlag)
* INCR;
* }
* }
*/
static slang_ir_node *
_slang_gen_for_without_continue(slang_assemble_ctx *A, slang_operation *oper)
{
slang_operation *top;
slang_operation *outerFor, *innerFor, *init, *cond, *incr;
slang_operation *lhs, *rhs;
assert(oper->type == SLANG_OPER_FOR);
top = slang_operation_new(1);
top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
top->locals->outer_scope = oper->locals->outer_scope;
slang_operation_add_children(top, 2);
/* declare: bool _condFlag = true */
{
slang_operation *condDecl = slang_oper_child(top, 0);
slang_generate_declaration(A, top->locals, condDecl,
SLANG_SPEC_BOOL, "_condFlag", GL_TRUE);
}
/* build outer loop: for (INIT; _condFlag; ) { */
outerFor = slang_oper_child(top, 1);
outerFor->type = SLANG_OPER_FOR;
slang_operation_add_children(outerFor, 4);
init = slang_oper_child(outerFor, 0);
slang_operation_copy(init, slang_oper_child(oper, 0));
cond = slang_oper_child(outerFor, 1);
cond->type = SLANG_OPER_IDENTIFIER;
cond->a_id = slang_atom_pool_atom(A->atoms, "_condFlag");
incr = slang_oper_child(outerFor, 2);
incr->type = SLANG_OPER_VOID;
/* body of the outer loop */
{
slang_operation *block = slang_oper_child(outerFor, 3);
slang_operation_add_children(block, 2);
block->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
/* build inner loop: for ( ; _condFlag = LOOPCOND; INCR) { */
{
innerFor = slang_oper_child(block, 0);
/* make copy of orig loop */
slang_operation_copy(innerFor, oper);
assert(innerFor->type == SLANG_OPER_FOR);
innerFor->locals->outer_scope = block->locals;
init = slang_oper_child(innerFor, 0);
init->type = SLANG_OPER_VOID; /* leak? */
cond = slang_oper_child(innerFor, 1);
slang_operation_destruct(cond);
cond->type = SLANG_OPER_ASSIGN;
cond->locals = _slang_variable_scope_new(innerFor->locals);
slang_operation_add_children(cond, 2);
lhs = slang_oper_child(cond, 0);
lhs->type = SLANG_OPER_IDENTIFIER;
lhs->a_id = slang_atom_pool_atom(A->atoms, "_condFlag");
rhs = slang_oper_child(cond, 1);
slang_operation_copy(rhs, slang_oper_child(oper, 1));
}
/* if (_condFlag) INCR; */
{
slang_operation *ifop = slang_oper_child(block, 1);
ifop->type = SLANG_OPER_IF;
slang_operation_add_children(ifop, 2);
/* re-use cond node build above */
slang_operation_copy(slang_oper_child(ifop, 0), cond);
/* incr node from original for-loop operation */
slang_operation_copy(slang_oper_child(ifop, 1),
slang_oper_child(oper, 2));
}
/* finally, replace "continue" with "break" in the inner for-loop */
replace_continue_with_break(A, slang_oper_child(innerFor, 3));
}
return _slang_gen_operation(A, top);
}
/**
* Generate IR for a for-loop. Unrolling will be done when possible.
*/
static slang_ir_node *
_slang_gen_for(slang_assemble_ctx * A, slang_operation *oper)
{
GLboolean unroll;
if (!A->EmitContReturn) {
/* We don't want to emit CONT instructions. If this for-loop has
* a continue, translate it away.
*/
if (_slang_loop_contains_continue(slang_oper_child(oper, 3))) {
return _slang_gen_for_without_continue(A, oper);
}
}
unroll = _slang_can_unroll_for_loop(A, oper);
if (unroll) {
slang_ir_node *code = _slang_unroll_for_loop(A, oper);
if (code)
return code;
}
assert(oper->type == SLANG_OPER_FOR);
/* conventional for-loop code generation */
{
/*
* init code (child[0])
* LOOP:
* BREAK if !expr (child[1])
* body code (child[3])
* tail code:
* incr code (child[2]) // XXX continue here
*/
slang_ir_node *loop, *cond, *breakIf, *body, *init, *incr;
init = _slang_gen_operation(A, &oper->children[0]);
loop = new_loop(NULL);
/* save loop state */
push_loop(A, oper, loop);
cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
breakIf = new_break_if_true(A, cond);
body = _slang_gen_operation(A, &oper->children[3]);
incr = _slang_gen_operation(A, &oper->children[2]);
loop->Children[0] = new_seq(breakIf, body);
loop->Children[1] = incr; /* tail code */
/* restore loop state */
pop_loop(A);
return new_seq(init, loop);
}
}
static slang_ir_node *
_slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
{
slang_ir_node *n, *cont, *incr = NULL, *loopNode;
assert(oper->type == SLANG_OPER_CONTINUE);
loopNode = current_loop_ir(A);
assert(loopNode);
assert(loopNode->Opcode == IR_LOOP);
cont = new_node0(IR_CONT);
if (cont) {
cont->Parent = loopNode;
/* insert this node at head of linked list of cont/break instructions */
cont->List = loopNode->List;
loopNode->List = cont;
}
n = new_seq(incr, cont);
return n;
}
/**
* Determine if the given operation is of a specific type.
*/
static GLboolean
is_operation_type(const slang_operation *oper, slang_operation_type type)
{
if (oper->type == type)
return GL_TRUE;
else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
oper->num_children == 1)
return is_operation_type(&oper->children[0], type);
else
return GL_FALSE;
}
/**
* Generate IR tree for an if/then/else conditional using high-level
* IR_IF instruction.
*/
static slang_ir_node *
_slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
{
/*
* eval expr (child[0])
* IF expr THEN
* if-body code
* ELSE
* else-body code
* ENDIF
*/
const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
GLboolean isConst, constTrue;
/* type-check expression */
if (!_slang_is_boolean(A, &oper->children[0])) {
slang_info_log_error(A->log, "boolean expression expected for 'if'");
return NULL;
}
if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
return NULL;
}
isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
if (isConst) {
if (constTrue) {
/* if (true) ... */
return _slang_gen_operation(A, &oper->children[1]);
}
else {
/* if (false) ... */
return _slang_gen_operation(A, &oper->children[2]);
}
}
cond = _slang_gen_operation(A, &oper->children[0]);
cond = new_cond(cond);
if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
&& !haveElseClause) {
/* Special case: generate a conditional break */
ifBody = new_break_if_true(A, cond);
return ifBody;
}
else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
&& !haveElseClause
&& current_loop_oper(A)
&& current_loop_oper(A)->type != SLANG_OPER_FOR) {
/* Special case: generate a conditional continue */
ifBody = new_cont_if_true(A, cond);
return ifBody;
}
else {
/* general case */
ifBody = _slang_gen_operation(A, &oper->children[1]);
if (haveElseClause)
elseBody = _slang_gen_operation(A, &oper->children[2]);
else
elseBody = NULL;
ifNode = new_if(cond, ifBody, elseBody);
return ifNode;
}
}
static slang_ir_node *
_slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
{
slang_ir_node *n;
assert(oper->type == SLANG_OPER_NOT);
/* type-check expression */
if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
slang_info_log_error(A->log,
"scalar/boolean expression expected for '!'");
return NULL;
}
n = _slang_gen_operation(A, &oper->children[0]);
if (n)
return new_not(n);
else
return NULL;
}
static slang_ir_node *
_slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
{
slang_ir_node *n1, *n2;
assert(oper->type == SLANG_OPER_LOGICALXOR);
if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
slang_info_log_error(A->log,
"scalar/boolean expressions expected for '^^'");
return NULL;
}
n1 = _slang_gen_operation(A, &oper->children[0]);
if (!n1)
return NULL;
n2 = _slang_gen_operation(A, &oper->children[1]);
if (!n2)
return NULL;
return new_node2(IR_NOTEQUAL, n1, n2);
}
/**
* Generate IR node for storage of a temporary of given size.
*/
static slang_ir_node *
_slang_gen_temporary(GLint size)
{
slang_ir_storage *store;
slang_ir_node *n = NULL;
store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
if (store) {
n = new_node0(IR_VAR_DECL);
if (n) {
n->Store = store;
}
else {
_slang_free(store);
}
}
return n;
}
/**
* Generate program constants for an array.
* Ex: const vec2[3] v = vec2[3](vec2(1,1), vec2(2,2), vec2(3,3));
* This will allocate and initialize three vector constants, storing
* the array in constant memory, not temporaries like a non-const array.
* This can also be used for uniform array initializers.
* \return GL_TRUE for success, GL_FALSE if failure (semantic error, etc).
*/
static GLboolean
make_constant_array(slang_assemble_ctx *A,
slang_variable *var,
slang_operation *initializer)
{
struct gl_program *prog = A->program;
const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
const char *varName = (char *) var->a_name;
const GLuint numElements = initializer->num_children;
GLint size;
GLuint i, j;
GLfloat *values;
if (!var->store) {
var->store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -6, -6);
}
size = var->store->Size;
assert(var->type.qualifier == SLANG_QUAL_CONST ||
var->type.qualifier == SLANG_QUAL_UNIFORM);
assert(initializer->type == SLANG_OPER_CALL);
assert(initializer->array_constructor);
values = (GLfloat *) _mesa_malloc(numElements * 4 * sizeof(GLfloat));
/* convert constructor params into ordinary floats */
for (i = 0; i < numElements; i++) {
const slang_operation *op = &initializer->children[i];
if (op->type != SLANG_OPER_LITERAL_FLOAT) {
/* unsupported type for this optimization */
free(values);
return GL_FALSE;
}
for (j = 0; j < op->literal_size; j++) {
values[i * 4 + j] = op->literal[j];
}
for ( ; j < 4; j++) {
values[i * 4 + j] = 0.0f;
}
}
/* slightly different paths for constants vs. uniforms */
if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
var->store->File = PROGRAM_UNIFORM;
var->store->Index = _mesa_add_uniform(prog->Parameters, varName,
size, datatype, values);
}
else {
var->store->File = PROGRAM_CONSTANT;
var->store->Index = _mesa_add_named_constant(prog->Parameters, varName,
values, size);
}
assert(var->store->Size == size);
_mesa_free(values);
return GL_TRUE;
}
/**
* Generate IR node for allocating/declaring a variable (either a local or
* a global).
* Generally, this involves allocating an slang_ir_storage instance for the
* variable, choosing a register file (temporary, constant, etc).
* For ordinary variables we do not yet allocate storage though. We do that
* when we find the first actual use of the variable to avoid allocating temp
* regs that will never get used.
* At this time, uniforms are always allocated space in this function.
*
* \param initializer Optional initializer expression for the variable.
*/
static slang_ir_node *
_slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var,
slang_operation *initializer)
{
const char *varName = (const char *) var->a_name;
const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
slang_ir_node *varDecl, *n;
slang_ir_storage *store;
GLint arrayLen, size, totalSize; /* if array then totalSize > size */
gl_register_file file;
/*assert(!var->declared);*/
var->declared = GL_TRUE;
/* determine GPU register file for simple cases */
if (is_sampler_type(&var->type)) {
file = PROGRAM_SAMPLER;
}
else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
file = PROGRAM_UNIFORM;
}
else {
file = PROGRAM_TEMPORARY;
}
size = _slang_sizeof_type_specifier(&var->type.specifier);
if (size <= 0) {
slang_info_log_error(A->log, "invalid declaration for '%s'", varName);
return NULL;
}
arrayLen = _slang_array_length(var);
totalSize = _slang_array_size(size, arrayLen);
/* Allocate IR node for the declaration */
varDecl = new_node0(IR_VAR_DECL);
if (!varDecl)
return NULL;
/* Allocate slang_ir_storage for this variable if needed.
* Note that we may not actually allocate a constant or temporary register
* until later.
*/
if (!var->store) {
GLint index = -7; /* TBD / unknown */
var->store = _slang_new_ir_storage(file, index, totalSize);
if (!var->store)
return NULL; /* out of memory */
}
/* set the IR node's Var and Store pointers */
varDecl->Var = var;
varDecl->Store = var->store;
store = var->store;
/* if there's an initializer, generate IR for the expression */
if (initializer) {
slang_ir_node *varRef, *init;
if (var->type.qualifier == SLANG_QUAL_CONST) {
/* if the variable is const, the initializer must be a const
* expression as well.
*/
#if 0
if (!_slang_is_constant_expr(initializer)) {
slang_info_log_error(A->log,
"initializer for %s not constant", varName);
return NULL;
}
#endif
}
/* IR for the variable we're initializing */
varRef = new_var(A, var);
if (!varRef) {
slang_info_log_error(A->log, "out of memory");
return NULL;
}
/* constant-folding, etc here */
_slang_simplify(initializer, &A->space, A->atoms);
/* look for simple constant-valued variables and uniforms */
if (var->type.qualifier == SLANG_QUAL_CONST ||
var->type.qualifier == SLANG_QUAL_UNIFORM) {
if (initializer->type == SLANG_OPER_CALL &&
initializer->array_constructor) {
/* array initializer */
if (make_constant_array(A, var, initializer))
return varRef;
}
else if (initializer->type == SLANG_OPER_LITERAL_FLOAT ||
initializer->type == SLANG_OPER_LITERAL_INT) {
/* simple float/vector initializer */
if (store->File == PROGRAM_UNIFORM) {
store->Index = _mesa_add_uniform(A->program->Parameters,
varName,
totalSize, datatype,
initializer->literal);
store->Swizzle = _slang_var_swizzle(size, 0);
return varRef;
}
#if 0
else {
store->File = PROGRAM_CONSTANT;
store->Index = _mesa_add_named_constant(A->program->Parameters,
varName,
initializer->literal,
totalSize);
store->Swizzle = _slang_var_swizzle(size, 0);
return varRef;
}
#endif
}
}
/* IR for initializer */
init = _slang_gen_operation(A, initializer);
if (!init)
return NULL;
/* XXX remove this when type checking is added above */
if (init->Store && init->Store->Size != totalSize) {
slang_info_log_error(A->log, "invalid assignment (wrong types)");
return NULL;
}
/* assign RHS to LHS */
n = new_node2(IR_COPY, varRef, init);
n = new_seq(varDecl, n);
}
else {
/* no initializer */
n = varDecl;
}
if (store->File == PROGRAM_UNIFORM && store->Index < 0) {
/* always need to allocate storage for uniforms at this point */
store->Index = _mesa_add_uniform(A->program->Parameters, varName,
totalSize, datatype, NULL);
store->Swizzle = _slang_var_swizzle(size, 0);
}
#if 0
printf("%s var %p %s store=%p index=%d size=%d\n",
__FUNCTION__, (void *) var, (char *) varName,
(void *) store, store->Index, store->Size);
#endif
return n;
}
/**
* Generate code for a selection expression: b ? x : y
* XXX In some cases we could implement a selection expression
* with an LRP instruction (use the boolean as the interpolant).
* Otherwise, we use an IF/ELSE/ENDIF construct.
*/
static slang_ir_node *
_slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
{
slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
slang_ir_node *tmpDecl, *tmpVar, *tree;
slang_typeinfo type0, type1, type2;
int size, isBool, isEqual;
assert(oper->type == SLANG_OPER_SELECT);
assert(oper->num_children == 3);
/* type of children[0] must be boolean */
slang_typeinfo_construct(&type0);
typeof_operation(A, &oper->children[0], &type0);
isBool = (type0.spec.type == SLANG_SPEC_BOOL);
slang_typeinfo_destruct(&type0);
if (!isBool) {
slang_info_log_error(A->log, "selector type is not boolean");
return NULL;
}
slang_typeinfo_construct(&type1);
slang_typeinfo_construct(&type2);
typeof_operation(A, &oper->children[1], &type1);
typeof_operation(A, &oper->children[2], &type2);
isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
slang_typeinfo_destruct(&type1);
slang_typeinfo_destruct(&type2);
if (!isEqual) {
slang_info_log_error(A->log, "incompatible types for ?: operator");
return NULL;
}
/* size of x or y's type */
size = _slang_sizeof_type_specifier(&type1.spec);
assert(size > 0);
/* temporary var */
tmpDecl = _slang_gen_temporary(size);
/* the condition (child 0) */
cond = _slang_gen_operation(A, &oper->children[0]);
cond = new_cond(cond);
/* if-true body (child 1) */
tmpVar = new_node0(IR_VAR);
tmpVar->Store = tmpDecl->Store;
trueExpr = _slang_gen_operation(A, &oper->children[1]);
trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
/* if-false body (child 2) */
tmpVar = new_node0(IR_VAR);
tmpVar->Store = tmpDecl->Store;
falseExpr = _slang_gen_operation(A, &oper->children[2]);
falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
ifNode = new_if(cond, trueNode, falseNode);
/* tmp var value */
tmpVar = new_node0(IR_VAR);
tmpVar->Store = tmpDecl->Store;
tree = new_seq(ifNode, tmpVar);
tree = new_seq(tmpDecl, tree);
/*_slang_print_ir_tree(tree, 10);*/
return tree;
}
/**
* Generate code for &&.
*/
static slang_ir_node *
_slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
{
/* rewrite "a && b" as "a ? b : false" */
slang_operation *select;
slang_ir_node *n;
select = slang_operation_new(1);
select->type = SLANG_OPER_SELECT;
slang_operation_add_children(select, 3);
slang_operation_copy(slang_oper_child(select, 0), &oper->children[0]);
slang_operation_copy(slang_oper_child(select, 1), &oper->children[1]);
slang_operation_literal_bool(slang_oper_child(select, 2), GL_FALSE);
n = _slang_gen_select(A, select);
return n;
}
/**
* Generate code for ||.
*/
static slang_ir_node *
_slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
{
/* rewrite "a || b" as "a ? true : b" */
slang_operation *select;
slang_ir_node *n;
select = slang_operation_new(1);
select->type = SLANG_OPER_SELECT;
slang_operation_add_children(select, 3);
slang_operation_copy(slang_oper_child(select, 0), &oper->children[0]);
slang_operation_literal_bool(slang_oper_child(select, 1), GL_TRUE);
slang_operation_copy(slang_oper_child(select, 2), &oper->children[1]);
n = _slang_gen_select(A, select);
return n;
}
/**
* Generate IR tree for a return statement.
*/
static slang_ir_node *
_slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
{
assert(oper->type == SLANG_OPER_RETURN);
return new_return(A->curFuncEndLabel);
}
#if 0
/**
* Determine if the given operation/expression is const-valued.
*/
static GLboolean
_slang_is_constant_expr(const slang_operation *oper)
{
slang_variable *var;
GLuint i;
switch (oper->type) {
case SLANG_OPER_IDENTIFIER:
var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
if (var && var->type.qualifier == SLANG_QUAL_CONST)
return GL_TRUE;
return GL_FALSE;
default:
for (i = 0; i < oper->num_children; i++) {
if (!_slang_is_constant_expr(&oper->children[i]))
return GL_FALSE;
}
return GL_TRUE;
}
}
#endif
/**
* Check if an assignment of type t1 to t0 is legal.
* XXX more cases needed.
*/
static GLboolean
_slang_assignment_compatible(slang_assemble_ctx *A,
slang_operation *op0,
slang_operation *op1)
{
slang_typeinfo t0, t1;
GLuint sz0, sz1;
if (op0->type == SLANG_OPER_POSTINCREMENT ||
op0->type == SLANG_OPER_POSTDECREMENT) {
return GL_FALSE;
}
slang_typeinfo_construct(&t0);
typeof_operation(A, op0, &t0);
slang_typeinfo_construct(&t1);
typeof_operation(A, op1, &t1);
sz0 = _slang_sizeof_type_specifier(&t0.spec);
sz1 = _slang_sizeof_type_specifier(&t1.spec);
#if 1
if (sz0 != sz1) {
/*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
return GL_FALSE;
}
#endif
if (t0.spec.type == SLANG_SPEC_STRUCT &&
t1.spec.type == SLANG_SPEC_STRUCT &&
t0.spec._struct->a_name != t1.spec._struct->a_name)
return GL_FALSE;
if (t0.spec.type == SLANG_SPEC_FLOAT &&
t1.spec.type == SLANG_SPEC_BOOL)
return GL_FALSE;
#if 0 /* not used just yet - causes problems elsewhere */
if (t0.spec.type == SLANG_SPEC_INT &&
t1.spec.type == SLANG_SPEC_FLOAT)
return GL_FALSE;
#endif
if (t0.spec.type == SLANG_SPEC_BOOL &&
t1.spec.type == SLANG_SPEC_FLOAT)
return GL_FALSE;
if (t0.spec.type == SLANG_SPEC_BOOL &&
t1.spec.type == SLANG_SPEC_INT)
return GL_FALSE;
return GL_TRUE;
}
/**
* Generate IR tree for a local variable declaration.
* Basically do some error checking and call _slang_gen_var_decl().
*/
static slang_ir_node *
_slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
{
const char *varName = (char *) oper->a_id;
slang_variable *var;
slang_ir_node *varDecl;
slang_operation *initializer;
assert(oper->type == SLANG_OPER_VARIABLE_DECL);
assert(oper->num_children <= 1);
/* lookup the variable by name */
var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
if (!var)
return NULL; /* "shouldn't happen" */
if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
var->type.qualifier == SLANG_QUAL_VARYING ||
var->type.qualifier == SLANG_QUAL_UNIFORM) {
/* can't declare attribute/uniform vars inside functions */
slang_info_log_error(A->log,
"local variable '%s' cannot be an attribute/uniform/varying",
varName);
return NULL;
}
#if 0
if (v->declared) {
slang_info_log_error(A->log, "variable '%s' redeclared", varName);
return NULL;
}
#endif
/* check if the var has an initializer */
if (oper->num_children > 0) {
assert(oper->num_children == 1);
initializer = &oper->children[0];
}
else if (var->initializer) {
initializer = var->initializer;
}
else {
initializer = NULL;
}
if (initializer) {
/* check/compare var type and initializer type */
if (!_slang_assignment_compatible(A, oper, initializer)) {
slang_info_log_error(A->log, "incompatible types in assignment");
return NULL;
}
}
else {
if (var->type.qualifier == SLANG_QUAL_CONST) {
slang_info_log_error(A->log,
"const-qualified variable '%s' requires initializer",
varName);
return NULL;
}
}
/* Generate IR node */
varDecl = _slang_gen_var_decl(A, var, initializer);
if (!varDecl)
return NULL;
return varDecl;
}
/**
* Generate IR tree for a reference to a variable (such as in an expression).
* This is different from a variable declaration.
*/
static slang_ir_node *
_slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
{
/* If there's a variable associated with this oper (from inlining)
* use it. Otherwise, use the oper's var id.
*/
slang_atom name = oper->var ? oper->var->a_name : oper->a_id;
slang_variable *var = _slang_variable_locate(oper->locals, name, GL_TRUE);
slang_ir_node *n;
if (!var) {
slang_info_log_error(A->log, "undefined variable '%s'", (char *) name);
return NULL;
}
assert(var->declared);
n = new_var(A, var);
return n;
}
/**
* Return the number of components actually named by the swizzle.
* Recall that swizzles may have undefined/don't-care values.
*/
static GLuint
swizzle_size(GLuint swizzle)
{
GLuint size = 0, i;
for (i = 0; i < 4; i++) {
GLuint swz = GET_SWZ(swizzle, i);
size += (swz >= 0 && swz <= 3);
}
return size;
}
static slang_ir_node *
_slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
{
slang_ir_node *n = new_node1(IR_SWIZZLE, child);
assert(child);
if (n) {
assert(!n->Store);
n->Store = _slang_new_ir_storage_relative(0,
swizzle_size(swizzle),
child->Store);
n->Store->Swizzle = swizzle;
}
return n;
}
static GLboolean
is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
{
while (store->Parent)
store = store->Parent;
if (!(store->File == PROGRAM_OUTPUT ||
store->File == PROGRAM_TEMPORARY ||
(store->File == PROGRAM_VARYING &&
A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
return GL_FALSE;
}
else {
return GL_TRUE;
}
}
/**
* Walk up an IR storage path to compute the final swizzle.
* This is used when we find an expression such as "foo.xz.yx".
*/
static GLuint
root_swizzle(const slang_ir_storage *st)
{
GLuint swizzle = st->Swizzle;
while (st->Parent) {
st = st->Parent;
swizzle = _slang_swizzle_swizzle(st->Swizzle, swizzle);
}
return swizzle;
}
/**
* Generate IR tree for an assignment (=).
*/
static slang_ir_node *
_slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
{
slang_operation *pred = NULL;
slang_ir_node *n = NULL;
if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
/* Check that var is writeable */
slang_variable *var
= _slang_variable_locate(oper->children[0].locals,
oper->children[0].a_id, GL_TRUE);
if (!var) {
slang_info_log_error(A->log, "undefined variable '%s'",
(char *) oper->children[0].a_id);
return NULL;
}
if (var->type.qualifier == SLANG_QUAL_CONST ||
var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
var->type.qualifier == SLANG_QUAL_UNIFORM ||
(var->type.qualifier == SLANG_QUAL_VARYING &&
A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
slang_info_log_error(A->log,
"illegal assignment to read-only variable '%s'",
(char *) oper->children[0].a_id);
return NULL;
}
/* check if we need to predicate this assignment based on __notRetFlag */
if ((var->is_global ||
var->type.qualifier == SLANG_QUAL_OUT ||
var->type.qualifier == SLANG_QUAL_INOUT) && A->UseReturnFlag) {
/* create predicate, used below */
pred = slang_operation_new(1);
pred->type = SLANG_OPER_IDENTIFIER;
pred->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
pred->locals->outer_scope = oper->locals->outer_scope;
}
}
if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
oper->children[1].type == SLANG_OPER_CALL) {
/* Special case of: x = f(a, b)
* Replace with f(a, b, x) (where x == hidden __retVal out param)
*
* XXX this could be even more effective if we could accomodate
* cases such as "v.x = f();" - would help with typical vertex
* transformation.
*/
n = _slang_gen_function_call_name(A,
(const char *) oper->children[1].a_id,
&oper->children[1], &oper->children[0]);
}
else {
slang_ir_node *lhs, *rhs;
/* lhs and rhs type checking */
if (!_slang_assignment_compatible(A,
&oper->children[0],
&oper->children[1])) {
slang_info_log_error(A->log, "incompatible types in assignment");
return NULL;
}
lhs = _slang_gen_operation(A, &oper->children[0]);
if (!lhs) {
return NULL;
}
if (!lhs->Store) {
slang_info_log_error(A->log,
"invalid left hand side for assignment");
return NULL;
}
/* check that lhs is writable */
if (!is_store_writable(A, lhs->Store)) {
slang_info_log_error(A->log,
"illegal assignment to read-only l-value");
return NULL;
}
rhs = _slang_gen_operation(A, &oper->children[1]);
if (lhs && rhs) {
/* convert lhs swizzle into writemask */
const GLuint swizzle = root_swizzle(lhs->Store);
GLuint writemask, newSwizzle = 0x0;
if (!swizzle_to_writemask(A, swizzle, &writemask, &newSwizzle)) {
/* Non-simple writemask, need to swizzle right hand side in
* order to put components into the right place.
*/
rhs = _slang_gen_swizzle(rhs, newSwizzle);
}
n = new_node2(IR_COPY, lhs, rhs);
}
else {
return NULL;
}
}
if (n && pred) {
/* predicate the assignment code on __notRetFlag */
slang_ir_node *top, *cond;
cond = _slang_gen_operation(A, pred);
top = new_if(cond, n, NULL);
return top;
}
return n;
}
/**
* Generate IR tree for referencing a field in a struct (or basic vector type)
*/
static slang_ir_node *
_slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
{
slang_typeinfo ti;
/* type of struct */
slang_typeinfo_construct(&ti);
typeof_operation(A, &oper->children[0], &ti);
if (_slang_type_is_vector(ti.spec.type)) {
/* the field should be a swizzle */
const GLuint rows = _slang_type_dim(ti.spec.type);
slang_swizzle swz;
slang_ir_node *n;
GLuint swizzle;
if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
slang_info_log_error(A->log, "Bad swizzle");
return NULL;
}
swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
swz.swizzle[1],
swz.swizzle[2],
swz.swizzle[3]);
n = _slang_gen_operation(A, &oper->children[0]);
/* create new parent node with swizzle */
if (n)
n = _slang_gen_swizzle(n, swizzle);
return n;
}
else if ( ti.spec.type == SLANG_SPEC_FLOAT
|| ti.spec.type == SLANG_SPEC_INT
|| ti.spec.type == SLANG_SPEC_BOOL) {
const GLuint rows = 1;
slang_swizzle swz;
slang_ir_node *n;
GLuint swizzle;
if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
slang_info_log_error(A->log, "Bad swizzle");
}
swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
swz.swizzle[1],
swz.swizzle[2],
swz.swizzle[3]);
n = _slang_gen_operation(A, &oper->children[0]);
/* create new parent node with swizzle */
n = _slang_gen_swizzle(n, swizzle);
return n;
}
else {
/* the field is a structure member (base.field) */
/* oper->children[0] is the base */
/* oper->a_id is the field name */
slang_ir_node *base, *n;
slang_typeinfo field_ti;
GLint fieldSize, fieldOffset = -1;
/* type of field */
slang_typeinfo_construct(&field_ti);
typeof_operation(A, oper, &field_ti);
fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
if (fieldSize > 0)
fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
if (fieldSize == 0 || fieldOffset < 0) {
const char *structName;
if (ti.spec._struct)
structName = (char *) ti.spec._struct->a_name;
else
structName = "unknown";
slang_info_log_error(A->log,
"\"%s\" is not a member of struct \"%s\"",
(char *) oper->a_id, structName);
return NULL;
}
assert(fieldSize >= 0);
base = _slang_gen_operation(A, &oper->children[0]);
if (!base) {
/* error msg should have already been logged */
return NULL;
}
n = new_node1(IR_FIELD, base);
if (!n)
return NULL;
n->Field = (char *) oper->a_id;
/* Store the field's offset in storage->Index */
n->Store = _slang_new_ir_storage(base->Store->File,
fieldOffset,
fieldSize);
return n;
}
}
/**
* Gen code for array indexing.
*/
static slang_ir_node *
_slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
{
slang_typeinfo array_ti;
/* get array's type info */
slang_typeinfo_construct(&array_ti);
typeof_operation(A, &oper->children[0], &array_ti);
if (_slang_type_is_vector(array_ti.spec.type)) {
/* indexing a simple vector type: "vec4 v; v[0]=p;" */
/* translate the index into a swizzle/writemask: "v.x=p" */
const GLuint max = _slang_type_dim(array_ti.spec.type);
GLint index;
slang_ir_node *n;
index = (GLint) oper->children[1].literal[0];
if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
index >= (GLint) max) {
#if 0
slang_info_log_error(A->log, "Invalid array index for vector type");
printf("type = %d\n", oper->children[1].type);
printf("index = %d, max = %d\n", index, max);
printf("array = %s\n", (char*)oper->children[0].a_id);
printf("index = %s\n", (char*)oper->children[1].a_id);
return NULL;
#else
index = 0;
#endif
}
n = _slang_gen_operation(A, &oper->children[0]);
if (n) {
/* use swizzle to access the element */
GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
SWIZZLE_NIL,
SWIZZLE_NIL,
SWIZZLE_NIL);
n = _slang_gen_swizzle(n, swizzle);
}
assert(n->Store);
return n;
}
else {
/* conventional array */
slang_typeinfo elem_ti;
slang_ir_node *elem, *array, *index;
GLint elemSize, arrayLen;
/* size of array element */
slang_typeinfo_construct(&elem_ti);
typeof_operation(A, oper, &elem_ti);
elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
if (_slang_type_is_matrix(array_ti.spec.type))
arrayLen = _slang_type_dim(array_ti.spec.type);
else
arrayLen = array_ti.array_len;
slang_typeinfo_destruct(&array_ti);
slang_typeinfo_destruct(&elem_ti);
if (elemSize <= 0) {
/* unknown var or type */
slang_info_log_error(A->log, "Undefined variable or type");
return NULL;
}
array = _slang_gen_operation(A, &oper->children[0]);
index = _slang_gen_operation(A, &oper->children[1]);
if (array && index) {
/* bounds check */
GLint constIndex = -1;
if (index->Opcode == IR_FLOAT) {
constIndex = (int) index->Value[0];
if (constIndex < 0 || constIndex >= arrayLen) {
slang_info_log_error(A->log,
"Array index out of bounds (index=%d size=%d)",
constIndex, arrayLen);
_slang_free_ir_tree(array);
_slang_free_ir_tree(index);
return NULL;
}
}
if (!array->Store) {
slang_info_log_error(A->log, "Invalid array");
return NULL;
}
elem = new_node2(IR_ELEMENT, array, index);
/* The storage info here will be updated during code emit */
elem->Store = _slang_new_ir_storage(array->Store->File,
array->Store->Index,
elemSize);
elem->Store->Swizzle = _slang_var_swizzle(elemSize, 0);
return elem;
}
else {
_slang_free_ir_tree(array);
_slang_free_ir_tree(index);
return NULL;
}
}
}
static slang_ir_node *
_slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
slang_ir_opcode opcode)
{
slang_typeinfo t0, t1;
slang_ir_node *n;
slang_typeinfo_construct(&t0);
typeof_operation(A, &oper->children[0], &t0);
slang_typeinfo_construct(&t1);
typeof_operation(A, &oper->children[0], &t1);
if (t0.spec.type == SLANG_SPEC_ARRAY ||
t1.spec.type == SLANG_SPEC_ARRAY) {
slang_info_log_error(A->log, "Illegal array comparison");
return NULL;
}
if (oper->type != SLANG_OPER_EQUAL &&
oper->type != SLANG_OPER_NOTEQUAL) {
/* <, <=, >, >= can only be used with scalars */
if ((t0.spec.type != SLANG_SPEC_INT &&
t0.spec.type != SLANG_SPEC_FLOAT) ||
(t1.spec.type != SLANG_SPEC_INT &&
t1.spec.type != SLANG_SPEC_FLOAT)) {
slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
return NULL;
}
}
n = new_node2(opcode,
_slang_gen_operation(A, &oper->children[0]),
_slang_gen_operation(A, &oper->children[1]));
/* result is a bool (size 1) */
n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
return n;
}
#if 0
static void
print_vars(slang_variable_scope *s)
{
int i;
printf("vars: ");
for (i = 0; i < s->num_variables; i++) {
printf("%s %d, \n",
(char*) s->variables[i]->a_name,
s->variables[i]->declared);
}
printf("\n");
}
#endif
#if 0
static void
_slang_undeclare_vars(slang_variable_scope *locals)
{
if (locals->num_variables > 0) {
int i;
for (i = 0; i < locals->num_variables; i++) {
slang_variable *v = locals->variables[i];
printf("undeclare %s at %p\n", (char*) v->a_name, v);
v->declared = GL_FALSE;
}
}
}
#endif
/**
* Generate IR tree for a slang_operation (AST node)
*/
static slang_ir_node *
_slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
{
switch (oper->type) {
case SLANG_OPER_BLOCK_NEW_SCOPE:
{
slang_ir_node *n;
_slang_push_var_table(A->vartable);
oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
n = _slang_gen_operation(A, oper);
oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
_slang_pop_var_table(A->vartable);
/*_slang_undeclare_vars(oper->locals);*/
/*print_vars(oper->locals);*/
if (n)
n = new_node1(IR_SCOPE, n);
return n;
}
break;
case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
/* list of operations */
if (oper->num_children > 0)
{
slang_ir_node *n, *tree = NULL;
GLuint i;
for (i = 0; i < oper->num_children; i++) {
n = _slang_gen_operation(A, &oper->children[i]);
if (!n) {
_slang_free_ir_tree(tree);
return NULL; /* error must have occured */
}
tree = new_seq(tree, n);
}
return tree;
}
else {
return new_node0(IR_NOP);
}
case SLANG_OPER_EXPRESSION:
return _slang_gen_operation(A, &oper->children[0]);
case SLANG_OPER_FOR:
return _slang_gen_for(A, oper);
case SLANG_OPER_DO:
return _slang_gen_do(A, oper);
case SLANG_OPER_WHILE:
return _slang_gen_while(A, oper);
case SLANG_OPER_BREAK:
if (!current_loop_oper(A)) {
slang_info_log_error(A->log, "'break' not in loop");
return NULL;
}
return new_break(current_loop_ir(A));
case SLANG_OPER_CONTINUE:
if (!current_loop_oper(A)) {
slang_info_log_error(A->log, "'continue' not in loop");
return NULL;
}
return _slang_gen_continue(A, oper);
case SLANG_OPER_DISCARD:
return new_node0(IR_KILL);
case SLANG_OPER_EQUAL:
return _slang_gen_compare(A, oper, IR_EQUAL);
case SLANG_OPER_NOTEQUAL:
return _slang_gen_compare(A, oper, IR_NOTEQUAL);
case SLANG_OPER_GREATER:
return _slang_gen_compare(A, oper, IR_SGT);
case SLANG_OPER_LESS:
return _slang_gen_compare(A, oper, IR_SLT);
case SLANG_OPER_GREATEREQUAL:
return _slang_gen_compare(A, oper, IR_SGE);
case SLANG_OPER_LESSEQUAL:
return _slang_gen_compare(A, oper, IR_SLE);
case SLANG_OPER_ADD:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "+", oper, NULL);
return n;
}
case SLANG_OPER_SUBTRACT:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "-", oper, NULL);
return n;
}
case SLANG_OPER_MULTIPLY:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "*", oper, NULL);
return n;
}
case SLANG_OPER_DIVIDE:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "/", oper, NULL);
return n;
}
case SLANG_OPER_MINUS:
{
slang_ir_node *n;
assert(oper->num_children == 1);
n = _slang_gen_function_call_name(A, "-", oper, NULL);
return n;
}
case SLANG_OPER_PLUS:
/* +expr --> do nothing */
return _slang_gen_operation(A, &oper->children[0]);
case SLANG_OPER_VARIABLE_DECL:
return _slang_gen_declaration(A, oper);
case SLANG_OPER_ASSIGN:
return _slang_gen_assignment(A, oper);
case SLANG_OPER_ADDASSIGN:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "+=", oper, NULL);
return n;
}
case SLANG_OPER_SUBASSIGN:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "-=", oper, NULL);
return n;
}
break;
case SLANG_OPER_MULASSIGN:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "*=", oper, NULL);
return n;
}
case SLANG_OPER_DIVASSIGN:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_function_call_name(A, "/=", oper, NULL);
return n;
}
case SLANG_OPER_LOGICALAND:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_logical_and(A, oper);
return n;
}
case SLANG_OPER_LOGICALOR:
{
slang_ir_node *n;
assert(oper->num_children == 2);
n = _slang_gen_logical_or(A, oper);
return n;
}
case SLANG_OPER_LOGICALXOR:
return _slang_gen_xor(A, oper);
case SLANG_OPER_NOT:
return _slang_gen_not(A, oper);
case SLANG_OPER_SELECT: /* b ? x : y */
{
slang_ir_node *n;
assert(oper->num_children == 3);
n = _slang_gen_select(A, oper);
return n;
}
case SLANG_OPER_ASM:
return _slang_gen_asm(A, oper, NULL);
case SLANG_OPER_CALL:
return _slang_gen_function_call_name(A, (const char *) oper->a_id,
oper, NULL);
case SLANG_OPER_METHOD:
return _slang_gen_method_call(A, oper);
case SLANG_OPER_RETURN:
return _slang_gen_return(A, oper);
case SLANG_OPER_RETURN_INLINED:
return _slang_gen_return(A, oper);
case SLANG_OPER_LABEL:
return new_label(oper->label);
case SLANG_OPER_IDENTIFIER:
return _slang_gen_variable(A, oper);
case SLANG_OPER_IF:
return _slang_gen_if(A, oper);
case SLANG_OPER_FIELD:
return _slang_gen_struct_field(A, oper);
case SLANG_OPER_SUBSCRIPT:
return _slang_gen_array_element(A, oper);
case SLANG_OPER_LITERAL_FLOAT:
/* fall-through */
case SLANG_OPER_LITERAL_INT:
/* fall-through */
case SLANG_OPER_LITERAL_BOOL:
return new_float_literal(oper->literal, oper->literal_size);
case SLANG_OPER_POSTINCREMENT: /* var++ */
{
slang_ir_node *n;
assert(oper->num_children == 1);
n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
return n;
}
case SLANG_OPER_POSTDECREMENT: /* var-- */
{
slang_ir_node *n;
assert(oper->num_children == 1);
n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
return n;
}
case SLANG_OPER_PREINCREMENT: /* ++var */
{
slang_ir_node *n;
assert(oper->num_children == 1);
n = _slang_gen_function_call_name(A, "++", oper, NULL);
return n;
}
case SLANG_OPER_PREDECREMENT: /* --var */
{
slang_ir_node *n;
assert(oper->num_children == 1);
n = _slang_gen_function_call_name(A, "--", oper, NULL);
return n;
}
case SLANG_OPER_NON_INLINED_CALL:
case SLANG_OPER_SEQUENCE:
{
slang_ir_node *tree = NULL;
GLuint i;
for (i = 0; i < oper->num_children; i++) {
slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
tree = new_seq(tree, n);
if (n)
tree->Store = n->Store;
}
if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
tree = new_function_call(tree, oper->label);
}
return tree;
}
case SLANG_OPER_NONE:
case SLANG_OPER_VOID:
/* returning NULL here would generate an error */
return new_node0(IR_NOP);
default:
_mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
oper->type);
return new_node0(IR_NOP);
}
return NULL;
}
/**
* Check if the given type specifier is a rectangular texture sampler.
*/
static GLboolean
is_rect_sampler_spec(const slang_type_specifier *spec)
{
while (spec->_array) {
spec = spec->_array;
}
return spec->type == SLANG_SPEC_SAMPLER2DRECT ||
spec->type == SLANG_SPEC_SAMPLER2DRECTSHADOW;
}
/**
* Called by compiler when a global variable has been parsed/compiled.
* Here we examine the variable's type to determine what kind of register
* storage will be used.
*
* A uniform such as "gl_Position" will become the register specification
* (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
* will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
*
* Samplers are interesting. For "uniform sampler2D tex;" we'll specify
* (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
* actual texture unit (as specified by the user calling glUniform1i()).
*/
GLboolean
_slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
slang_unit_type type)
{
struct gl_program *prog = A->program;
const char *varName = (char *) var->a_name;
GLboolean success = GL_TRUE;
slang_ir_storage *store = NULL;
int dbg = 0;
const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
const GLint arrayLen = _slang_array_length(var);
const GLint totalSize = _slang_array_size(size, arrayLen);
GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
var->is_global = GL_TRUE;
/* check for sampler2D arrays */
if (texIndex == -1 && var->type.specifier._array)
texIndex = sampler_to_texture_index(var->type.specifier._array->type);
if (texIndex != -1) {
/* This is a texture sampler variable...
* store->File = PROGRAM_SAMPLER
* store->Index = sampler number (0..7, typically)
* store->Size = texture type index (1D, 2D, 3D, cube, etc)
*/
if (var->initializer) {
slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
return GL_FALSE;
}
#if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
/* disallow rect samplers */
if (is_rect_sampler_spec(&var->type.specifier)) {
slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
return GL_FALSE;
}
#else
(void) is_rect_sampler_spec; /* silence warning */
#endif
{
GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
store = _slang_new_ir_storage_sampler(sampNum, texIndex, totalSize);
/* If we have a sampler array, then we need to allocate the
* additional samplers to ensure we don't allocate them elsewhere.
* We can't directly use _mesa_add_sampler() as that checks the
* varName and gets a match, so we call _mesa_add_parameter()
* directly and use the last sampler number from the call above.
*/
if (arrayLen > 0) {
GLint a = arrayLen - 1;
GLint i;
for (i = 0; i < a; i++) {
GLfloat value = (GLfloat)(i + sampNum + 1);
(void) _mesa_add_parameter(prog->Parameters, PROGRAM_SAMPLER,
varName, 1, datatype, &value, NULL, 0x0);
}
}
}
if (dbg) printf("SAMPLER ");
}
else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
/* Uniform variable */
const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
if (prog) {
/* user-defined uniform */
if (datatype == GL_NONE) {
if ((var->type.specifier.type == SLANG_SPEC_ARRAY &&
var->type.specifier._array->type == SLANG_SPEC_STRUCT) ||
(var->type.specifier.type == SLANG_SPEC_STRUCT)) {
/* temporary work-around */
GLenum datatype = GL_FLOAT;
GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
totalSize, datatype, NULL);
store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
totalSize, swizzle);
if (arrayLen > 0) {
GLint a = arrayLen - 1;
GLint i;
for (i = 0; i < a; i++) {
GLfloat value = (GLfloat)(i + uniformLoc + 1);
(void) _mesa_add_parameter(prog->Parameters, PROGRAM_UNIFORM,
varName, 1, datatype, &value, NULL, 0x0);
}
}
/* XXX what we need to do is unroll the struct into its
* basic types, creating a uniform variable for each.
* For example:
* struct foo {
* vec3 a;
* vec4 b;
* };
* uniform foo f;
*
* Should produce uniforms:
* "f.a" (GL_FLOAT_VEC3)
* "f.b" (GL_FLOAT_VEC4)
*/
if (var->initializer) {
slang_info_log_error(A->log,
"unsupported initializer for uniform '%s'", varName);
return GL_FALSE;
}
}
else {
slang_info_log_error(A->log,
"invalid datatype for uniform variable %s",
varName);
return GL_FALSE;
}
}
else {
/* non-struct uniform */
if (!_slang_gen_var_decl(A, var, var->initializer))
return GL_FALSE;
store = var->store;
}
}
else {
/* pre-defined uniform, like gl_ModelviewMatrix */
/* We know it's a uniform, but don't allocate storage unless
* it's really used.
*/
store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
totalSize, swizzle);
}
if (dbg) printf("UNIFORM (sz %d) ", totalSize);
}
else if (var->type.qualifier == SLANG_QUAL_VARYING) {
/* varyings must be float, vec or mat */
if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
var->type.specifier.type != SLANG_SPEC_ARRAY) {
slang_info_log_error(A->log,
"varying '%s' must be float/vector/matrix",
varName);
return GL_FALSE;
}
if (var->initializer) {
slang_info_log_error(A->log, "illegal initializer for varying '%s'",
varName);
return GL_FALSE;
}
if (prog) {
/* user-defined varying */
GLbitfield flags;
GLint varyingLoc;
GLuint swizzle;
flags = 0x0;
if (var->type.centroid == SLANG_CENTROID)
flags |= PROG_PARAM_BIT_CENTROID;
if (var->type.variant == SLANG_INVARIANT)
flags |= PROG_PARAM_BIT_INVARIANT;
varyingLoc = _mesa_add_varying(prog->Varying, varName,
totalSize, flags);
swizzle = _slang_var_swizzle(size, 0);
store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
totalSize, swizzle);
}
else {
/* pre-defined varying, like gl_Color or gl_TexCoord */
if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
/* fragment program input */
GLuint swizzle;
GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
&swizzle);
assert(index >= 0);
assert(index < FRAG_ATTRIB_MAX);
store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
size, swizzle);
}
else {
/* vertex program output */
GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
GLuint swizzle = _slang_var_swizzle(size, 0);
assert(index >= 0);
assert(index < VERT_RESULT_MAX);
assert(type == SLANG_UNIT_VERTEX_BUILTIN);
store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
size, swizzle);
}
if (dbg) printf("V/F ");
}
if (dbg) printf("VARYING ");
}
else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
GLuint swizzle;
GLint index;
/* attributes must be float, vec or mat */
if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
slang_info_log_error(A->log,
"attribute '%s' must be float/vector/matrix",
varName);
return GL_FALSE;
}
if (prog) {
/* user-defined vertex attribute */
const GLint attr = -1; /* unknown */
swizzle = _slang_var_swizzle(size, 0);
index = _mesa_add_attribute(prog->Attributes, varName,
size, datatype, attr);
assert(index >= 0);
index = VERT_ATTRIB_GENERIC0 + index;
}
else {
/* pre-defined vertex attrib */
index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
assert(index >= 0);
}
store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
if (dbg) printf("ATTRIB ");
}
else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
&swizzle);
store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
if (dbg) printf("INPUT ");
}
else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
if (type == SLANG_UNIT_VERTEX_BUILTIN) {
GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
}
else {
GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
GLint specialSize = 4; /* treat all fragment outputs as float[4] */
assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
}
if (dbg) printf("OUTPUT ");
}
else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
/* pre-defined global constant, like gl_MaxLights */
store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
if (dbg) printf("CONST ");
}
else {
/* ordinary variable (may be const) */
slang_ir_node *n;
/* IR node to declare the variable */
n = _slang_gen_var_decl(A, var, var->initializer);
/* emit GPU instructions */
success = _slang_emit_code(n, A->vartable, A->program, A->pragmas, GL_FALSE, A->log);
_slang_free_ir_tree(n);
}
if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
store ? store->Index : -2);
if (store)
var->store = store; /* save var's storage info */
var->declared = GL_TRUE;
return success;
}
/**
* Produce an IR tree from a function AST (fun->body).
* Then call the code emitter to convert the IR tree into gl_program
* instructions.
*/
GLboolean
_slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
{
slang_ir_node *n;
GLboolean success = GL_TRUE;
if (_mesa_strcmp((char *) fun->header.a_name, "main") != 0) {
/* we only really generate code for main, all other functions get
* inlined or codegen'd upon an actual call.
*/
#if 0
/* do some basic error checking though */
if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
/* check that non-void functions actually return something */
slang_operation *op
= _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
if (!op) {
slang_info_log_error(A->log,
"function \"%s\" has no return statement",
(char *) fun->header.a_name);
printf(
"function \"%s\" has no return statement\n",
(char *) fun->header.a_name);
return GL_FALSE;
}
}
#endif
return GL_TRUE; /* not an error */
}
#if 0
printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
slang_print_function(fun, 1);
#endif
/* should have been allocated earlier: */
assert(A->program->Parameters );
assert(A->program->Varying);
assert(A->vartable);
A->LoopDepth = 0;
A->UseReturnFlag = GL_FALSE;
A->CurFunction = fun;
/* fold constant expressions, etc. */
_slang_simplify(fun->body, &A->space, A->atoms);
#if 0
printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
slang_print_function(fun, 1);
#endif
/* Create an end-of-function label */
A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
/* push new vartable scope */
_slang_push_var_table(A->vartable);
/* Generate IR tree for the function body code */
n = _slang_gen_operation(A, fun->body);
if (n)
n = new_node1(IR_SCOPE, n);
/* pop vartable, restore previous */
_slang_pop_var_table(A->vartable);
if (!n) {
/* XXX record error */
return GL_FALSE;
}
/* append an end-of-function-label to IR tree */
n = new_seq(n, new_label(A->curFuncEndLabel));
/*_slang_label_delete(A->curFuncEndLabel);*/
A->curFuncEndLabel = NULL;
#if 0
printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
slang_print_function(fun, 1);
#endif
#if 0
printf("************* IR for %s *******\n", (char*)fun->header.a_name);
_slang_print_ir_tree(n, 0);
#endif
#if 0
printf("************* End codegen function ************\n\n");
#endif
if (A->UnresolvedRefs) {
/* Can't codegen at this time.
* At link time we'll concatenate all the vertex shaders and/or all
* the fragment shaders and try recompiling.
*/
return GL_TRUE;
}
/* Emit program instructions */
success = _slang_emit_code(n, A->vartable, A->program, A->pragmas, GL_TRUE, A->log);
_slang_free_ir_tree(n);
/* free codegen context */
/*
_mesa_free(A->codegen);
*/
return success;
}